首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Iroquois (Irx) genes encode evolutionary conserved homeoproteins. We report that Xenopus genes Irx1 and Irx3 are expressed and required during different stages of Xenopus pronephros development. They are initially expressed during mid-neurulation in domains extending over most of the prospective pronephric territory. Expression onset takes place after kidney anlage specification, but before pronephric organogenesis occurs. Later, during nephron segmentation, expression becomes restricted to the intermediate tubule region of the proximal-distal axis. Loss- and gain-of-function analyses, performed with specific morpholinos and inducible wild-type and dominant-negative constructs, reveal a dual requirement for Irx1 and Irx3 during pronephros development. During neurula stages, these genes maintain the specification of the pronephric territory and define its size. This seems to occur, at least in part, through positive regulation of Bmp signalling. Subsequently, Irx genes are required for proper formation of the intermediate tubule. Finally, we find that retinoic acid signalling activates both Irx1 and Irx3 genes in the pronephros.  相似文献   

2.
It has been shown experimentally that lung epithelial explants have an ability to undergo branching morphogenesis without mesenchyme. However, the mechanisms of this phenomenon remain to be elucidated. In the present study, we construct a mathematical model that can reproduce the dynamics of in vitro branching morphogenesis. We show that the system is essentially governed by three variables--c(0) which is the initial fibroblast growth factor (FGF) concentration, D which is the diffusion coefficient of FGF, and beta which describes the mechanical strength of the cytoskeleton. It is confirmed by numerical simulations that this model can reproduce the experimentally obtained patterns qualitatively. Finally, we experimentally verify two predictions from the model: effects of very high FGF concentration and effects of small mechanical contributions of the cytoskeleton. The theoretical predictions match well with the experimental results.  相似文献   

3.
4.
5.
Members of the Drosophila Iroquois homeobox gene family are implicated in the development of peripheral nervous system and the regionalization of wing and eye imaginal discs. Recent studies suggest that Xenopus Iroquois homeobox (Irx) genes are also involved in neurogenesis. Three mouse Irx genes, Irx1, Irx2 and Irx3, have been previously identified and are expressed with distinct spatio-temporal patterns during neurogenesis. We report here the cloning and expression analysis of two novel mouse Irx genes, Irx5 and Irx6. Although Irx5 and Irx6 proteins are structurally more related to one another, we find that Irx5 displays a developmental expression pattern strikingly similar to that of Irx3, whereas Irx6 expression resembles that of Irx1. Consistent with the notion that Mash1 is a putative target gene of the Irx proteins, all four Irx genes display an overlapping expression pattern with Mash1 in the developing CNS. In contrast, the Irx genes and Mash1 are expressed in complementary domains in the developing eye and olfactory epithelium.  相似文献   

6.
7.
8.
9.
Heparan sulfate-FGF10 interactions during lung morphogenesis   总被引:3,自引:0,他引:3  
Signaling by fibroblast growth factor 10 (FGF10) through FGFR2b is essential for lung development. Heparan sulfates (HS) are major modulators of growth factor binding and signaling present on cell surfaces and extracellular matrices of all tissues. Although recent studies provide evidence that HS are required for FGF-directed tracheal morphogenesis in Drosophila, little is known about the HS role in FGF10-mediated bud formation in the vertebrate lung. Here, we mapped HS expression in the early lung and we investigated how HS interactions with FGF10-FGFR2b influence lung morphogenesis. Our data show that a specific set of HS low in O-sulfates is dynamically expressed in the lung mesenchyme at the sites of prospective budding near Fgf10-expressing areas. In turn, highly sulfated HS are present in basement membranes of branching epithelial tubules. We show that disrupting endogenous gradients of HS or altering HS sulfation in embryonic lung culture systems prevents FGF10 from inducing local responses and markedly alters lung pattern formation and gene expression. Experiments with selectively sulfated heparins indicate that O-sulfated groups in HS are critical for FGF10 signaling activation in the epithelium during lung bud formation, and that the effect of FGF10 in pattern is in part determined by regional distribution of O-sulfated HS. Moreover, we describe expression of a HS 6-O-sulfotransferase preferentially at the tips of branching tubules. Our data suggest that the ability of FGF10 to induce local budding is critically influenced by developmentally regulated regional patterns of HS sulfation.  相似文献   

10.
11.
To study the mammalian craniofacial development, the culture conditions of rat whole embryo during the period of major craniofacial morphogenesis were examined. The improved rotating apparatus which is gassed continuously was used. Rat embryos explanted at 11.5 days (plug day 0) developed in vitro for up to 72 hr, that is, throughout the period of major craniofacial morphogenesis, and cultured embryos showed normal facial formation. The medium was equilibrated with a gas mixture of 95% 02, 5% CO2. The 100% rat serum improved the protein content of embryos cultured for 48 hr compared with the medium consisting of 50% rat serum and 50% Tyrode solution, although somite number was not altered. Furthermore, 100% rat serum containing 2 mg/ml glucose was the best medium for supporting growth of embryos when it was measured by protein content. Thus, the best culture medium was pure rat serum containing 50 units/ml penicillin, 50 micrograms/ml streptomycin, and 2 mg/ml glucose. Protein content, body weight, craniofacial formation, and somite number of embryos cultured for 48 hr with continuous gassing were much better than those cultured with noncontinuous gassing.  相似文献   

12.
Mammalian homologues of the Drosophila Iroquois homeobox gene complex, involved in patterning and regionalization of differentiation, have recently been identified (Mech. Dev., 69 (1997) 169; Dev. Biol., 217 (2000) 266; Dev. Dyn., 218 (2000) 160; Mech. Dev., 91 (2000) 317; Dev. Biol., 224 (2000) 263; Genome Res., 10 (2000) 1453; Mech. Dev., 103 (2001) 193). The six members of the murine family were found to be organized in two cognate clusters of three genes each, Irx1, -2, -4 and Irx3, -5, -6, respectively (Peters et al., 2000). As a basis for further study of their regulation and function we performed a comparative analysis of the genomic organization and of the expression patterns of all six Irx genes. The genes are expressed in highly specific and regionalized patterns of ectoderm, mesoderm and endoderm derived tissues. In most tissues the pattern of expression of the clustered genes, especially of Irx1 and -2 and of Irx3 and -5, respectively, closely resembled each other while those of Irx4 and -6 were very divergent. Interestingly, the expression of cognate genes was found to be mutually exclusive in adjacent and interacting tissues of limb, heart and the laryncho-pharyncheal region. The results indicate that the Irx genes are coordinately regulated at the level of the cluster.  相似文献   

13.
Elastin synthesis during perinatal lung development in the rat   总被引:2,自引:0,他引:2  
The rate of soluble elastin synthesis was estimated in lung explants from rats of differing ages to better define periods in lung development important to the deposition of lung elastin. Lungs from rat pups at days 1, 3, 7, 9, 12, 15, and 21 post-parturition and from adult rats were incubated in a defined medium containing L-[3H]valine. Following incubation, labelled soluble elastin (tropoelastin) was separated from other soluble proteins by coacervation and electrophoresis on polyacrylamide gels containing sodium dodecyl sulfate. The tropoelastin synthetic rate was then estimated after correcting for differences in recovery of radioactivity as tropoelastin and lung tissue L-[3H]valine specific activity. Maximal rates of elastin synthesis were observed in lung explants from 7-12-day-old rats. The rate of elastin synthesis during this period was 5-8-times the rate observed in adult rat lung (expressed per g of fresh lung) and represented approx. 2% of the total protein synthesis. Moreover, the values derived from lung explant culture for elastin synthesis were consistent with values for lung elastin deposition in the perinatal rat (5-10 micrograms elastin/h per g lung).  相似文献   

14.
Regulation of retinoic acid signaling during lung morphogenesis   总被引:9,自引:0,他引:9  
Little is known about how retinoic acid (RA) synthesis, utilization and metabolism are regulated in the embryonic lung and how these activities relate to lung pattern formation. Here we report that early lung bud formation and subsequent branching morphogenesis are characterized by distinct stages of RA signaling. At the onset of lung development RA signaling is ubiquitously activated in primary buds, as shown by expression of the major RA-synthesizing enzyme, RALDH-2 and activation of a RARE-lacZ transgene. Nevertheless, further airway branching appears to require downregulation of RA pathways by decreased synthesis, increased RA degradation in the epithelium via P450RAI-mediated metabolism, and inhibition of RA signaling in the mesenchyme by COUPTF-II expression. These mechanisms controlling local RA signaling may be critical for normal branching, since we show that manipulating RA levels in vitro to maintain RA signaling activated as in the initial stage, leads to an immature lung phenotype characterized by failure to form typical distal buds. We show that this phenotype likely results from RA interfering with the establishment of a distal signaling center, altering levels and distribution of Fgf10 and Bmp4, genes that are essential for distal lung formation. Furthermore, RA upregulates P450RAI expression, suggesting the presence of feedback mechanisms controlling RA availability. Our study illustrates the importance of regional mechanisms that control RA availability and utilization for correct expression of pattern regulators and normal morphogenesis during lung development.  相似文献   

15.
16.
17.
18.
The Drosophila eye is a mosaic that results from the stochastic distribution of two ommatidial subtypes. Pale and yellow ommatidia can be distinguished by the expression of distinct rhodopsins and other pigments in their inner photoreceptors (R7 and R8), which are implicated in color vision. The pale subtype contains ultraviolet (UV)-absorbing Rh3 in R7 and blue-absorbing Rh5 in R8. The yellow subtype contains UV-absorbing Rh4 in R7 and green-absorbing Rh6 in R8. The exclusive expression of one rhodopsin per photoreceptor is a widespread phenomenon, although exceptions exist. The mechanisms leading to the exclusive expression or to co-expression of sensory receptors are currently not known. We describe a new class of ommatidia that co-express rh3 and rh4 in R7, but maintain normal exclusion between rh5 and rh6 in R8. These ommatidia, which are localized in the dorsal eye, result from the expansion of rh3 into the yellow-R7 subtype. Genes from the Iroquois Complex (Iro-C) are necessary and sufficient to induce co-expression in yR7. Iro-C genes allow photoreceptors to break the "one receptor-one neuron" rule, leading to a novel subtype of broad-spectrum UV- and green-sensitive ommatidia.  相似文献   

19.

Background

Little is known about the role of most asthma susceptibility genes during human lung development. Genetic determinants for normal lung development are not only important early in life, but also for later lung function.

Objective

To investigate the role of expression patterns of well-defined asthma susceptibility genes during human and murine lung development. We hypothesized that genes influencing normal airways development would be over-represented by genes associated with asthma.

Methods

Asthma genes were first identified via comprehensive search of the current literature. Next, we analyzed their expression patterns in the developing human lung during the pseudoglandular (gestational age, 7-16 weeks) and canalicular (17-26 weeks) stages of development, and in the complete developing lung time series of 3 mouse strains: A/J, SW, C57BL6.

Results

In total, 96 genes with association to asthma in at least two human populations were identified in the literature. Overall, there was no significant over-representation of the asthma genes among genes differentially expressed during lung development, although trends were seen in the human (Odds ratio, OR 1.22, confidence interval, CI 0.90-1.62) and C57BL6 mouse (OR 1.41, CI 0.92-2.11) data. However, differential expression of some asthma genes was consistent in both developing human and murine lung, e.g. NOD1, EDN1, CCL5, RORA and HLA-G. Among the asthma genes identified in genome wide association studies, ROBO1, RORA, HLA-DQB1, IL2RB and PDE10A were differentially expressed during human lung development.

Conclusions

Our data provide insight about the role of asthma susceptibility genes during lung development and suggest common mechanisms underlying lung morphogenesis and pathogenesis of respiratory diseases.  相似文献   

20.
Mechanical control of tissue morphogenesis during embryological development   总被引:5,自引:0,他引:5  
Twenty years ago, we proposed a model of developmental control based on tensegrity architecture, in which tissue pattern formation in the embryo is controlled through mechanical interactions between cells and extracellular matrix (ECM) which place the tissue in a state of isometric tension (prestress). The model proposed that local changes in the mechanical compliance of the ECM, for example, due to regional variations in basement membrane degradation beneath growing epithelium, may result in local stretching of the ECM and associated adherent cells, much like a "run-in-a-stocking". Cell growth and function would be controlled locally though physical distortion of the associated cells, or changes in cytoskeletal tension. Importantly, experimental studies have demonstrated that cultured cells can be switched between different fates, including growth, differentiation, apoptosis, directional motility and different stem cell lineages, by modulating cell shape. Experiments in whole embryonic organ rudiments also have confirmed the tight correlation between basement membrane thinning, cell tension generation and new bud and branch formation during tissue morphogenesis and that this process can be inhibited or accelerated by dissipating or enhancing cytoskeletal tension, respectively. Taken together, this work confirms that mechanical forces generated in the cytoskeleton of individual cells and exerted on ECM scaffolds, play a critical role in the sculpting of the embryo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号