首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
ABSTRACT

Trophoblast migration and invasion through the decidua and maternal uterine spiral arteries are crucial events in placentation. During this process, invasive trophoblast replace vascular endothelial cells as the uterine arteries are remodeled to form more permissive vessels that facilitate adequate blood flow to the growing fetus. Placentation failures resulting from either extensive or shallow trophoblastic invasion can cause pregnancy complications such as preeclampsia, intrauterine growth restriction, placenta creta, gestational trophoblastic disease and even maternal or fetal death. Consequently, the use of experimental animal models such as rats and mice has led to great progress in recent years with regards to the identification of mechanisms and factors that control trophoblast migration kinetics. This review aims to perform a comparative analysis of placentation and the mechanisms and factors that coordinate intrauterine trophoblast migration in humans, rats and mice under physiological and pathological conditions.  相似文献   

3.
A single mitochondrial network in the cell undergoes constant fission and fusion primarily depending on the local GTP gradients and the mitochondrial energetics. Here we overview the main properties and regulation of pro-fusion and pro-fission mitodynamins, i.e. dynamins-related GTPases responsible for mitochondrial shape-forming, such as pro-fusion mitofusins MFN1, MFN2, and the inner membrane-residing long OPA1 isoforms, and pro-fission mitodynamins FIS1, MFF, and DRP1 multimers required for scission. Notably, the OPA1 cleavage into non-functional short isoforms at a diminished ATP level (collapsed membrane potential) and the DRP1 recruitment upon phosphorylation by various kinases are overviewed. Possible responses of mitodynamins to the oxidative stress, hypoxia, and concomitant mtDNA mutations are also discussed. We hypothesize that the increased GTP formation within the Krebs cycle followed by the GTP export via the ADP/ATP carrier shift the balance between fission and fusion towards fusion by activating the GTPase domain of OPA1 located in the peripheral intermembrane space (PIMS). Since the protein milieu of PIMS is kept at the prevailing oxidized redox potential by the TOM, MIA40 and ALR/Erv1 import-redox trapping system, redox regulations shift the protein environment of PIMS to a more reduced state due to the higher substrate load and increased respiration. A higher cytochrome c turnover rate may prevent electron transfer from ALR/Erv1 to cytochrome c. Nevertheless, the putative links between the mitodynamin responses, mitochondrial morphology and the changes in the mitochondrial bioenergetics, superoxide production, and hypoxia are yet to be elucidated, including the precise basis for signaling by the mitochondrion-derived vesicles.  相似文献   

4.
Ageing is associated with a progressive loss of skeletal muscle mass, quality and function—sarcopenia, associated with reduced independence and quality of life in older generations. A better understanding of the mechanisms, both genetic and epigenetic, underlying this process would help develop therapeutic interventions to prevent, slow down or reverse muscle wasting associated with ageing. Currently, exercise is the only known effective intervention to delay the progression of sarcopenia. The cellular responses that occur in muscle fibres following exercise provide valuable clues to the molecular mechanisms regulating muscle homoeostasis and potentially the progression of sarcopenia. Redox signalling, as a result of endogenous generation of ROS/RNS in response to muscle contractions, has been identified as a crucial regulator for the adaptive responses to exercise, highlighting the redox environment as a potentially core therapeutic approach to maintain muscle homoeostasis during ageing. Further novel and attractive candidates include the manipulation of microRNA expression. MicroRNAs are potent gene regulators involved in the control of healthy and disease-associated biological processes and their therapeutic potential has been researched in the context of various disorders, including ageing-associated muscle wasting. Finally, we discuss the impact of the circadian clock on the regulation of gene expression in skeletal muscle and whether disruption of the peripheral muscle clock affects sarcopenia and altered responses to exercise. Interventions that include modifying altered redox signalling with age and incorporating genetic mechanisms such as circadian- and microRNA-based gene regulation, may offer potential effective treatments against age-associated sarcopenia.  相似文献   

5.
Greater than 120 genes are up-regulated in Xenopus laevis limb buds within the first 24 h after induction of metamorphosis by thyroid hormone. Fourteen of these have been isolated and characterized. Four encode heat shock proteins. The identified regulated genes have in common a relatedness with cell growth as exemplified by the serum response of quiescent fibroblasts. Some of the genes respond directly to hormone. However, the majority appear to be secondary response genes judging from their delayed kinetics and cycloheximide sensitivity. This indicates that there are at least two periods of gene expression change in the first 24 h. DNA replication increases in the second 24 h. Growth of the limb bud occurs for several days before the genes that characterize terminal differentiation of its cell types are up-regulated.  相似文献   

6.
Proteins, nucleic acids, and lipids can undergo various forms of oxidative modification. In numerous instances, these modifications result in irreversible loss of function. The age-dependent accumulation of oxidatively modified and dysfunctional macromolecules provides the basis for the free radical theory of aging. Pro-oxidants, however, are also capable of catalyzing fully reversible modifications to protein. It is increasingly apparent that these reactions participate in redox-dependent regulation of cell metabolism and response to stress. The adventitious use of free radical species adds complexity to the experimental and theoretical manner in which the free radical theory is to be tested and considered. Elucidation of mechanisms by which reversible oxidative processes are controlled, the components involved, and the metabolic consequences and how they are altered with age will provide new insight on the aging process and attempts to delay the inevitable.  相似文献   

7.
8.
Recently, we reported that 3,3',5-triiodothyronine (T3) induces the expression of redox-sensitive genes as a nongenomic mechanism of T3 action. In this study, we show that T3 administration to rats (daily doses of 0.1 mg/kg ip for 3 consecutive days) induced a calorigenic response and liver glutathione depletion as an indication of oxidative stress, with higher levels of interleukin (IL)-6 in serum (ELISA) and hepatic STAT3 DNA binding (EMSA), which were maximal at 48-72 h after treatment. Under these conditions, the protein expression of the acute-phase proteins haptoglobin and beta-fibrinogen is significantly augmented, a change that is suppressed by pretreatment with alpha-tocopherol (100 mg/kg ip) or gadolinium chloride (10 mg/kg iv) before T3. It is concluded that T3 administration induces the acute-phase response in rat liver by a redox mechanism triggered at the Kupffer cell level, in association with IL-6 release and activation of the STAT3 cascade, a response that may contribute to reestablishing homeostasis in the liver and extrahepatic tissues exhibiting oxidative stress.  相似文献   

9.
《Free radical research》2013,47(6):672-680
Abstract

Mitochondria are considered to play an important role in oxidative stress response since they are a source of reactive oxygen species and are also targeted by these species. This study examined the mitochondrial conditions in cells of epithelial origin that were exposed to H2O2 and found a decline in the membrane potential along with a specific loss of UQCRC1, a sub-unit of complex III, suggesting that mitochondrial dysfunction occurs upon exposure to oxidative stress. This observation led to the hypothesis that certain cellular responses to oxidative stress occurred because of mitochondrial dysfunction. When mitochondria-less (pseudo ρ0) cells were examined as a model of mitochondrial dysfunction, striking similarities were found in their cellular responses compared with those found in cells exposed to oxidative stress, including changes in gene expression and gelatinolytic enzyme activities, thus suggesting that cellular responses to oxidative stress were partly mediated by mitochondrial dysfunction. This possibility was further validated by microarray analysis, which suggested that almost one-fourth of the cellular responses to oxidative stress were mediated by mitochondrial dysfunction that accompanies oxidative stress, thereby warranting a therapeutic strategy that targets mitochondria for the treatment of oxidative stress-associated diseases.  相似文献   

10.
Mitochondria are considered to play an important role in oxidative stress response since they are a source of reactive oxygen species and are also targeted by these species. This study examined the mitochondrial conditions in cells of epithelial origin that were exposed to H(2)O(2) and found a decline in the membrane potential along with a specific loss of UQCRC1, a sub-unit of complex III, suggesting that mitochondrial dysfunction occurs upon exposure to oxidative stress. This observation led to the hypothesis that certain cellular responses to oxidative stress occurred because of mitochondrial dysfunction. When mitochondria-less (pseudo ρ0) cells were examined as a model of mitochondrial dysfunction, striking similarities were found in their cellular responses compared with those found in cells exposed to oxidative stress, including changes in gene expression and gelatinolytic enzyme activities, thus suggesting that cellular responses to oxidative stress were partly mediated by mitochondrial dysfunction. This possibility was further validated by microarray analysis, which suggested that almost one-fourth of the cellular responses to oxidative stress were mediated by mitochondrial dysfunction that accompanies oxidative stress, thereby warranting a therapeutic strategy that targets mitochondria for the treatment of oxidative stress-associated diseases.  相似文献   

11.
12.
Proteins, nucleic acids, and lipids can undergo various forms of oxidative modification. In numerous instances, these modifications result in irreversible loss of function. The age-dependent accumulation of oxidatively modified and dysfunctional macromolecules provides the basis for the free radical theory of aging. Pro-oxidants, however, are also capable of catalyzing fully reversible modifications to protein. It is increasingly apparent that these reactions participate in redox-dependent regulation of cell metabolism and response to stress. The adventitious use of free radical species adds complexity to the experimental and theoretical manner in which the free radical theory is to be tested and considered. Elucidation of mechanisms by which reversible oxidative processes are controlled, the components involved, and the metabolic consequences and how they are altered with age will provide new insight on the aging process and attempts to delay the inevitable.  相似文献   

13.
14.
Phosphatidylinositol 3-kinase signaling regulates the expression of several genes involved in lipid and glucose homeostasis; deregulation of these genes may contribute to insulin resistance and progression toward type 2 diabetes. By employing RNA arbitrarily primed-PCR to search for novel phosphatidylinositol 3-kinase-regulated genes in response to insulin in isolated rat adipocytes, we identified fatty aldehyde dehydrogenase (FALDH), a key component of the detoxification pathway of aldehydes arising from lipid peroxidation events. Among these latter events are oxidative stresses associated with insulin resistance and diabetes. Upon insulin injection, FALDH mRNA expression increased in rat liver and white adipose tissue and was impaired in two models of insulin-resistant mice, db/db and high fat diet mice. FALDH mRNA levels were 4-fold decreased in streptozotocin-treated rats, suggesting that FALDH deregulation occurs both in hyperinsulinemic insulin-resistant state and hypoinsulinemic type 1 diabetes models. Moreover, insulin treatment increases FALDH activity in hepatocytes, and expression of FALDH was augmented during adipocyte differentiation. Considering the detoxifying role of FALDH, its deregulation in insulin-resistant and type 1 diabetic models may contribute to the lipid-derived oxidative stress. To assess the role of FALDH in the detoxification of oxidized lipid species, we evaluated the production of reactive oxygen species in normal versus FALDH-overexpressing adipocytes. Ectopic expression of FALDH significantly decreased reactive oxygen species production in cells treated by 4-hydroxynonenal, the major lipid peroxidation product, suggesting that FALDH protects against oxidative stress associated with lipid peroxidation. Taken together, our observations illustrate the importance of FALDH in insulin action and its deregulation in states associated with altered insulin signaling.  相似文献   

15.
Microtubule and actin cytoskeletons are fundamental to a variety of cellular activities within eukaryotic organisms. Extensive information on the dynamics and functions of microtubules, as well as on their regulatory proteins, have been revealed in fungi and animals, and corresponding pictures are now slowly emerging in plants. During interphase, plant cells contain highly dynamic cortical microtubules that organize into ordered arrays, which are apparently regulated by distinct groups of microtubule regulators. Comparison with fungal and animal microtubules highlights both conserved and unique mechanisms for the regulation of the microtubule cytoskeleton in plants.  相似文献   

16.
The ubiquitous antioxidant thiol tripeptide glutathione is present in millimolar concentrations in plant tissues and is regarded as one of the major determinants of cellular redox homeostasis. Recent research has highlighted a regulatory role for glutathione in influencing the expression of many genes important in plants' responses to both abiotic and biotic stress. Therefore, it becomes important to consider how glutathione levels and its redox state are influenced by environmental factors, how glutathione is integrated into primary metabolism and precisely how it can influence the functioning of signal transduction pathways by modulating cellular redox state. This review draws on a number of recent important observations and papers to present a unified view of how the responsiveness of glutathione to changes in photosynthesis may be one means of linking changes in nuclear gene expression to changes in the plant's external environment.  相似文献   

17.
The observation that muscular exercise is associated with oxidative stress in humans was first reported over 30 years ago. Since this initial report, numerous studies have confirmed that prolonged or high-intensity exercise results in oxidative damage to macromolecules in both blood and skeletal muscle. Although the primary tissue(s) responsible for reactive oxygen species (ROS) production during exercise remains a topic of debate, compelling evidence indicates that muscular activity promotes oxidant production in contracting skeletal muscle fibers. Mitochondria, NADPH oxidase, PLA2-dependent processes, and xanthine oxidase have all been postulated to contribute to contraction-induced ROS production in muscle but the primary site of contraction-induced ROS production in muscle fibers remains unclear. Nonetheless, contraction-induced ROS generation has been shown to play an important physiological function in the regulation of both muscle force production and contraction-induced adaptive responses of muscle fibers to exercise training. Although knowledge in the field of exercise and oxidative stress has grown markedly during the past 30 years, this area continues to expand and there is much more to be learned about the role of ROS as signaling molecules in skeletal muscle.  相似文献   

18.
Endogenously synthesized trehalose is a stress protectant in Escherichia coli. Externally supplied trehalose does not serve as a stress protectant, but it can be utilized as the sole source of carbon and energy. Mutants defective in trehalose synthesis display an impaired osmotic tolerance in minimal growth media without glycine betaine, and an impaired stationary-phaseinduced heat tolerance. Mechanisms for stress protection by trehalose are discussed. The genes for trehalose-6-phosphate synthase (otsA) and anabolic trehalose-6-phosphate phosphatase (otsB) constitute an operon. Their expression is induced both by osmotic stress and by growth into the stationary phase and depend on the sigma factor encoded by rpoS (katF). rpoS is amber-mutated in E. coli K-12 and its DNA sequence varies among K-12 strains. For trehalose catabolism under osmotic stress E. coli depends on the osmoticcally inducible periplasmic trehalase (TreA). In the absence of osmotic stress, trehalose induces the formation of an enzyme IITre (TreB) of the group translocation system, a catabolic trehalose-6-phosphate phosphatase (TreE), and an amylotrehalase (TreC) which converts trehalose to free glucose and a glucose polymer.  相似文献   

19.
Cold stress regulation of gene expression in plants   总被引:22,自引:1,他引:21  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号