首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Background

The objective of this research was to investigate the reproducibility of cross-species microarray hybridisation. Comparisons between same- and cross-species hybridisations were also made. Nine hybridisations between a single pig skeletal muscle RNA sample and three human cDNA nylon microarrays were completed. Three replicate hybridisations of two different amounts of pig RNA, and of human skeletal muscle RNA were completed on three additional microarrays.

Results

Reproducibility of microarray hybridisations of pig cDNA to human microarrays was high, as determined by Spearman and Pearson correlation coefficients and a Kappa statistic. Variability among replicate hybridisations was similar for human and pig data, indicating the reproducibility of results were not compromised in cross-species hybridisations. The concordance between data generated from hybridisations using pig and human skeletal muscle RNA was high, further supporting the use of human microarrays for the analysis of gene expression in the pig. No systematic effect of stripping and re-using nylon microarrays was found, and variability across microarrays was minimal.

Conclusion

The majority of genes generated highly reproducible data in cross-species microarray hybridisations, although approximately 6% were identified as highly variable. Experimental designs that include at least three replicate hybridisations for each experimental treatment will enable the variability of individual genes to be considered appropriately. The use of cross-species microarray analysis looks promising. However, additional validation is needed to determine the specifiCity of cross-species hybridisations, and the validity of results.  相似文献   

2.

Background

DNA microarrays are among the most widely used technical platforms for DNA and RNA studies, and issues related to microarrays sensitivity and specificity are therefore of general importance in life sciences. Compatible solutes are derived from hyperthermophilic microorganisms and allow such microorganisms to survive in environmental and stressful conditions. Compatible solutes show stabilization effects towards biological macromolecules, including DNA.

Results

We report here that compatible solutes from hyperthermophiles increased the performance of the hybridization buffer for Affymetrix GeneChip® arrays. The experimental setup included independent hybridizations with constant RNA over a wide range of compatible solute concentrations. The dependence of array quality and compatible solute was assessed using specialized statistical tools provided by both the proprietary Affymetrix quality control system and the open source Bioconductor suite.

Conclusion

Low concentration (10 to 25 mM) of hydroxyectoine, potassium mannosylglycerate and potassium diglycerol phosphate in hybridization buffer positively affected hybridization parameters and enhanced microarrays outcome. This finding harbours a strong potential for the improvement of DNA microarray experiments.  相似文献   

3.

Background  

Although DNA microarray technologies are very powerful for the simultaneous quantitative characterization of thousands of genes, the quality of the obtained experimental data is often far from ideal. The measured microarrays images represent a regular collection of spots, and the intensity of light at each spot is proportional to the DNA copy number or to the expression level of the gene whose DNA clone is spotted. Spot quality control is an essential part of microarray image analysis, which must be carried out at the level of individual spot identification. The problem is difficult to formalize due to the diversity of instrumental and biological factors that can influence the result.  相似文献   

4.
5.
6.
7.
Data preprocessing including proper normalization and adequate quality control before complex data mining is crucial for studies using the cDNA microarray technology. We have developed a simple procedure that integrates data filtering and normalization with quantitative quality control of microarray experiments. Previously we have shown that data variability in a microarray experiment can be very well captured by a quality score q(com) that is defined for every spot, and the ratio distribution depends on q(com). Utilizing this knowledge, our data-filtering scheme allows the investigator to decide on the filtering stringency according to desired data variability, and our normalization procedure corrects the q(com)-dependent dye biases in terms of both the location and the spread of the ratio distribution. In addition, we propose a statistical model for false positive rate determination based on the design and the quality of a microarray experiment. The model predicts that a lower limit of 0.5 for the replicate concordance rate is needed in order to be certain of true positives. Our work demonstrates the importance and advantages of having a quantitative quality control scheme for microarrays.  相似文献   

8.

Background

This paper describes a microarray study including data quality control, data analysis and the analysis of the mechanism of toxicity (MOT) induced by 1-methyl-4-phenylpyridinium (MPP+) in a rat adrenal pheochromocytoma cell line (PC12 cells) using bioinformatics tools. MPP+ depletes dopamine content and elicits cell death in PC12 cells. However, the mechanism of MPP+-induced neurotoxicity is still unclear.

Results

In this study, Agilent rat oligo 22K microarrays were used to examine alterations in gene expression of PC12 cells after 500 μM MPP+ treatment. Relative gene expression of control and treated cells represented by spot intensities on the array chips was analyzed using bioinformatics tools. Raw data from each array were input into the NCTR ArrayTrack database, and normalized using a Lowess normalization method. Data quality was monitored in ArrayTrack. The means of the averaged log ratio of the paired samples were used to identify the fold changes of gene expression in PC12 cells after MPP+ treatment. Our data showed that 106 genes and ESTs (Expressed Sequence Tags) were changed 2-fold and above with MPP+ treatment; among these, 75 genes had gene symbols and 59 genes had known functions according to the Agilent gene Refguide and ArrayTrack-linked gene library. The mechanism of MPP+-induced toxicity in PC12 cells was analyzed based on their genes functions, biological process, pathways and previous published literatures.

Conclusion

Multiple pathways were suggested to be involved in the mechanism of MPP+-induced toxicity, including oxidative stress, DNA and protein damage, cell cycling arrest, and apoptosis.
  相似文献   

9.

Background

With the increased availability of high throughput data, such as DNA microarray data, researchers are capable of producing large amounts of biological data. During the analysis of such data often there is the need to further explore the similarity of genes not only with respect to their expression, but also with respect to their functional annotation which can be obtained from Gene Ontology (GO).

Results

We present the freely available software package GOSim, which allows to calculate the functional similarity of genes based on various information theoretic similarity concepts for GO terms. GOSim extends existing tools by providing additional lately developed functional similarity measures for genes. These can e.g. be used to cluster genes according to their biological function. Vice versa, they can also be used to evaluate the homogeneity of a given grouping of genes with respect to their GO annotation. GOSim hence provides the researcher with a flexible and powerful tool to combine knowledge stored in GO with experimental data. It can be seen as complementary to other tools that, for instance, search for significantly overrepresented GO terms within a given group of genes.

Conclusion

GOSim is implemented as a package for the statistical computing environment R and is distributed under GPL within the CRAN project.  相似文献   

10.

Background

Meaningful exchange of microarray data is currently difficult because it is rare that published data provide sufficient information depth or are even in the same format from one publication to another. Only when data can be easily exchanged will the entire biological community be able to derive the full benefit from such microarray studies.

Results

To this end we have developed three key ingredients towards standardizing the storage and exchange of microarray data. First, we have created a minimal information for the annotation of a microarray experiment (MIAME)-compliant conceptualization of microarray experiments modeled using the unified modeling language (UML) named MAGE-OM (microarray gene expression object model). Second, we have translated MAGE-OM into an XML-based data format, MAGE-ML, to facilitate the exchange of data. Third, some of us are now using MAGE (or its progenitors) in data production settings. Finally, we have developed a freely available software tool kit (MAGE-STK) that eases the integration of MAGE-ML into end users' systems.

Conclusions

MAGE will help microarray data producers and users to exchange information by providing a common platform for data exchange, and MAGE-STK will make the adoption of MAGE easier.  相似文献   

11.

Background

Genomic studies of complex tissues pose unique analytical challenges for assessment of data quality, performance of statistical methods used for data extraction, and detection of differentially expressed genes. Ideally, to assess the accuracy of gene expression analysis methods, one needs a set of genes which are known to be differentially expressed in the samples and which can be used as a "gold standard". We introduce the idea of using sex-chromosome genes as an alternative to spiked-in control genes or simulations for assessment of microarray data and analysis methods.

Results

Expression of sex-chromosome genes were used as true internal biological controls to compare alternate probe-level data extraction algorithms (Microarray Suite 5.0 [MAS5.0], Model Based Expression Index [MBEI] and Robust Multi-array Average [RMA]), to assess microarray data quality and to establish some statistical guidelines for analyzing large-scale gene expression. These approaches were implemented on a large new dataset of human brain samples. RMA-generated gene expression values were markedly less variable and more reliable than MAS5.0 and MBEI-derived values. A statistical technique controlling the false discovery rate was applied to adjust for multiple testing, as an alternative to the Bonferroni method, and showed no evidence of false negative results. Fourteen probesets, representing nine Y- and two X-chromosome linked genes, displayed significant sex differences in brain prefrontal cortex gene expression.

Conclusion

In this study, we have demonstrated the use of sex genes as true biological internal controls for genomic analysis of complex tissues, and suggested analytical guidelines for testing alternate oligonucleotide microarray data extraction protocols and for adjusting multiple statistical analysis of differentially expressed genes. Our results also provided evidence for sex differences in gene expression in the brain prefrontal cortex, supporting the notion of a putative direct role of sex-chromosome genes in differentiation and maintenance of sexual dimorphism of the central nervous system. Importantly, these analytical approaches are applicable to all microarray studies that include male and female human or animal subjects.
  相似文献   

12.
13.

Background

A tremendous amount of efforts have been devoted to identifying genes for diagnosis and prognosis of diseases using microarray gene expression data. It has been demonstrated that gene expression data have cluster structure, where the clusters consist of co-regulated genes which tend to have coordinated functions. However, most available statistical methods for gene selection do not take into consideration the cluster structure.

Results

We propose a supervised group Lasso approach that takes into account the cluster structure in gene expression data for gene selection and predictive model building. For gene expression data without biological cluster information, we first divide genes into clusters using the K-means approach and determine the optimal number of clusters using the Gap method. The supervised group Lasso consists of two steps. In the first step, we identify important genes within each cluster using the Lasso method. In the second step, we select important clusters using the group Lasso. Tuning parameters are determined using V-fold cross validation at both steps to allow for further flexibility. Prediction performance is evaluated using leave-one-out cross validation. We apply the proposed method to disease classification and survival analysis with microarray data.

Conclusion

We analyze four microarray data sets using the proposed approach: two cancer data sets with binary cancer occurrence as outcomes and two lymphoma data sets with survival outcomes. The results show that the proposed approach is capable of identifying a small number of influential gene clusters and important genes within those clusters, and has better prediction performance than existing methods.  相似文献   

14.
15.
16.

Background

Most microarray studies are made using labelling with one or two dyes which allows the hybridization of one or two samples on the same slide. In such experiments, the most frequently used dyes areCy3 andCy5. Recent improvements in the technology (dye-labelling, scanner and, image analysis) allow hybridization up to four samples simultaneously. The two additional dyes areAlexa488 andAlexa494. The triple-target or four-target technology is very promising, since it allows more flexibility in the design of experiments, an increase in the statistical power when comparing gene expressions induced by different conditions and a scaled down number of slides. However, there have been few methods proposed for statistical analysis of such data. Moreover the lowess correction of the global dye effect is available for only two-color experiments, and even if its application can be derived, it does not allow simultaneous correction of the raw data.

Results

We propose a two-step normalization procedure for triple-target experiments. First the dye bleeding is evaluated and corrected if necessary. Then the signal in each channel is normalized using a generalized lowess procedure to correct a global dye bias. The normalization procedure is validated using triple-self experiments and by comparing the results of triple-target and two-color experiments. Although the focus is on triple-target microarrays, the proposed method can be used to normalizepdifferently labelled targets co-hybridized on a same array, for any value ofpgreater than 2.

Conclusion

The proposed normalization procedure is effective: the technical biases are reduced, the number of false positives is under control in the analysis of differentially expressed genes, and the triple-target experiments are more powerful than the corresponding two-color experiments. There is room for improving the microarray experiments by simultaneously hybridizing more than two samples.  相似文献   

17.

Background

The first objective of a DNA microarray experiment is typically to generate a list of genes or probes that are found to be differentially expressed or represented (in the case of comparative genomic hybridizations and/or copy number variation) between two conditions or strains. Rank Products analysis comprises a robust algorithm for deriving such lists from microarray experiments that comprise small numbers of replicates, for example, less than the number required for the commonly used t-test. Currently, users wishing to apply Rank Products analysis to their own microarray data sets have been restricted to the use of command line-based software which can limit its usage within the biological community.

Findings

Here we have developed a web interface to existing Rank Products analysis tools allowing users to quickly process their data in an intuitive and step-wise manner to obtain the respective Rank Product or Rank Sum, probability of false prediction and p-values in a downloadable file.

Conclusions

The online interactive Rank Products analysis tool RankProdIt, for analysis of any data set containing measurements for multiple replicated conditions, is available at: http://strep-microarray.sbs.surrey.ac.uk/RankProducts  相似文献   

18.
19.

Background

Microarray technology provides an efficient means for globally exploring physiological processes governed by the coordinated expression of multiple genes. However, identification of genes differentially expressed in microarray experiments is challenging because of their potentially high type I error rate. Methods for large-scale statistical analyses have been developed but most of them are applicable to two-sample or two-condition data.

Results

We developed a large-scale multiple-group F-test based method, named ranking analysis of F-statistics (RAF), which is an extension of ranking analysis of microarray data (RAM) for two-sample t-test. In this method, we proposed a novel random splitting approach to generate the null distribution instead of using permutation, which may not be appropriate for microarray data. We also implemented a two-simulation strategy to estimate the false discovery rate. Simulation results suggested that it has higher efficiency in finding differentially expressed genes among multiple classes at a lower false discovery rate than some commonly used methods. By applying our method to the experimental data, we found 107 genes having significantly differential expressions among 4 treatments at <0.7% FDR, of which 31 belong to the expressed sequence tags (ESTs), 76 are unique genes who have known functions in the brain or central nervous system and belong to six major functional groups.

Conclusion

Our method is suitable to identify differentially expressed genes among multiple groups, in particular, when sample size is small.  相似文献   

20.

Background

Activation of naïve B lymphocytes by extracellular ligands, e.g. antigen, lipopolysaccharide (LPS) and CD40 ligand, induces a combination of common and ligand-specific phenotypic changes through complex signal transduction pathways. For example, although all three of these ligands induce proliferation, only stimulation through the B cell antigen receptor (BCR) induces apoptosis in resting splenic B cells. In order to define the common and unique biological responses to ligand stimulation, we compared the gene expression changes induced in normal primary B cells by a panel of ligands using cDNA microarrays and a statistical approach, CLASSIFI (Cluster Assignment for Biological Inference), which identifies significant co-clustering of genes with similar Gene Ontology? annotation.

Results

CLASSIFI analysis revealed an overrepresentation of genes involved in ion and vesicle transport, including multiple components of the proton pump, in the BCR-specific gene cluster, suggesting that activation of antigen processing and presentation pathways is a major biological response to antigen receptor stimulation. Proton pump components that were not included in the initial microarray data set were also upregulated in response to BCR stimulation in follow up experiments. MHC Class II expression was found to be maintained specifically in response to BCR stimulation. Furthermore, ligand-specific internalization of the BCR, a first step in B cell antigen processing and presentation, was demonstrated.

Conclusion

These observations provide experimental validation of the computational approach implemented in CLASSIFI, demonstrating that CLASSIFI-based gene expression cluster analysis is an effective data mining tool to identify biological processes that correlate with the experimental conditional variables. Furthermore, this analysis has identified at least thirty-eight candidate components of the B cell antigen processing and presentation pathway and sets the stage for future studies focused on a better understanding of the components involved in and unique to B cell antigen processing and presentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号