首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The precise demarcation between earlywood and latewood is important for the detailed analysis of intra-annual tree ring features. Different techniques based on visual assessment, wood anatomy analysis and X-ray densitometry have been developed and are currently used for this purpose. Depending on the chosen method, tree species and environmental conditions, the results can significantly vary. Thus, it is important to determine the technique optimal for a particular research. Here, we investigated Norway spruce (Picea abies) tree rings to examine the agreement among the following demarcation methods: (1) direct visual assessment, (2) Mork’s index (anatomical definition of the transition from earlywood to latewood based on cell wall-lumen ratio) and (3) fixed and floating density thresholds applied to intra-ring density profiles. The aim was to modify both the Mork’s criterion and density thresholds on the basis of reference values given by visual identification of earlywood/latewood transition. A total of 231 tree rings were analysed by all methods. Our results showed that the usage of floating threshold (defined for each ring separately based on density profiles) is more reliable in comparison with fixed threshold (the same threshold value used for all tree rings and samples). Statistical analysis revealed the best correspondence between visual identification of earlywood/latewood transition and demarcation based on the standard Mork’s index and the floating density threshold derived as 80 % of maximum latewood density. In terms of Mork’s index calibration, the results showed that to determine latewood cells in Norway spruce trees growing in temperate conditions, it is sufficient to use an index value equal to 0.83. The results are applicable for the studied spruce population growing in a temperate climate. The methodology itself, however, is universal and can help to calibrate criteria for earlywood-latewood demarcation under specific conditions.  相似文献   

2.
A method is outlined in which woods produced by deciduous and evergreen coniferopsids may be distinguished from one another on the basis of a quantitative analysis of growth ring anatomy. In this method the diameter of successive tracheid cells was measured across growth rings in modern coniferopsid woods, viewed using standard transverse anatomical sections. The cumulative algebraic sum of each cell's deviation from the mean was then calculated for each growth ring increment and plotted as a zero-trending curve (CSDM curve). Deciduous conifer and ginkgo species dominantly possess symmetrical or left-skewed CSDM curves whilst evergreen conifer species dominantly possess right-skewed CSDM curves. These data suggest that in most cases it may be possible to distinguish between evergreen and deciduous fossil coniferopsid species using wood anatomical characteristics, thus providing important insight into coniferopsid palaeoecology. key words : growth rings, conifer wood, palaeoclimate, evergreen, deciduous.  相似文献   

3.
Two dendrochronological properties – ring width and ring chemistry – were investigated in trees near Cinder Cone in Lassen Volcanic National Park, northeastern California, for the purpose of re-evaluating the date of its eruption. Cinder Cone is thought to have erupted in AD 1666 based on ring-width evidence, but interpreting ring-width changes alone is not straightforward because many forest disturbances can cause changes in ring width. Old Jeffrey pines growing in Cinder Cone tephra and elsewhere for control comparison were sampled. Trees growing in tephra show synchronous ring-width changes at AD 1666, but this ring-width signal could be considered ambiguous for dating the eruption because changes in ring width can be caused by other events. Trees growing in tephra also show changes in ring phosphorus, sulfur, and sodium during the late 1660s, but inter-tree variability in dendrochemical signals makes dating the eruption from ring chemistry alone difficult. The combination of dendrochemistry and ring-width signals improves confidence in dating the eruption of Cinder Cone over the analysis of just one ring-growth property. These results are similar to another case study using dendrochronology of ring width and ring chemistry at Parícutin, Michoacán, Mexico, a cinder cone that erupted beginning in 1943. In both cases, combining analysis with ring width and ring chemistry improved confidence in the dendro-dating of the eruptions.  相似文献   

4.
Variability of wood parameters in a tree is sometimes a rather nebulous concept since variability is evident within single cells, from early to latewood, from pith to bark and from stem base to the top of a tree. So far, stem analyses have been done using a restricted number of parameters, mostly ring-width, and using a restricted number of samples in the longitudinal direction. This study analyses a number of parameters from a single tree. An 81-year-old spruce tree was felled and internodial discs were taken from each annual terminal shoot. All tree rings in each disc were measured and a whole-stem analysis was completed for the following parameters: ring-width, mean ring density, maximum density, percentage of latewood, type of transition from early to latewood, intra-annual density fluctuation, number of resin ducts per tree-ring and position of resin ducts within the tree-rings. All parameters showed calendar-year patterns, visible as lines parallel to the bark. The most clear calendar-year pattern was seen for the type of transition from early to latewood and for intra-annual density fluctuations. The strongest inter-series correlation between calendar rings was seen for ring-width. None of the parameters showed significant inter-series correlations for cambial rings. These results may help us to understand how cores or discs taken at breast height represent the entire tree.  相似文献   

5.
大兴安岭北部樟子松树木生长与气候因子的关系   总被引:6,自引:1,他引:6       下载免费PDF全文
 在大兴安岭北部漠河(MH I、MH II 2个样点)、塔河蒙克山(MKS)、满归(MG)地区共采集樟子松(Pinus sylvestris var. mongolica)年轮样芯139个, 成功地建立了MH I、MH II、MKS和MG 4个样点的樟子松差值年表, 最长达377年(1631–2007年, 有效年表为1743–2007年)。樟子松年轮指数与气候因子的响应函数分析表明, 气温是这4个样点樟子松径向生长的主要限制因子。但4个样点限制其生长的月份有所差异, 漠河的2个样点樟子松年轮指数与6月气温负相关, 满归和塔河蒙克山樟子松年轮指数与前一年10月气温正相关。樟子松年表与区域气候的冗余分析(redundancy analysis, RDA)基本与响应函数分析的结果一致, 进一步验证了气温对大兴安岭北部樟子松生长的限制作用。该研究为全球变暖下大兴安岭北部樟子松林的经营管理及区域气候重建提供了基础数据。  相似文献   

6.

Key message

Growth ring study of Pinus kesiya (khasi pine) growing in sub-tropical forest in Manipur, northeast India was performed to understand climate signatures in ring widths and intra-annual density fluctuations.

Abstract

The growth rings in khasi pine (Pinus kesiya Royle ex Gordon) growing in sub-tropical Reserve Forest in Imphal, Manipur, northeast India were analysed to understand environmental signals present in ring-width series and intra-annual density fluctuations (IADFs). For this the growth ring sequences in increment core samples collected from 28 trees were precisely dated and a ring-width chronology spanning AD 1958–2014 developed. The correlation analyses between ring-width chronology and weather data of Imphal revealed that a cool April–May–June favour tree growth. The wood anatomical features of growth rings revealed the occurrence of IADFs in early- and latewoods. The IADFs in earlywood were found to be associated with reduced precipitation in months from April to July. However, the wetter conditions in late growing season, especially August/September triggered the formation of IADFs in latewood. Our findings endorse that the IADF chronologies of khasi pine could emerge as an important proxy of summer monsoon rainfall in long-term perspective in data scarce region of northeast India.
  相似文献   

7.
为揭示岩溶区植物生长特征及其与环境因子的关系,利用年轮分析方法研究了岩溶区广泛分布的乔木树种青冈栎的年轮特征及其与环境因子的关系.结果表明:青冈栎年轮宽度和年轮指数的平均值分别为(2.565±0.028) mm和1.108±0.012.随着胸径的增大,年轮宽度和年轮指数在逐渐增大,年轮指数与气候因子的变化有着相关关系,与前一年6月份、12月份以及当年12月份的平均温度呈显著正相关,而与前一年4月份、10月份以及当年4月份的降雨量和前一年8月份、9月份以及当年2月份的日照总时数呈显著负相关.表明岩溶区青冈栎的生长可能主要受到温度变化的影响,降雨量和日照时数的变化也影响着青冈栎的年轮特征.温度,降雨量和日照时数等环境因子共同制约着岩溶区青冈栎的生长.  相似文献   

8.
《Dendrochronologia》2007,24(3):111-120
Variability of wood parameters in a tree is sometimes a rather nebulous concept since variability is evident within single cells, from early to latewood, from pith to bark and from stem base to the top of a tree. So far, stem analyses have been done using a restricted number of parameters, mostly ring-width, and using a restricted number of samples in the longitudinal direction. This study analyses a number of parameters from a single tree. An 81-year-old spruce tree was felled and internodial discs were taken from each annual terminal shoot. All tree rings in each disc were measured and a whole-stem analysis was completed for the following parameters: ring-width, mean ring density, maximum density, percentage of latewood, type of transition from early to latewood, intra-annual density fluctuation, number of resin ducts per tree-ring and position of resin ducts within the tree-rings. All parameters showed calendar-year patterns, visible as lines parallel to the bark. The most clear calendar-year pattern was seen for the type of transition from early to latewood and for intra-annual density fluctuations. The strongest inter-series correlation between calendar rings was seen for ring-width. None of the parameters showed significant inter-series correlations for cambial rings. These results may help us to understand how cores or discs taken at breast height represent the entire tree.  相似文献   

9.

Background and Aims

Shrubs and dwarf shrubs are wider spread on the Tibetan Plateau than trees and hence offer a unique opportunity to expand the present dendrochronological network into extreme environments beyond the survival limit of trees. Alpine shrublands on the Tibetan Plateau are characterized by rhododendron species. The dendrochronological potential of one alpine rhododendron species and its growth response to the extreme environment on the south-east Tibetan Plateau were investigated.

Methods

Twenty stem discs of the alpine snowy rhododendron (Rhododendron nivale) were collected close to the tongue of the Zuoqiupu Glacier in south-east Tibet, China. The skeleton plot technique was used for inter-comparison between samples to detect the growth pattern of each stem section. The ring-width chronology was developed by fitting a negative exponential function or a straight line of any slope. Bootstrapping correlations were calculated between the standard chronology and monthly climate data.

Key Results

The wood of snowy rhododendron is diffuse-porous with evenly distributed small-diameter vessels. It has well-defined growth rings. Most stem sections can be visually and statistically cross-dated. The resulting 75-year-long standard ring-width chronology is highly correlated with a timberline fir chronology about 200 km apart, providing a high degree of confidence in the cross-dating. The climate/growth association of alpine snowy rhododendron and of this timberline fir is similar, reflecting an impact of monthly mean minimum temperatures in November of the previous year and in July during the year of ring formation.

Conclusions

The alpine snowy rhododendron offers new research directions to investigate the environmental history of the Tibetan Plateau in those regions where up to now there was no chance of applying dendrochronology.Key words: South-east Tibetan Plateau, Rhododendron nivale, alpine shrub, growth ring, cross-dating, dendroclimatological potential, climate/growth association  相似文献   

10.
Ring width of a given year can be highly variable throughout the cross section of a stem. This is especially true for roots. Therefore, the entire circumference of tree rings is often needed for studies focusing on specific reactions of individual trees on certain environmental conditions. Also, ring reconstructions are of interest for biomass calculations estimated by the cross-sectional area. The aim of the study is thus to reconstruct tree rings of cross sections within a 3D root-surface model, which will be the basis for an upcoming 3D root-development model. A FARO ScanArm was used for the acquisition of the 3D root structure (Technologies Inc., 2010). Afterwards ring-width data was measured along 4 radii per cross section and the resulting ring boundaries were integrated into the 3D root model. A weighted interpolation algorithm was used to reconstruct entire ring-width profiles of the cross sections. The algorithm considered the ring-width variations of the adjacent radii as well as the outer shape of the cross section. Hence, the intention was to estimate ring width around the root circumference using ring widths measured along 4 radii and the surface dimensions of roots. Interpolated ring-width data was compared to the measured tree-ring data as a control for the developed interpolation algorithm. Comparisons between modelled and empirical values showed a mean absolute error of about 0.06 mm deviation, and with a few exceptions the growth patterns could be accurately simulated. This has permitted additional radii measurements to be replaced by model interpolations.  相似文献   

11.
The dendrochronological potential of short-lived species has had varying degrees of success in the past. Where there has been a level of success with short sequenced assemblages, the focus has been on visual comparisons, based on the occurrence of signature rings. Of vital importance to alder’s ability to be cross-correlated is that it produces a significant amount of distinguishable signature rings. Between 2012 and 2013, a large artificial island (crannog) of medieval date was excavated at Drumclay, County Fermanagh, Northern Ireland, and revealed a site of significant longevity, dating from the 9th century AD to the Post-Medieval period. This excavation exposed a vast number of well-preserved waterlogged archaeological features, resulting in the retention of over 9,000 individual wood samples. Oak timbers were used scarcely in the construction of the crannog, with the dominant wood species identified during excavation being alder. While the oak timbers have proved successful in providing spot dates and indicating phases of activity, the full chronological potential of the wood assemblage lies in the ring patterns of the principal species, alder, particularly with respect to understanding construction phases and site evolution. Previous failures to build chronologies using alder have been attributed to the short-lived and site specific nature of the species. Here, we test whether the measurement of large numbers of samples from a single context within a single site overcomes the limitations posed by alder. We measured the ring-widths of 90 alder samples from archaeological features within the crannog’s infrastructure to test if a robust context chronology could be built. The average ring sequence length ranged from 30 to 60 rings, with one timber extending to 108 rings. Visual correlations were used to aid ring pattern matching in conjunction with statistical correlation. We used radiocarbon wiggle-matching to test the robustness of our constructed chronology and to anchor it to an absolute timescale. Our results to date show that problems of autocorrelation can arise when long alder sequences (>100 rings) are used in conjunction with short sequences (30 to 60 rings). Establishing a rigorous protocol for sample selection has enabled us to develop a more statistically refined methodology that has produced t-values as high as 8.3. We show that in order to construct the best possible alder chronology, multiple ring patterns need to be examined from each context. We recommend examining short-lived assemblages on their own merits; the best approach in these cases is not to look for the longest sequences but instead to focus on the those from the mean sequence range.  相似文献   

12.
Climate influences tree-ring density and ring-density variables extracted from X-ray images have been widely used for climate reconstructions. The R package xRing was developed to identify and measure tree rings on X-ray microdensity profiles automatically. This package is available for free and it offers functions to visualize and calibrate X-ray images, to detect tree-ring borders and to identify earlywood-latewood transition using wood density variations at the inter- and the intra-ring scale. The most important functions are calibrateFilm, detectRings, correctRings, detectEwLw, and getDensity. Outputs of these functions are S3 objects, for which specific methods are provided, including plot and print. The non-linear relationship between optical density of the film and wood density is defined by the function calibrateFilm. The function detectRings detects tree rings using wood density profiles as input. This function uses the difference between local maximum and minimum values to identify tree-ring borders automatically. The correctRings function is used to call a Graphical User Interface (GUI) to visualize and to correct tree-ring borders manually. After correcting tree-ring borders, the detectEwLw function is used to compute earlywood and latewood widths by dividing rings according to relative intra-ring density changes. The getDensity function computes for each tree ring the minimum (maximum) density and the mean earlywood, latewood and whole-ring density. Finally, a list with dataframes with tree-ring width and density variables can be obtained using the function getRwls. One of the major advantages of xRing package is that requires little knowledge of R language, but at the same time it can be easily changed or adapted by experienced users.  相似文献   

13.
The mechanism of wood development records in varying degree the effects of both external and internal factors that are operating at the time of development. As a result, fossil woods spanning the last 370 million years represent a unique palaeo-environmental data-store. Data concerning external factors that can be reclaimed consist of: presence or absence of growth rings; ring widths; relative proportions of earlywood and latewood and the nature of the transition between them; “false” and “frost” rings and evidence of damage by animals or fire; occurrence of reaction wood. These effects have to be seen against a background of the influences of the internal factors. The development of wood involves the action of plant growth regulators. The production of an entire season’s growth of wood depends on a supply of photosynthate, partly stored from the previous year, and the remainder directly from photosynthesis during the current one. In any population of trees of the same species there will be genetic variation which will lead to differences in the wood formed by the individual trees even if they have all grown in a largely similar environment. However the external factors exert a much greater influence than the internal ones. Our earliest fossil woods (Upper Devonian) show either seasonless growth patterns or, if weak rings are perceptible, then the increments are extensive. This is consistent with the palaeo-equatorial position of all recorded Devonian woods. In the Carboniferous a few sites (marginal in the tropical belt?) show subdued (weak) growth rings. By the time of the Gondwana glaciation strong rings are shown in high southern latitudes, but most surprisingly there are sizeable increments well inside the palaeoantarctic circle. This phenomenon persists into the Mesozoic where lack of growth rings shows consistency with positions within the palaeo-equatorial latitudes. However occurrence of Cretaceous high latitude wood growth demonstrates that given an adequate ambient temperature, forest growth was possible close to both poles. It is shown that this is consistent with the total energy flux known to occur now in high latitudes.  相似文献   

14.
Dezzeo  Nelda  Worbes  Martin  Ishii  Iria  Herrera  Rafael 《Plant Ecology》2003,168(1):165-175
The occurrence of seasonal growth rings in the wood of Campsiandra laurifolia, Acosmiun nitens, Pouteria orinocoensis and Psidium ovatifolium, common species growing in the flooding forest of the Mapire river, was analyzed using wood anatomy and ring- width analysis. The test of the annual ring formation was performed using radiocarbon analysis based on the nuclear weapon effect. All species showed growth rings visible to the naked eye. The ring boundaries in all cases were marked by bands of marginal parenchyma. The index ring-width curves of the four studied species showed a strong relationship with the fluctuation of the water river level during the non flooded months, suggesting that an increase in the water level during these months positively influenced the growth indicating that the rings were formed on an annual basis. The content of radiocarbon in the wood of anatomically predated rings of Campsiandra laurifolia and Pouteria orinocoensis confirm these results. All studied trees are slow growing with less than 2.5 mm annual increment.  相似文献   

15.
Variations in the spacing of concentric, tangential bands of apotracheal axial wood parenchyma cells in the annual growth rings of Carya glabra (Mill.) Sweet constitute a record of changes in radial growth rate and of fluctuations in climatic factors. This relationship was determined from trees that were growing under moisture stress and consequently had highly consistent ring-width patterns from tree to tree. Band spacing decreased across a growth ring and was generally greater in wide than in narrow rings. Thus, the proportion of xylem cross-sectional area occupied by axial parenchyma tissue was inversely related to ring width. Average numbers of bands in each of 67 years were analyzed relative to ring widths. Years in which bands were unusually numerous relative to ring width were years of low April-May precipitation, leading to slow spring growth and closely spaced bands early in the growing season. Years in which band numbers were unusually low relative to ring width were years of high April-May precipitation, leading to rapid growth and widely spaced bands early in the season; low July precipitation in these years apparently curtailed growth before much of the typical late-season wood, with its closely spaced bands, could form. Parenchyma bands were aggregated within some rings, suggesting that a slowing of growth had been followed by a growth spurt. Evidence for a late-season spurt was that rings with aggregations were significantly wider than rings formed the same year and not having aggregations of bands. The number of vessels per unit of cross-sectional area was inversely related to ring width.  相似文献   

16.
Tree-ring inter-annual pattern variation is crucial in dendrochronology, allowing the identification of possible limiting factors on growth. Thus, trees exposed to subtropical or tropical climates without a marked seasonality may show a low degree of interannual variation, impeding a straightforward dendroclimatological approach. Meanwhile, subtropical regions, and areas in transitional climates such as the Azores archipelago, are widely unexplored in terms of dendroclimatology, providing opportunities to work with endemic trees, including the dominant Azorean tree Juniperus brevifolia (Seub.) Antoine. To evaluate the dendrochronological potential of J. brevifolia, we analyzed tree-ring patterns, crossdating capabilities, and correlation with climate parameters. We sampled 48 individual trees from two natural populations (São Miguel and Terceira islands) using an increment borer. Besides, a Trephor tool was used to obtain wood microcores for micro-anatomical analysis. Although the transition between early and latewood was evident, partially indistinct ring boundaries and wedging rings were present in some cases, affecting the crossdating process, but not impeding the establishment of reliable ring-width chronologies. Following detrending, master chronologies were built and correlated with monthly temperature and precipitation data using the treeclim R package. The climate-growth relationships indicated negative correlations with late summer temperature in both populations. Considering our results and the importance of J. brevifolia as a dominant tree in the Azores natural forests, we conclude that it shows an acceptable potential for dendrochronological research. Thus, this study provides baseline information to help fill the knowledge gap regarding the climate-growth relationship of Azorean trees.  相似文献   

17.
Two fossil coniferous woods, Xenoxylon latiporosum (Cramer) Gothan and Protopiceoxylon amurense sp. nov. found in Heilongjiang Sheng of China are described in this paper. The diagnosis of Protopiceoxylon amurense sp. nov. is as follows: Growth rings distinct. The transition from the early wood to the late wood slightly abrupt. Tracheids of the early wood square to rectangular in the transverse section. Bordered pits on the radial walls of early wood traeheids 1-2-seriate, opposite, circular with round apertures. The erassula well marked. Walls of the late wood traeheids much thickened. Rays uniseriate and partly biseriate, 1–45 cells high. The highness of the biseriate part is often more than 2/3 that of the ray. Transverse walls of ray cells rather densely pitted and the tangential walls with marked nodular thickenings. The pitting of the cross-field is small, simple or taxodioid type. The axial wood parenchyma absent. The axial resin canal, both traumatic and normal, present, separate or gathered in tangential rows. Epithelial cells with thickwalls are more than 10 in number. The affinities of the two woods are discussed. The age of the fossil woods is assigned to Late Jurassic to Early Cretaceous. It is inferred that they grew in the then north subtropical warm temperate zone and on a hilly area with an elevation of 1000 metres approximately.  相似文献   

18.
19.
Nomenclature reappraisal, diversity pattern and palaeoclimatic implications of Jurassic, Triassic and Early Cretaceous pycnoxylic woods in India are undertaken in the present study. Among the fourteen generic names published previously, only eight are validly published and the rest are nomenclaturally illegitimate. About 51 species were reported under these genera to date. There is a gradual increase of species diversity of fossil wood from the Triassic to Early Cretaceous. The nature of the growth rings was applied to understand the palaeoclimate. The lack of distinct growth rings in the Triassic woods suggests absence of seasonality. The Jurassic woods with an inconsistency in growth rings and presence of growth interruptions suggest climate was seasonal and turbulent. During the Early Cretaceous, conifer dominated vegetation and with wider growth rings and gradual transition suggests warm environments with pronounced seasonality. The general increase in mean ring width from the Triassic to Early Cretaceous indicates ameliorating climatic conditions, particularly benign summer conditions.  相似文献   

20.
Podocarpus falcatus is an indigenous evergreen conifer species of tropical mountain forests in southeastern Ethiopia, showing potential tree ages of around 500 years. To study the influence of seasonal climate on the growth pattern of P. falcatus, we combined high-resolution electronic dendrometer measurements with wood anatomical investigations of microcores from the outermost stem parts collected in monthly intervals. At any time of the year sufficient rain events are able to cause cambial activity in P. falcatus. This permanent growing readiness leads to irregular wood formation with the formation of intra-annual density fluctuations and missing rings. Wood anatomical studies of microcores collected around the circumference of a mature P. falcatus revealed locally different activity status of the cambium on different lobes of the stem. Tree-ring width measurements of stem disks resulted in tentative tree ages that were confirmed by radiocarbon dating of selected wood samples. Although our efforts to cross-date ring-width series from several stem disks were not successful, further sampling in areas with different rainfall regimes, additional radiocarbon dating and measurements of stable isotopes hopefully would enable the establishment of a multi-century-long tree-ring series for climate reconstruction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号