首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GAMYB is a component of gibberellin (GA) signaling in cereal aleurone cells, and has an important role in flower development. However, it is unclear how GAMYB function is regulated. We examined the involvement of a microRNA, miR159, in the regulation of GAMYB expression in cereal aleurone cells and flower development. In aleurone cells, no miR159 expression was observed with or without GA treatment, suggesting that miR159 is not involved in the regulation of GAMYB and GAMYB-like genes in this tissue. miR159 was expressed in tissues other than aleurone, and miR159 over-expressors showed similar but more severe phenotypes than the gamyb mutant. GAMYB and GAMYB-like genes are co-expressed with miR159 in anthers, and the mRNA levels for GAMYB and GAMYB-like genes are negatively correlated with miR159 levels during anther development. Thus, OsGAMYB and OsGAMYB-like genes are regulated by miR159 in flowers. A microarray analysis revealed that OsGAMYB and its upstream regulator SLR1 are involved in the regulation of almost all GA-mediated gene expression in rice aleurone cells. Moreover, different sets of genes are regulated by GAMYB in aleurone cells and anthers. GAMYB binds directly to promoter regions of its target genes in anthers as well as aleurone cells. Based on these observations, we suggest that the regulation of GAMYB expression and GAMYB function are different in aleurone cells and flowers in rice.  相似文献   

2.
3.
4.
In angiosperms,floral transition is a key developmental transition from the vegetative to reproductive growth,and requires precise regulation to maximize the reproductive success.A complex regulatory network governs this transition through integrating flowering pathways in response to multiple exogenous and endogenous cues.Phytohormones are essential for proper plant developmental regulation and have been extensively studied for their involvement in the floral transition.Among various phytohormones,gibberellin(GA)plays a major role in affecting flowering in the model plant Arabidopsis thaliana.The GA pathway interact with other flowering genetic pathways and phytohormone signaling pathways through either DELLA proteins or mediating GA homeostasis.In this review,we summarize the recent advances in understanding the mechanisms of DELLA-mediated GA pathway in flowering time control in Arabidopsis,and discuss its possible link with other phytohormone pathways during the floral transition.  相似文献   

5.
6.
赤霉素作用机理的分子基础与调控模式研究进展   总被引:2,自引:0,他引:2  
赤霉素(gibberellins或gibberellic acid, GA)作为植物生长的必需激素之一, 调控植物生长发育的各个方面, 如: 种子萌发, 下胚轴的伸长, 叶片的生长和植物开花时间等。近年来随着植物功能基因组学的进一步发展, 有关赤霉素生物合成及其调控, 赤霉素信号转导途径, 以及赤霉素与其他激素和环境因子的互作等领域的研究取得了较大的进展。本文综述了赤霉素生物合成的生物学途径及其调控研究; GA信号转导通道的研究进展, 特别是DELLA蛋白阻遏植物生长发育的分子机理和GA解除阻遏作用(derepress)的分子模型; GA受体研究的新进展; 探讨GA与其它激素之间的相互作用, 以及植物在应答环境过程中的作用。  相似文献   

7.
DELLA proteins are nuclear repressors of plant gibberellin (GA) responses. Here, we investigate the properties of SLN1, a DELLA protein from barley that is destabilized by GA treatment. Using specific inhibitors of proteasome function, we show that proteasome-mediated protein degradation is necessary for GA-mediated destabilization of SLN1. We also show that GA responses, such as the aleurone alpha-amylase response and seedling leaf extension growth, require proteasome-dependent GA-mediated SLN1 destabilization. In further experiments with protein kinase and protein phosphatase inhibitors, we identify two additional signaling steps that are necessary for GA response and for GA-mediated destabilization of SLN1. Thus, GA signaling involves protein phosphorylation and dephosphorylation steps and promotes the derepression of GA responses via proteasome-dependent destabilization of DELLA repressors.  相似文献   

8.
9.
10.
11.
GAMYB-like Genes, Flowering, and Gibberellin Signaling in Arabidopsis   总被引:5,自引:0,他引:5  
We have identified three Arabidopsis genes with GAMYB-like activity, AtMYB33, AtMYB65, and AtMYB101, which can substitute for barley (Hordeum vulgare) GAMYB in transactivating the barley alpha-amylase promoter. We have investigated the relationships between gibberellins (GAs), these GAMYB-like genes, and petiole elongation and flowering of Arabidopsis. Within 1 to 2 d of transferring plants from short- to long-day photoperiods, growth rate and erectness of petioles increased, and there were morphological changes at the shoot apex associated with the transition to flowering. These responses were accompanied by accumulation of GAs in the petioles (GA(1) by 11-fold and GA(4) by 3-fold), and an increase in expression of AtMYB33 at the shoot apex. Inhibition of GA biosynthesis using paclobutrazol blocked the petiole elongation induced by long days. Causality was suggested by the finding that, with GA treatment, plants flowered in short days, AtMYB33 expression increased at the shoot apex, and the petioles elongated and grew erect. That AtMYB33 may mediate a GA signaling role in flowering was supported by its ability to bind to a specific 8-bp sequence in the promoter of the floral meristem-identity gene, LEAFY, this same sequence being important in the GA response of the LEAFY promoter. One or more of these AtMYB genes may also play a role in the root tip during germination and, later, in stem tissue. These findings extend our earlier studies of GA signaling in the Gramineae to include a dicot species, Arabidopsis, and indicate that GAMYB-like genes may mediate GA signaling in growth and flowering responses.  相似文献   

12.
The plant shoot is derived from the apical meristem, a group of stem cells formed during embryogenesis. Lateral organs form on the shoot of an adult plant from primordia that arise on the flanks of the shoot apical meristem. Environmental stimuli such as light, temperature and nutrient availability often influence the shape and identity of the organs that develop from these primordia. In particular, the transition from forming vegetative lateral organs to producing flowers often occurs in response to environmental cues. This transition requires increased expression in primordia of genes that confer floral identity, such as the Arabidopsis gene LEAFY. We describe a novel mutant, early in short days 4 (esd4), that dramatically accelerates the transition from vegetative growth to flowering in Arabidopsis: The effect of the mutation is strongest under short photoperiods, which delay flowering of Arabidopsis: The mutant has additional phenotypes, including premature termination of the shoot and an alteration of phyllotaxy along the stem, suggesting that ESD4 has a broader role in plant development. Genetic analysis indicates that ESD4 is most closely associated with the autonomous floral promotion pathway, one of the well-characterized pathways proposed to promote flowering of Arabidopsis: Furthermore, mRNA levels of a floral repressor (FLC), which acts within this pathway, are reduced by esd4, and the expression of flowering-time genes repressed by FLC is increased in the presence of the esd4 mutation. Although the reduction in FLC mRNA abundance is likely to contribute to the esd4 phenotype, our data suggest that esd4 also promotes flowering independently of FLC. The role of ESD4 in the regulation of flowering is discussed with reference to current models on the regulation of flowering in Arabidopsis.  相似文献   

13.
The transition from vegetative to reproductive growth is a key event in the plant life cycle. Plants therefore use a variety of environmental and endogenous signals to determine the optimal time for flowering to ensure reproductive success. These signals are integrated at the shoot apical meristem (SAM), which subsequently undergoes a shift in identity and begins producing flowers rather than leaves, while still maintaining pluripotency and meristematic function. Gibberellic acid (GA), an important hormone associated with cell growth and differentiation, has been shown to promote flowering in many plant species including Arabidopsis thaliana, but the details of how spatial and temporal regulation of GAs in the SAM contribute to floral transition are poorly understood. In this study, we show that the gene GIBBERELLIC ACID METHYLTRANSFERASE 2 (GAMT2), which encodes a GA-inactivating enzyme, is significantly upregulated at the SAM during floral transition and contributes to the regulation of flowering time. Loss of GAMT2 function leads to early flowering, whereas transgenic misexpression of GAMT2 in specific regions around the SAM delays flowering. We also found that GAMT2 expression is independent of the key floral regulator LEAFY but is strongly increased by the application of exogenous GA. Our results indicate that GAMT2 is a repressor of flowering that may act as a buffer of GA levels at the SAM to help prevent premature flowering.  相似文献   

14.
15.
The genus Nicotiana contains species and varieties that respond differently to photoperiod for flowering time control as day-neutral, short-day and long-day plants. In classical photoperiodism studies, these varieties have been widely used to analyse the physiological nature for floral induction by day length. Since key regulators for flowering time control by day length have been identified in Arabidopsis thaliana by molecular genetic studies, it was intriguing to analyse how closely related plants in the Nicotiana genus with opposite photoperiodic requirements respond to certain flowering time regulators. SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and FRUITFULL (FUL) are two MADS box genes that are involved in the regulation of flowering time in Arabidopsis. SOC1 is a central flowering time pathway integrator, whereas the exact role of FUL for floral induction has not been established yet. The putative Nicotiana orthologs of SOC1 and FUL, NtSOC1 and NtFUL, were studied in day-neutral tobacco Nicotiana tabacum cv Hicks, in short-day tobacco N. tabacum cv Hicks Maryland Mammoth (MM) and long-day N. sylvestris plants. Both genes were similarly expressed under short- and long-day conditions in day-neutral and short-day tobaccos, but showed a different expression pattern in N. sylvestris. Overexpression of NtSOC1 and NtFUL caused flowering either in strict short-day (NtSOC1) or long-day (NtFUL) Nicotiana varieties under non-inductive photoperiods, indicating that these genes might be limiting for floral induction under non-inductive conditions in different Nicotiana varieties.  相似文献   

16.
17.
The phytohormone gibberellin (GA) regulates the development and fertility of Arabidopsis flowers. The mature flowers of GA-deficient mutant plants typically exhibit reduced elongation growth of petals and stamens. In addition, GA-deficiency blocks anther development, resulting in male sterility. Previous analyses have shown that GA promotes the elongation of plant organs by opposing the function of the DELLA proteins, a family of nuclear growth repressors. However, it was not clear that the DELLA proteins are involved in the GA-regulation of stamen and anther development. We show that GA regulates cell elongation rather than cell division during Arabidopsis stamen filament elongation. In addition, GA regulates the cellular developmental pathway of anthers leading from microspore to mature pollen grain. Genetic analysis shows that the Arabidopsis DELLA proteins RGA and RGL2 jointly repress petal, stamen and anther development in GA-deficient plants, and that this function is enhanced by RGL1 activity. GA thus promotes Arabidopsis petal, stamen and anther development by opposing the function of the DELLA proteins RGA, RGL1 and RGL2.  相似文献   

18.
Three genetic pathways promote flowering of Arabidopsis under long photoperiods. These pathways are represented by the genes CO, FCA, and GA1, which act in the long-day, autonomous, and gibberellin pathways, respectively. To test whether these are the only pathways that promote flowering under long photoperiods, the co-2 fca-1 ga1-3 triple mutant was constructed. These plants never flowered under long- or short-day conditions, indicating that the three pathways impaired by these mutations are absolutely required for flowering under these conditions. The triple mutant background represents a "vegetative ground state" enabling the roles of single pathways to be described in the corresponding double mutants. The phenotypes of plants carrying all eight combinations of wild-type and mutant alleles at the three loci were compared under long- and short-day conditions. This analysis demonstrated that under long photoperiods the long-day pathway promoted flowering most effectively, whereas under short photoperiods the gibberellin pathway had the strongest effect. The autonomous pathway had a weak effect when acting alone under either photoperiod but appeared to play an important role in facilitating the promotion of flowering by the other two pathways. The vegetative phenotype of the triple mutant could be overcome by vernalization, suggesting that a fourth pathway promoted flowering under these conditions. These observations are discussed in light of current models describing the regulation of flowering time in Arabidopsis.  相似文献   

19.
20.
Leaf expiants from vegetative plants of the short-day plantStreptocarpus nobilis (C. B. Clarke) developed flower budsin vitro when cultured in 8 h photoperiods. Tn non-inductive photoperiods only vegetative buds were formed.In vitro photoinduction was demonstrated by giving the expiants short-day (SD) cycles and then transferring them to non-inductive photoperiods for expression of flowering. On medium containing 6-benzylaminopurine (BAP) organogenesis was initiated during the photoinductive treatments. Photoinduction of leaf tissue without adventitious bud development was obtained on medium without BAP. The photoinductive state of the leaf tissue was fairly stable, being expressed after 2–3 weeks in non-inductive photoperiods when adventitious buds were formed. The quantitativein vitro flowering response to the endogenous floral stimuli, resulting from photoinduction, could provide the basis of a bioassay for presumptive flower inducing chemicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号