首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Keratinocytes express high levels of 25OHD 1alpha-hydroxylase (1OHase). The product of this enzyme, 1,25(OH)(2)D, promotes the differentiation of keratinocytes in vitro. To test whether 1OHase activity is essential for keratinocyte differentiation in vivo we examined the differentiation process in mice null for the expression of the 1alphaOHase gene (1alphaOHase(-/-)) by light and electron microscopy, by immunocytochemistry for markers of differentiation, by ion capture cytochemistry for calcium localization, and by function using transepidermal water loss (TEWL) to assess barrier integrity. Levels of involucrin, filaggrin, and loricrin-markers of differentiation in the keratinocyte and critical for the formation of the cornified envelope-were reduced in the epidermis of 1alphaOHase(-/-) mice. Calcium in the outer epidermis was reduced with loss of the calcium gradient from stratum basale to stratum granulosum. TEWL was normal in the resting state, but following disruption of the barrier, 1alphaOHase(-/-) mice had a markedly prolonged recovery of barrier function associated with a reduction in lamellar body secretion and a failure to reform the calcium gradient. Thus 1,25(OH)(2)D is essential for normal epidermal differentiation, most likely by inducing the proteins and mediating the calcium signaling in the epidermis required for the generation and maintenance of the barrier.  相似文献   

2.
Both calcium and 1,25(OH)(2)D promote the differentiation of keratinocytes in vitro. The autocrine or paracrine production of 1,25(OH)(2)D by keratinocytes combined with the critical role of the epidermal calcium gradient in regulating keratinocyte differentiation in vivo suggest the physiologic importance of this interaction. The interactions occur at a number of levels. Calcium and 1,25(OH)(2)D synergistically induce involucrin, a protein critical for cornified envelope formation. The involucrin promoter contains an AP-1 site essential for calcium and 1,25(OH)(2)D induction and an adjacent VDRE essential for 1,25(OH)(2)D but not calcium induction. Calcium regulates coactivator complexes that bind to the Vitamin D receptor (VDR). Nuclear extracts from cells grown in low calcium contain an abundance of DRIP(205), whereas calcium induced differentiation leads to reduced DRIP(205) and increased SRC 3 which replaces DRIP in its binding to the VDR. In vivo models support the importance of 1,25(OH)(2)D-calcium interactions in epidermal differentiation. The epidermis of 1alphaOHase null mice fails to form a normal calcium gradient, has reduced expression of proteins critical for barrier function, and shows little recovery of the permeability barrier when disrupted. Thus in vivo and in vitro, calcium and 1,25(OH)(2)D interact at multiple levels to regulate epidermal differentiation.  相似文献   

3.
The skin is the major source of Vitamin D(3) (cholecalciferol), and ultraviolet light (UV) is critical for its formation. Keratinocytes, the major cell in the epidermis, can further convert Vitamin D(3) to its hormonal form, 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] (calcitriol). 1,25(OH)(2)D(3) in turn stimulates the differentiation of keratinocytes, raising the hope that 1,25(OH)(2)D(3) may prevent the development of malignancies in these cells. Skin cancers (squamous cell carcinoma (SCC), basal cell carcinoma (BCC), and melanomas) are the most common cancers afflicting humans. UV exposure is linked to the incidence of these cancers-UV is thus good and bad for epidermal health. Our focus is on the mechanisms by which 1,25(OH)(2)D(3) regulates the differentiation of keratinocytes, and how this regulation breaks down in transformed cells. Skin cancers produce 1,25(OH)(2)D(3), contain ample amounts of the Vitamin D receptor (VDR), and respond to 1,25(OH)(2)D(3) with respect to induction of the 24-hydroxylase, but fail to differentiate in response to 1,25(OH)(2)D(3). Why not? The explanation may lie in the overexpression of the DRIP complex, which by interfering with the normal transition from DRIP to SRC as coactivators of the VDR during differentiation, block the induction of genes required for 1,25(OH)(2)D(3)-induced differentiation.  相似文献   

4.
1,25 Dihydroxyvitamin D (1,25(OH)(2)D) regulates the differentiation of keratinocytes. 1,25(OH)(2)D raises intracellular free calcium (Cai) as a necessary early step toward stimulating differentiation. 1,25(OH)(2)D induces the calcium sensing receptor (CaR) in keratinocytes and enhances the calcium response of these cells. Activation of the CaR by calcium increases intracellular free calcium by a mechanism involving phospholipase C (PLC) cleavage of phosphatidylinositolbisphosphate into inositoltrisphosphate (IP(3)) and diacylglycerol (DG). 1,25(OH)(2)D induces the family of PLCs. PLC-gamma1 has a DR6 VDRE in its promoter which binds and is activated by VDR/RAR rather than VDR/RXR. The involucrin gene, which encodes a critical component of the cornified envelope, contains a DR3 VDRE in its promoter that acts in conjunction with a nearby AP-1 site. The sequential regulation of these genes is critical for the differentiation process. In undifferentiated keratinocytes, the VDR binds preferentially to the DRIP complex of coactivators. However, with differentiation DRIP 205 is no longer produced, and the VDR switches partners to the SRC family (SRC2 and 3). These studies suggest that at least part of the sequential activation of genes required during keratinocyte differentiation is regulated by the change (availability) of these different coactivator complexes.  相似文献   

5.
Human foreskin keratinocytes in culture produce 1,25-dihydroxycholecalciferol (1,25-(OH)2D3) and 24,25-dihydroxycholecalciferol (24,25-(OH)2D3) from 25-hydroxycholecalciferol (25-(OH)D3). The production of 1,25-(OH)2D3 by these cells correlated with the early events of differentiation such as expression of transglutaminase activity and the levels of a precursor protein for the cornified envelopes, involucrin. In contrast, the increased production of 24,25-(OH)2D3, as 1,25-(OH)2D3 production declined, correlated with the terminal differentiation marker, cornified envelope formation. Exogenous 1,25-(OH)2D3 (10(-11)-10(-9) M) inhibited the 1-alpha-hydroxylase at all stages of growth of these cells. Keratinocytes in culture expressed receptors for 1,25-(OH)2D3 which had similar sedimentation behavior in sucrose density gradients as chick intestinal cytosol receptors. Cells in early stages of growth (preconfluent and confluent) contained higher numbers of receptors (26-27 fmol/mg protein) than post-confluent cells. The dissociation constant (237-278 pM) of these receptors for 1,25-(OH)2D3 was not consistently altered by differentiation. Since 1,25-(OH)2D3 is a potent stimulator of cell differentiation in a variety of systems including the epidermis, our results suggest the possibility that endogenous 1,25-(OH)2D3 production may participate in the differentiation of keratinocytes in culture and, perhaps, in vivo.  相似文献   

6.
Extracellular calcium (Cao) and the steroid hormone 1,25(OH)2D, induce the differentiation of human epidermal cells in culture. Recent studies suggest that increases in intracellular free calcium (Cai) levels may be an initial signal that triggers keratinocyte differentiation. In the present study, we evaluated cornified envelope formation, the terminal event during keratinocyte differentiation, and correlated it with changes in the Cai levels during differentiation of keratinocytes in culture induced by Cao or 1,25(OH)2D. Keratinocytes were grown in different Cao concentrations (0.1 or 1.2 mM) or in the presence of 1,25(OH)2D (10(-11) to 10(-7) M), and the Cai levels were measured using the fluorescent probe Indo-1. Our results suggest that the induction of cornified envelope formation is associated with an increase in Cai level during calcium-induced differentiation. Cao and the calcium ionophore ionomycin acutely increased Cai and cornified envelope formation. In contrast, the effect of 1,25(OH)2D on increasing Cai levels and stimulating cornified envelope formation was long-term, requiring days of treatment with 1,25(OH)2D. Our data are consistent with other recent studies and support the hypothesis that Cao regulates keratinocyte differentiation primarily by acutely increasing their Cai levels. The role of calcium in the mechanism of action of 1,25(OH)2D on keratinocyte differentiation is less clear. The increase in Cai of keratinocytes during 1,25(OH)2D induced differentiation may be essential for or subsequent to its prodifferentiation effects.  相似文献   

7.
The effect of 1,25(OH)(2)D(3) on the intracellular calcium, (Ca(+2))i, in both cultured human keratinocytes and in cultured human dermal fibroblasts was investigated. When the intracellular calcium (Ca(+2))i in cultured human keratinocytes, grown in a serum-free medium containing 1.8 mM calcium, was measured by the fluorescent calcium-indicator, Furu-2, the (Ca(+2)i increased 154%, 202%, and 409% over the control value after incubation with 1,25(OH)(2)D(3) at 10(-10) m, 10(-8) m, and 10(-6) m, respectively. This response was immediate (15 seconds), specific (no effect with either 25(OH)D(3) at 10(-8) m or vitamin D(3) at 10(-8) m), and occurred with or without EGTA in the medium. In contrast, 1,25(OH)(2)D(3) did not increase the (Ca(2+))i in either cultured human keratinocytes that were grown in low calcium (0.05 mm), serum-free medium or in cultured human dermal fibroblasts that were grown in medium containing 0.05 mm calcium and 1% serum. The effect of 1,25(OH)(2)D(3) on the the turnover of phosphatidylinositol was investigated as a possible cause for the observed increase in (Ca(+2)i. Cultured human keratinocytes that were incubated with (3)H-inositol demonstrated a 50 % +/- 10% increase in the triphosphated, plasma membrane-bound metabolite of phosphatidylinositol, PIP(2), by 15 seconds, followed by a rapid decrease at 30 seconds, then a return toward basal levels by 1 minute. Lysophosphatidylinositol, which results from the sn-2 deacylation of phosphatidylinositol by phospholipase A(2), decreased 20% +/- 8% within 30 seconds, then increased to 200% +/- 10% of the control value by 5 minutes. The accumulation of IP(3) was increased 50% to 100% above the control value within 30 seconds and this increase was substained during the 5-minute incubation period. Stimulation of phosphatidylinositol turnover by 1,25(OH)(2)D(3) was not detected in either cultured human keratinocytes that were grown in serum-free, low calcium medium or in cultured human dermal fibroblasts that were grown in 1% serum.  相似文献   

8.
We investigated the capacity of 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] to protect human keratinocytes against the hazardous effects of ultraviolet B (UVB)-irradiation, recognized as the most important etiological factor in the development of skin cancer. Cytoprotective effects of 1,25(OH)(2)D(3) on UVB-irradiated keratinocytes were seen morphologically and quantified using a colorimetric survival assay. Moreover, 1,25(OH)(2)D(3) suppressed UVB-induced apoptotic cell death. An ELISA, detecting DNA-fragmentation, demonstrated that pretreatment of keratinocytes with 1,25(OH)(2)D(3) 1 microM for 24 h reduced UVB-stimulated apoptosis by 55-70%. This suppression required pharmacological concentrations 1,25(OH)(2)D(3) and a preincubation period of several hours. In addition, 1,25(OH)(2)D(3) also inhibited mitochondrial cytochrome c release (90%), a hallmark event of UVB-induced apoptosis. Furthermore, we demonstrated that 1,25(OH)(2)D(3) reduced two important mediators of the UV-response, namely, c-Jun-NH(2)-terminal kinase (JNK) activation and interleukin-6 (IL-6) production. As shown by Western blotting, pretreatment of keratinocytes with 1,25(OH)(2)D(3) 1 microM diminished UVB-stimulated JNK activation with more than 30%. 1,25(OH)(2)D(3) treatment (1 microM) reduced UVB-induced IL-6 mRNA expression and secretion with 75-90%. Taken together, these findings suggest the existence of a photoprotective effect of active vitamin D(3) and create new perspectives for the pharmacological use of active vitamin D compounds in the prevention of UVB-induced skin damage and carcinogenesis.  相似文献   

9.
Human keratinocytes grown on deepidermized dermis (DED) are able to reconstruct a morphologically normal stratified and keratinized epidermis. This culture system is suitable for studying in vitro the effects of various hormones and factors on epidermal differentiation, and the goal of the present work was to study the effect of vitamin D. We found that the hormonal form of vitamin D3, 1,25-dihydroxyvitamin D3, produced very specific alterations in epidermal architecture in a dose-dependent manner, consisting of significant reduction of the nucleated layers of the epithelium, but not of the stratum corneum, which was instead slightly thickened. The study of stage-specific differentiation markers showed that the two extreme layers of epidermis, i.e. the basal layer and the stratum corneum, were unaffected by the hormone, but that the reduction involved specifically the intermediate differentiation compartment, i.e. the spinous and granular layers. It was shown that the reduction of the intermediate compartment provoked by 1,25-dihydroxyvitamin D3 is not due to a block in the proliferation of basal cells or to inhibition of their differentiation into suprabasal cells, but to stimulation of the terminal differentiation of suprabasal cells into corneocytes.  相似文献   

10.
Targeted deletion of genes encoding the 1,25-dihydroxyVitamin D [1,25(OH)(2)D]-synthesizing enzyme, 25 hydroxyVitamin D-1alpha-hydroxylase [1alpha(OH)ase or CYP27B1], and of the nuclear receptor for 1,25(OH)(2)D, the Vitamin D receptor (VDR), have provided useful mouse models of the inherited human diseases, Vitamin D-dependent rickets types I and II. We employed these models and double null mutants to examine the effects of calcium and of the 1,25(OH)(2)D/VDR system on skeletal and calcium homeostasis. Optimal dietary calcium absorption required both 1,25(OH)(2)D and the VDR. Skeletal mineralization was dependent on adequate ambient calcium but did not directly require the 1,25(OH)(2)D/VDR system. Parathyroid hormone (PTH) secretion was also modulated primarily by ambient serum calcium but the enlarged parathyroid glands which the mutants exhibited and the widened cartilaginous growth plates could only be normalized by the combination of calcium and 1,25(OH)(2)D, apparently independently of the VDR. Optimal osteoclastic bone resorption and osteoblastic bone formation both required an intact 1,25(OH)(2)D/VDR apparatus. The results indicate that calcium cannot entirely substitute for Vitamin D in skeletal and mineral homeostasis but that the two agents have discrete and overlapping functions.  相似文献   

11.
12.
The steroid hormone 1,25 dihydroxyvitamin D3 (1,25(OH)2D3) regulates cell proliferation and differentiation. Intracellular calcium (Cai) concentrations play a crucial role in these events. From our previous studies, we have demonstrated a calcium receptor (CaR) in keratinocytes which appears to regulate the initial release of Cai from intracellular stores in response to extracellular calcium (Cao) and so is likely to participate in the differentiation process. In this study, we determined whether the ability of 1,25(OH)2D3 to enhance Ca++ -induced differentiation was mediated at least in part through changes in the CaR. Keratinocytes were grown in keratinocyte growth medium (KGM) with 0.03 mM, 0.1 mM, or 1.2 mM Ca and treated with 10(-8) M 1,25(OH)2D3 till harvest after 5, 7, 14, and 21 days. CaR mRNA levels were quantitated by polymerase chain reaction. The results were compared to the ability of 1,25(OH)2D3 to enhance calcium-stimulated increases in Cai. In cells grown in 0.03 mM Ca, the CaR mRNA levels decreased with time. 1,25(OH)2D3 stimulated the levels at 5 days and prevented the falloff over the subsequent 16 days. On the other hand, in cells grown in 0.1 or 1.2 mM Ca, the message levels remained high, and 1,25(OH)2D3 had no further effect. To study the functional relationship, we harvested cells after 5 and 7 days in culture following a 24 h treatment with 1,25(OH)2D3 or vehicle to measure the Cai response to 2 mM Cao. The preconfluent cells grown in 0.03 mM Ca showed a nearly twofold increase in the Cai response to Cao when pretreated with 1,25(OH)2D3, whereas the confluent cells and those grown in 1.2 mM Ca showed no enhancement by 1,25(OH)2D3. Studies with 45Ca influx into keratinocytes revealed that 1,25(OH)2D3 enhanced the influx in preconfluent and confluent cells when grown in KGM containing 0.03 mM Ca but not in cells grown in 1.2 mM calcium. We conclude that 1,25(OH)2D3 maintains the CaR mRNA levels in cells grown in 0.03 mM Ca, thus maintaining their responsiveness to Cao and so ensuring their ability to differentiate in response to the calcium signal.  相似文献   

13.
It has been previously shown that keratinocytes express a high level of 25-hydroxyvitamin D(3) (25-OHD(3)) 1alpha-hydroxylase (1alpha-hydroxylase). 1alpha-Hydroxylase catalyzes the conversion of 25-OHD(3) to 1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)]. 1,25(OH)(2)D(3) is both antiproliferative (i.e., suppresses cell growth) and prodifferentiative (i.e., induces cell differentiation) in many cell types. We hypothesized that local production of 1,25(OH)(2)D(3) by keratinocytes may suppress their growth and induce their differentiation in an autocrine fashion. To test this hypothesis, we inactivated both 1alpha-hydroxylase alleles in a ras-transformed keratinocyte cell line, HPK1Aras, which typically produces squamous carcinoma in nude mice. To inactivate 1alpha-hydroxylase expression by HPK1Aras cells, we disrupted both alleles of the 1alpha-hydroxylase gene by homologous recombination. Lack of expression and activity of 1alpha-hydroxylase was confirmed by Northern blot analysis and detected conversion of 25-OHD(3) to 1,25(OH)(2)D(3). We then examined the effect of substrate 25-OHD(3) on parameters of growth and differentiation in the double knockout cell line as compared to wild-type HPK1Aras cells in vitro. It was found that 1alpha-hydroxylase inactivation blocked the antiproliferative and prodifferentiative effect of 25-OHD(3). These in vitro effects were further analyzed in vivo by injecting knockout or control cells subcutaneously in severely compromised immunodeficient mice. Tumor growth was accelerated and differentiation was inhibited in mice given injections of knockout cells as compared to control cells in the presence of substrate 25-OHD(3). Our results demonstrate, for the first time, that 1alpha-hydroxylase expression by keratinocytes plays an important role in autocrine growth and differentiation of these cells, and suggest that expression of this enzyme may modulate tumor growth in squamous carcinomas.  相似文献   

14.
20-hydroxyvitamin D(2) [20(OH)D(2)] inhibits DNA synthesis in epidermal keratinocytes, melanocytes, and melanoma cells in a dose- and time-dependent manner. This inhibition is dependent on cell type, with keratinocytes and melanoma cells being more sensitive than normal melanocytes. The antiproliferative activity of 20(OH)D(2) is similar to that of 1,25(OH)(2)D(3) and of newly synthesized 1,20(OH)(2)D(2) but significantly higher than that of 25(OH)D(3). 20(OH)D(2) also displays tumorostatic effects. In keratinocytes 20(OH)D(2) inhibits expression of cyclins and stimulates involucrin expression. It also stimulates CYP24 expression, however, to a significantly lower degree than that by 1,25(OH)(2)D(3) or 25(OH)D(3). 20(OH)D(2) is a poor substrate for CYP27B1 with overall catalytic efficiency being 24- and 41-fold lower than for 25(OH)D(3) with the mouse and human enzymes, respectively. No conversion of 20(OH)D(2) to 1,20(OH)(2)D(2) was detected in intact HaCaT keratinocytes. 20(OH)D(2) also demonstrates anti-leukemic activity but with lower potency than 1,25(OH)(2)D(3). The phenotypic effects of 20(OH)D(2) are mediated through interaction with the vitamin D receptor (VDR) as documented by attenuation of cell proliferation after silencing of VDR, by enhancement of the inhibitory effect through stable overexpression of VDR and by the demonstration that 20(OH)D(2) induces time-dependent translocation of VDR from the cytoplasm to the nucleus at a comparable rate to that for 1,25(OH)(2)D(3). In vivo tests show that while 1,25(OH)(2)D(3) at doses as low as 0.8 μg/kg induces calcium deposits in the kidney and heart, 20(OH)D(2) is devoid of such activity even at doses as high as 4 μg/kg. Silencing of CY27B1 in human keratinocytes showed that 20(OH)D(2) does not require its transformation to 1,20(OH)(2)D(2) for its biological activity. Thus 20(OH)D(2) shows cell-type dependent antiproliferative and prodifferentiation activities through activation of VDR, while having no detectable toxic calcemic activity, and is a poor substrate for CYP27B1.  相似文献   

15.
In this study, we investigated the possibility that cultured keratinocytes from normal human adult skin produce 1,25-dihydroxyvitamin D-3 (1,25(OH)2D3, a biologically active form of vitamin D-3) from 25-hydroxyvitamin D-3 [25(OH)D3], and that 1,25(OH)2D3 endogenously produced by keratinocytes is involved in the self regulation of their growth and differentiation. To determine whether 1,25(OH)2D3 is produced from 25(OH)D3 by skin keratinocytes, 25(OH)[3H]D3 was added to keratinocyte cultures and incubated for 1 h and 5 h. The intracellular and extracellular metabolites were analyzed by three chromatographic systems. The three chromatograms revealed that the major metabolite produced from 25(OH)D3 was 1,25(OH)2D3. Most of the 1,25(OH)2D3 endogenously produced from 25(OH)D3 remained within the cells. To examine the time course of 1,25(OH)2D3 production, the amount of 1,25(OH)[3H]D3 was measured at 15 min, 1 h, 5 h and 10 h, being at a maximum 1 h after the addition of 25(OH)D3. These data indicate that keratinocytes rapidly convert 25(OH)D3 to 1,25(OH)2D3 and that 1,25(OH)2D3 is not released into the medium. To determine whether endogenously produced 1,25(OH)2D3 is involved in the regulation of growth and differentiation of normal human keratinocytes, we examined the effects of 1,25(OH)2D3 and 25(OH)D3 on their growth and differentiation. Keratinocyte growth was inhibited to 52.6% and 23.4% by 10(-8) M and 10(-7) M 1,25(OH)2D3 and to 80.5% and 23.9% by 10(-8) M and 10(-7) M 25(OH)D3, respectively. Differentiation of these cells was evaluated by quantifying the number which express involucrin, a precursor protein of cornified envelope. The population of involucrin expressing cells (differentiated cells) increased from 6.2% to 14.5% by 2.5.10(-7) M 1,25(OH)2D3, and to 11.8% by 2.5.10(-7) M 25(OH)D3. These results clearly indicate that 25(OH)D3 is as effective on human keratinocytes as 1,25(OH)2D3 in inhibiting growth and inducing differentiation, although to a slightly lesser extent than 1,25(OH)2D3. The possibility that the effect of 25(OH)D3 is mediated through binding to the 1,25(OH)2D3 receptor can be excluded, since a competitive binding assay revealed that the affinity of 25(OH)D3 for the 1,25(OH)2D3 receptor in a cytosolic extract of keratinocytes was 100-times lower than that of 1,25(OH)2D3. Thus, these results suggest that 1,25(OH)2D3 endogenously produced in keratinocytes from 25(OH)D3 is involved in the regulation of their growth and differentiation in vitro.  相似文献   

16.
1alpha,25-Dihydroxyvitamin D(3)-3-bromoacetate (1, 25(OH)(2)D(3)-3-BE), an affinity labeling analog of 1alpha, 25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), displayed stronger antiproliferative activities than 1,25(OH)(2)D(3) at 10(-10)-10(-6) M dose levels in cultured human keratinocytes (CHK). Additionally, preincubation of the cells with 10(-6) M 1,25(OH)(2)D(3), followed by treatment with various doses of 1,25(OH)(2)D(3)-3-BE, resulted in a significantly stronger antiproliferative activity by the mixture than individual reagents at every dose level. To search for a mechanism of this observation, we determined that [(14)C]1, 25(OH)(2)D(3)-3-BE covalently labeled human recombinant 1alpha, 25-dihydroxyvitamin D(3) receptor (reVDR) swiftly (<1 min) with a 1:1 stoichiometry and induced conformational changes (in VDR) that are different from 1,25(OH)(2)D(3), by limited tryptic digestion. Furthermore, a protein band, corresponding to reVDR, was specifically labeled by [(14)C]1,25(OH)(2)D(3)-3-BE in CHK extract, indicating that VDR is the main target of [(14)C]1, 25(OH)(2)D(3)-3-BE. The above-mentioned observations suggest that a rapid covalent labeling of VDR in CHK might alter the interaction between the holo-VDR and 1,25(OH)(2)D(3)-controlled genes. Furthermore, we observed that 1,25(OH)(2)D(3)-3-BE significantly decreased the binding of VDR to human osteocalcin vitamin D responsive element (hOCVDRE), as well as the dissociation rate of VDR from hOCVDRE, compared with 1,25(OH)(2)D(3) in COS-1 cells, transiently transfected with a VDR construct. Additionally, 1, 25(OH)(2)D(3)-3-BE was found to be more potent in inducing 1alpha, 25-dihydroxyvitamin D(3)-24-hydroxylase (24-OHase) promoter activity and mRNA expression in keratinocytes. The accumulation of 24-OHase message was also prolonged by the analog. Collectively these results indicated that rapid covalent labeling of VDR in keratinocytes (by 1, 25(OH)(2)D(3)-3-BE) might result in the conversion of apo-VDR to a holo-form, with a conformation that is different from that of the 1, 25(OH)(2)D(3)-VDR complex. This resulted in an enhanced stability of the 1,25(OH)(2)D(3)-3-BE/VDR-VDRE complex and contributed to the amplified antiproliferative effect of 1,25(OH)(2)D(3)-3-BE in keratinocytes.  相似文献   

17.
Despite recent advances in the understanding of the role of 1,25-dihydroxyvitamin D(3) (1,25-(OH)(2)D(3)) in the CNS, the mechanism of action remains obscure. We demonstrate that some 1,25-(OH)(2)D(3) receptor (VDR) is localized in the cell nucleus in specialized microdomains enriched in sphingomyelin and cholesterol; the integrity of these microdomains is necessary for embryonic hippocampal cell differentiation. Sphingomyelinase (SMase) treatment reduces both VDR and labeled 1,25-(OH)(2)D(3) content in nuclear microdomains. We have previously shown that HN9.10e embryonic hippocampal cells differentiate when incubated with 100 nM 1,25-(OH)(2)D(3) in the presence of 10% fetal calf serum, while serum deprivation induces cell death. In this study, we have investigated whether conditions that alter lipid content of nuclear microdomains modify 1,25-(OH)(2)D(3)-induced differentiation. Serum deprivation activates SMase and modifies the composition of nuclear microdomains, which lose the 1,25-(OH)(2) vitamin D(3) receptor. The incubation of serum-deprived cells with 100 nM 1,25-(OH)(2)D(3) prevents differentiation. However, treatment with 400 nM 1,25-(OH)(2)D(3) during serum withdrawal increases the lipid content of the nuclear microdomains, allows the interaction of 1,25-(OH)(2)D(3) with its receptor, and results in differentiation. These results suggest the presence of VDR in nuclear microdomains is necessary for 1,25-(OH)(2)D(3)-induced differentiation in embryonic hippocampal cells.  相似文献   

18.
Calcium is required for many cellular processes including muscle contraction, nerve pulse transmission, stimulus secretion coupling and bone formation. The principal source of new calcium to meet these essential functions is from the diet. Intestinal absorption of calcium occurs by an active transcellular path and by a non-saturable paracellular path. The major factor influencing intestinal calcium absorption is vitamin D and more specifically the hormonally active form of vitamin D, 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)). This article emphasizes studies that have provided new insight related to the mechanisms involved in the intestinal actions of 1,25(OH)(2)D(3). The following are discussed: recent studies, including those using knock out mice, that suggest that 1,25(OH)(2)D(3) mediated calcium absorption is more complex than the traditional transcellular model; evidence for 1,25(OH)(2)D(3) mediated active transport of calcium by distal as well as proximal segments of the intestine; 1,25(OH)(2)D(3) regulation of paracellular calcium transport and the role of 1,25(OH)(2)D(3) in protection against mucosal injury.  相似文献   

19.
Xie Z  Bikle DD 《Steroids》2001,66(3-5):339-345
Phospholipase C-gamma1 (PLC-gamma1) is the most abundant member of the phospholipase C family expressed in human keratinocytes. PLC-gamma1 is induced by 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)) in normal keratinocytes via a DR6-type vitamin D responsive element. This regulation is not observed in transformed keratinocytes. The role of PLC-gamma1 in mediating 1alpha,25(OH)(2)D(3) and calcium-regulated differentiation was then tested. Both specific PLC inhibitors and antisense constructs which selectively block PLC-gamma1 production prevented 1alpha,25(OH)(2)D(3) and calcium from inducing markers of differentiation such as involucrin and transglutaminase. These studies demonstrate that PLC-gamma1 induction by 1alpha,25(OH)(2)D(3) is critical to the ability of this hormone to regulate keratinocyte differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号