首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To identify the molecular components of the vasoactive intestinal peptide (VIP) binding sites in the liver, 125I-labelled VIP was covalently linked to liver membranes by using the cleavable cross-linker dithiobis(succinimidylpropionate). Purified rat liver plasma membranes were incubated with 125I-VIP, washed and treated with 1 mM-cross-linker. Polyacrylamide-gel electrophoresis of membrane proteins followed by autoradiography revealed a major 125I-VIP-protein complex of Mr 51 000. A minor Mr 89 000 complex was also observed. An identical pattern of protein labelling was obtained using crude membranes from rat liver. Labelling of the Mr 51 000 and 89 000 species was specific in that it could be abolished by native VIP, but was unaffected by 1 microM-glucagon and cholecystokinin octapeptide. Densitometric scanning of autoradiographs indicated that the labelling of the two species was abolished by similar low VIP concentrations (0.1-100 nM). It was also reduced by two VIP agonists, peptide histidine isoleucine amide and secretin, with a potency that is 1/7 and 1/200 that of native VIP, respectively. The guanine nucleotide GTP in the concentration range between 10(-7) and 10(-3) M reduces the labelling of the major Mr 51 000 protein and that of the minor Mr 89 000 protein, but with a slightly higher potency. Assuming one molecule of 125I-VIP was bound per molecule of protein, a major Mr 48 000 protein and a minor Mr 86 000 protein were identified as components of the high-affinity VIP binding sites in liver. This contrasts markedly with the pattern of labelling of rat intestinal epithelial membranes, where a Mr 73 000 protein was identified as a high-affinity VIP receptor and a Mr 33 000 protein as a low-affinity VIP binding site [Laburthe, Bréant & Rouyer-Fessard (1984) Eur. J. Biochem. 139, 181-187], suggesting structural differences between VIP binding sites in rat liver and intestinal epithelium.  相似文献   

2.
Vasoactive intestinal peptide (VIP) receptors were solubilized from rat liver using the zwitterionic detergent CHAPS. Optimal conditions of solubilization were obtained with 5 mM CHAPS and 2.5 mg protein/ml. The binding of 125I-VIP to CHAPS extracts was time- and pH-dependent, saturable and reversible. The following order of potency of unlabeled VIP-related peptides for inhibiting 125I-VIP binding was observed: VIP greater than helodermin greater than peptide histidine isoleucine amide (PHI) greater than rat growth hormone releasing factor (rGRF) greater than secretin. This peptide specificity is identical to that of rat liver membrane-bound receptors. VIP binding activity in the CHAPS extract was destroyed by trypsin or dithiothreitol in accordance with the known sensitivity of membrane-bound receptors to these agents. VIP receptors in CHAPS extracts were stable for at least 5 days at 4 degrees C. Scatchard analysis of equilibrium binding data indicated the presence in CHAPS extracts of high (H) and low (L) affinity binding sites with the following characteristics: KdH = 0.27 nM and BmH = 34 fmol/mg protein; KdL = 51 nM and BmL = 1078 fmol/mg protein. The guanine nucleotide GTP inhibited 125I-VIP binding to soluble receptors and enhanced the dissociation of soluble VIP-receptor complexes, suggesting that GTP-binding proteins were functionally associated with VIP receptors in solution. Gel filtration of solubilized VIP receptors on Sephacryl S-300 revealed a single binding component with a Stokes radius of 6.1 nm. It is concluded that active VIP receptors can be extracted from liver membranes by CHAPS. The availability of this CHAPS-soluble, stable and functional receptor from a tissue which can be obtained in large amounts represents a major step toward the purification of VIP receptors.  相似文献   

3.
The non-ionic detergent n-octyl-beta-D-glucopyranoside was used to solubilize the VIP (vasoactive intestinal peptide) receptor from human colonic adenocarcinoma cell line HT29-D4. The binding of monoiodinated 125I-VIP to the solubilized receptor was specific, time-dependent, and reversible. Scatchard analysis of data obtained from competitive displacement of monoiodinated 125I-VIP by native VIP suggested the presence of two classes of VIP binding sites with Kd values of 0.32 and 46.7 nM. The binding capacities of these two classes were 1.7 x 10(10) and 30.2 x 10(10) sites/mg of proteins, respectively. The solubilized receptor retained the specificity of the human VIP receptor towards the peptides of the VIP/secretin/glucagon family. The order of potency in inhibiting monoiodinated 125I-VIP binding was VIP (IC50 = 1.0 x 10(-9) M) much greater than peptide histidine methionine amide (IC50 = 10(-7) M) greater than growth hormone-releasing factor (IC50 = 3 x 10(-7) M) greater than secretin (IC50 greater than 10(-6) M); glucagon had no effect on VIP binding. The reducing agent dithiothreitol inhibited in a dose-dependent manner the binding of 125I-VIP. Covalent cross-linking experiments between the solubilized receptor and 125I-VIP showed that after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography two major and one minor polypeptides of Mr 67,000, 72,000, and 83,000 were specifically labeled. When analyzed by gel filtration, the n-octyl-beta-D-glucopyranoside-solubilized 125I-VIP-receptor complex was resolved into two major peaks with molecular mass in the range of 60-70 and 270-300 kDa. Thus, the soluble form of the VIP receptor was probably a multimeric complex in which disulfide bonds may play an important role to hold the receptor in an active configuration.  相似文献   

4.
Type 2 diabetes is characterized by an inadequate pancreatic beta-cell response to the progressive insulin resistance. Its pathogenesis is complex and has been connected with a state of preclinical chronic inflammation. Vasoactive intestinal peptide (VIP) and its receptors play a relevant role in the homeostasis of insulin secretion as well as in the control of inflammation. In particular, VIP receptor 1 (VPAC1) has been found to be down-modulated during inflammation, and to be associated with several diseases. The objective of this study was to compare the distribution of SNPs mapping in the VIP receptor 1 gene in cases with type 2 diabetes and matched controls. Seven hundred cases with type 2 diabetes (423 males and 277 females) and 830 random controls (419 males and 411 females) were analyzed for the distribution of three common SNPs mapping in the VPAC1 gene. The results show a significantly different genotype distribution of the SNP rs9677 in the 3’-UTR of VPAC1 in female cases with type 2 diabetes compared to gender-matched controls (ptrend = 6 × 10− 4). The rs9677 CC genotype confers the highest risk (OR: 2.1) and correlates with worse clinical parameters such as higher level of total cholesterol, higher LDL/HDL ratio and a higher HbA1c concentration. The genetic association reported here indicates that VIP/VPAC1 signaling can be a relevant pathway in the pathogenesis of type 2 diabetes in females suggesting that at least some aspects of the genetic predisposition to this disease can be gender-specific.  相似文献   

5.
Previous studies have demonstrated a specific vascular receptor for the neurotransmitter peptide, vasoactive intestinal peptide (VIP), and have suggested that the receptor is positively coupled to vascular adenylate cyclase. The present study addressed the questions whether the vascular VIP receptor is subject to regulation by guanine nucleotides and whether a disulfide reducing agent, dithiothreitol, would perturb the binding function of the vascular VIP receptor. Guanosine triphosphate (GTP) and its non-hydrolyzable analogs, guanylyl imidodiphosphate (Gpp(NH)p) and guanosine-5'-O-(3-thiotriphosphate) (GTP-gamma-S), increased the rate of dissociation of radiolabeled VIP from arterial receptors in a concentration-dependent manner. GTP-gamma-S increased the equilibrium dissociation constant (KD) of the high affinity vascular VIP binding site, a result consistent with decreased high affinity binding of VIP induced by GTP-gamma-S. These results are consistent with a regulatory role for guanine nucleotides in the function of the vascular VIP receptor. The disulfide reducing agent, dithiothreitol, caused a decrease in specific binding of radiolabeled VIP. Upon Scatchard analysis the effect of dithiothreitol was characterized by an increase in the KD and a decrease in the maximum number of binding sites (Bmax) of the high affinity binding site. These results suggest that disulfide bonds are important for ligand binding to vascular VIP receptors. The sulfhydryl alkylating agents, N-ethylmaleimide and iodoacetamide, had minimal effects on radioligand binding.  相似文献   

6.
The hepatic receptor for VIP was solubilized from rat liver plasma membranes with 1.4% digitonin and shown to conserve its ability to bind to the ligand. This solubilized receptor demonstrated the high affinity and specificity for VIP (KD1 nM, binding preference: VIP > PHI > secretin > thymosin 1) which were observed with the nonsolubilized VIP receptor on intact liver plasma membranes. 125I-VIP was next cross-linked to either the solubilized or nonsolubilized receptor using disuccinimido suberate or disuccinimido dithiobis(propionate), and the resulting complexes analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by autoradiography. A broad autoradiographic band which demonstrated a high affinity for VIP was identified at Mr 56,000 (53,000 in the absence of the reducing agent dithiothreitol) for both the solubilized and nonsolubilized receptors. We have thus been able to solubilize from rat liver plasma membranes a receptor with high affinity and specificity for VIP, and confirmed its structural similarity with the native VIP receptor in nonsolubilized membranes using cross-linking techniques.  相似文献   

7.
We have used gel filtration, ion exchange chromatography, affinity chromatography and reversed-phase HPLC to isolate vasoactive intestinal peptide from rat intestine. Microsequence analysis of 1 nmole peptide indicated that the sequence was identical to the porcine octacosapeptide VIP. In radioimmunoassay with four antisera and in the turkey pancreas bioassay, rat VIP was equipotent with highly purified preparations of porcine, human and canine VIP. A less basic rat VIP-variant was also isolated and the N-terminal decapeptide region that was sequenced was identical with that of porcine VIP.  相似文献   

8.
A vasoactive intestinal peptide (VIP) binding protein was purified in active form by detergent solubilization of lung membranes, gel filtration, VIP-Sepharose affinity chromatography, reverse phase high performance liquid chromatography, and anion exchange chromatography. The mass of this protein was estimated at 18 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 17 kDa by gel filtration. The binding of VIP by this protein was inhibited by Mg2+, covalent cross-linking of [Tyr10-125I]VIP to the protein produced two radioactive bands at 22 and 26 kDa identified by electrophoresis, and the purified protein exhibited saturable and high affinity binding of VIP and the related neuropeptide, rat growth hormone releasing factor.  相似文献   

9.
The molecular weight of the vasoactive intestinal peptide (VIP) receptor in rat lung and its interaction with the stimulatory guanine nucleotide-binding protein (Gs) were assessed by covalent cross-linking, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and immunological techniques. Studies with two cross-linking agents indicated that the VIP receptor in this tissue is a single polypeptide of Mr = 54,000. The VIP-occupied receptor could be cross-linked to neighboring proteins after detergent solubilization; higher molecular weight complexes of Mr = 114,000 and 184,000 were formed. Immunoblotting with antisera against G-protein subunits demonstrated that both complexes contained the alpha-subunit of Gs as well as the 125I-VIP cross-linked receptor whereas only the Mr = 184,000 complex contained the beta-subunit. Pretreatment with GTP reduced the prominence of these complexes, verifying the functional nature of this receptor-Gs association. Studies with a third cross-linking agent, ethylene glycol bis(succinimidyl succinate), provided direct evidence of physically associated, ternary VIP-receptor-Gs complexes actually in the membrane milieu. That these complexes were functionally associated with shown by their inhibition by anti-Gs alpha anti-serum. Since treatment of membranes with guanosine 5'-O-(3-thiotriphosphate) resulted in the separation of the VIP-cross-linked receptor from Gs such that no cross-linking could occur, we conclude that the binding of GTP analogs induces a conformational change in Gs in the membrane milieu.  相似文献   

10.
Vasoactive intestinal peptide (VIP) receptors were solubilized from porcine liver membrane using the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid. The solubilized VIP receptor has been purified approximately 50,000-fold to apparent homogeneity by a one-step affinity chromatography using a newly designed VIP-polyacrylamide resin. The purified receptor bound 125I-VIP with a Kd of 22.3 +/- 0.7 nM and retained its peptide specificity toward VIP-related peptides. The specific activity of the purified receptor (16,400 pmol/mg of protein) was very close to the theoretical value (18,900 pmol/mg of protein) calculated assuming one binding site/protein. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of purified receptor revealed a single band with an Mr of 53,000 after either silver staining or radioiodination. Affinity labeling of the purified receptor with 125I-VIP using dithiobis(succinimidyl propionate) gave a single radioactive band, the labeling of which was completely inhibited by an excess of unlabeled VIP. In conclusion, an Mr 53,000 protein containing the VIP-binding site was purified to homogeneity by a one-step affinity chromatography using immobilized VIP.  相似文献   

11.
Rat lung membrane vasoactive intestinal peptide (VIP) receptors were covalently labeled with 125I-VIP, extracted in Triton X-100 and n-octyl-beta-D-glucopyranoside, and analyzed by gel filtration and sucrose density gradient sedimentation. The fractions were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography, and the identity of the 125I-VIP.receptor complex was demonstrated by its co-migration with the covalently labeled 55-kDa receptor unit identified previously. Furthermore, the radioactivity in the peak corresponding to the 125I-VIP.receptor complex was displaced in the presence of unlabeled VIP in a dose-dependent manner. The following hydrodynamic properties were determined for VIP receptors in each detergent solution: in Triton X-100, Stokes radius of 6.1 +/- 0.4 nm, sedimentation coefficient (S20,w) of 7.35 +/- 0.45 S, and partial specific volume (v) of 0.809 +/- 0.015 ml/g; in n-octyl-beta-D-glucopyranoside, Stokes radius of 5.6 +/- 0.00 nm, S20,w of 10.87 +/- 0.22 S, and partial specific volume of 0.783 +/- 0.020 ml/g. The apparent molecular weight of the 125I-VIP.receptor.detergent complex was calculated as 270,000 +/- 36,000 in Triton X-100 and 320,000 +/- 32,000 in n-octyl-beta-D-glucopyranoside. The amount of detergent bound to the receptor was estimated by using the two sets of hydrodynamic data and the significantly different partial specific volumes of the two detergents. Thus, the molecular weight of the receptor alone was calculated as 54,600 daltons, indicating that approximately 3.9 g of Triton X-100 and 4.9 g of n-octyl-beta-D-glucopyranoside were bound per g of receptor. This species contained the 55-kDa binding unit and appeared to be glycosylated as evidenced by its specific binding to wheat germ agglutinin-Sepharose. These results indicate that the rat lung VIP receptor is a glycoprotein with a single polypeptide chain of 55 kDa. The large amount of detergent bound suggests that the receptor is extensively embedded in the membrane.  相似文献   

12.
Binding sites with high affinity for angiotensin II were solubilized from hepatic membranes by treatment with digitonin. Binding of radioiodinated angiotensin II was assayed by gel filtration and independently by a technique exploiting the failure of activated charcoal to adsorb the bound ligand. The binding protein was partially purified using ammonium sulfate fractionation followed by gel filtration, and in the presence of protease inhibitors, the isolated binding protein preparation did not catalyze degradation of the angiotensin II. Binding to the membranes as well as to the solubilized preparation was specific and saturable. The membranes exhibited a single set of high-affinity binding sites with a Kd of 0.5 nM. The solubilized preparation, also showed the presence of a single class of high-affinity binding sites (Kd = 10.5 nM). Displacement studies using angiotensin I as well as various fragments, agonists and antagonists of angiotensin II disclosed a structure-activity profile similar to that found with intact membranes. Dissociation of angiotensin II from the soluble macromolecular complex was slow but was enhanced at non-physiological pH values or in the presence of 4.5 M urea, or 1% sodium dodecyl sulfate. Covalent binding of the radioiodinated angiotensin II to a single, specific macromolecular component was achieved by treatment with disuccinimidyl suberate. The apparent molecular weight of this reduced, denatured radioactive protein was estimated at about 68 000 by polyacrylamide gel electrophoresis.  相似文献   

13.
The molecular weight of the vasoactive intestinal peptide (VIP) receptor was assessed in bovine aorta, and rat liver, lung, and brain by covalent cross-linking and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The receptor in all four tissues was found to be a single polypeptide of approximate M(r) 54,000, contradicting previous claims for substantial heterogeneity in the molecular weight of this receptor. Guanine nucleotides inhibit cross-linking of 125I-VIP to its receptor, and cross-linking with ethylene glycolbis(succinimidylsuccinate) provides further evidence for complex formation between VIP, its receptor and a guanine nucleotide-binding regulatory protein (G-protein). The precise mechanism of receptor-G-protein coupling may differ between the aorta and other tissues.  相似文献   

14.
The biological effects of vasoactive intestinal peptide (VIP) are mediated by binding to a membrane-bound receptor. Probes designed to trap this receptor by binding to it in a covalent way may suffer from a greatly reduced affinity. We report here, for the VIP receptor, the use of a photoaffinity probe obtained by derivatization of receptor-bound VIP with para-azidophenylglyoxal. This method protected the parts of the molecule essential for receptor binding. The VIP derivative thus obtained became covalently linked when irradiated. In the dark, however, it exhibited normal VIP-like behavior and retained its biological activity. This derivatization method might be generally applicable when hormone analogues have to be prepared without loss of receptor affinity. Receptor characterization studies on liver plasma membranes showed the presence of high- and low-affinity binding sites with KD = 0.1 and 5 nM, respectively. Treatment of membranes with dithiothreitol causes loss of high-affinity binding. The high-affinity site, trapped by the photoaffinity probe, resolved into two molecular mass forms, 50 and 200-250 kDa. Reduction of the receptor-probe complex left the 50-kDa form intact, whereas the amount of the 200-250-kDa form greatly diminished. We demonstrate the importance of the presence of disulfide bonds in one of the molecular forms involved in high-affinity binding.  相似文献   

15.
E M Lutz  S Shen  M Mackay  K West  A J Harmar 《FEBS letters》1999,458(2):197-203
The VPAC(2) (vasoactive intestinal peptide (VIP)(2)) receptor is a seven-transmembrane spanning G protein-coupled receptor which responds similarly to VIP and pituitary adenylate cyclase activating polypeptide (PACAP) in stimulating cAMP production. Recently, we reported the localisation of the human VPAC(2) receptor gene (VIPR2) to chromosome 7q36.3 (Mackay, M. et al. (1996) Genomics 37, 345-353). Here, we describe the characterisation of the VIPR2 gene structure and promoter region. The VIPR2 gene is encoded by 13 exons, the initiator codon of the 438 amino acid open reading frame is located in exon 1 and the termination signal and a poly-adenylation signal sequence are located in exon 13. The 5' untranslated region extends 187 bp upstream of the initiator codon and is extremely GC-rich (80%). The poly-adenylation signal is located 2416 bp downstream of the stop codon. Intron sizes range from 68 bp (intron 11) to 45 kb (intron 4) and the human gene spans 117 kb.  相似文献   

16.
Bombesin and structurally related peptides including gastrin releasing peptide (GRP) are potent mitogens for Swiss 3T3 cells. Here we attempted to solubilize bombesin receptors under conditions in which the ligand (125I-labelled GRP) was prebound to the receptor prior to detergent extraction. We found that 125I-GRP-receptor complexes were solubilized from Swiss 3T3 cell membranes by using the detergents taurodeoxycholate or deoxycholate. These detergents promoted ligand-receptor solubilization in a dose-dependent manner. In contrast, a variety of other detergents including Triton X-100, octylglycoside, CHAPS, digitonin, cholic acid and n-dodecyl-beta-D-maltoside, were much less effective. Addition of guanosine 5'-[gamma-thio]triphosphate (GTP gamma S) to ligand-receptor complexes isolated by gel filtration enhanced the rate of ligand dissociation in a concentration-dependent and nucleotide-specific manner. Our results demonstrate for the first time the successful solubilization of 125I-GRP-receptor complexes from Swiss 3T3 cell membranes and provide evidence for the physical association between the ligand-receptor complex and a guanine nucleotide binding protein(s).  相似文献   

17.
When isolated rat liver cells were incubated in the presence of vasoactive intestinal peptide at the concentrations ranging from 0.2 microgram to 2 micrograms per ml, glycogenolysis was maximally stimulated within 15 min. However, somatostatin inhibited the liver glycogenolysis. The combined addition to the incubation medium showed that insulin and somatostatin inhibited the stimulated glycogenolysis induced by vasoactive intestinal peptide, while vasoactive intestinal peptide plus secretin showed no additive effect on glycogenolysis, as compared with single the addition of vasoactive intestinal peptide. On the other hand, the additon of glucagon to vasoactive intestinal peptide showed additive effects on glycogenolysis. These results suggest that the receptor site for vasoactive intestinal peptide may be distinguishable from that for glucagon. Extracellular calcium ions were demonstrated to play an important role in the modulation of vasoactive intestinal peptide-induced glycogenolysis. The evidence presented in this paper indicates that glucose metabolism may be partly regulated by the direct action of vasoactive intestinal peptide on hepatocytes, which is referred to as an enterohepatic axis and that the axis is inhibited by insulin and somatostatin.  相似文献   

18.
The receptor for vasoactive intestinal peptide (VIP) was identified in rat liver plasma membranes after covalent cross-linking to 125I-VIP by three different agents [disuccinimido dithiobis(propionate), disuccinimido suberate, and succinimido 4-azidobenzoate] and examined by sodium dodecyl sulfate-acrylamide electrophoresis. Regardless of the presence of reducing conditions, two molecular species of the putative VIP binding unit were identified as broad autoradiographic bands of 80,000 and 56,000 daltons (Da). Both the large and small species showed the same high affinity for 125I-VIP binding and subsequent cross-linking (half-maximal inhibition at 3 nM unlabeled VIP). The 80-kDa species was partially converted to the 56-kDa form by denaturing conditions and was extensively degraded when incubated at 20 degrees C for 30 min with 1 microgram/mL chymotrypsin, trypsin, or elastase to fragments that that migrated similarly to the 56-kDa unit. In contrast, the 56-kDa moiety was resistant to attack by serine proteases. Both the 80- and 56-kDa species were microheterogeneous due at least in part to the presence of carbohydrate chains, each species binding fractionally to wheat germ agglutinin (WGA)-agarose (approximately 50%). The WGA-bound fraction (eluted with N-acetylglucosamine) was relatively retarded on acrylamide gels as compared to the WGA-unbound fraction. Exposure of the 80- and 56-kDa species to endo-beta-acetylglucosaminidase F reduced the apparent molecular mass of each by 19 kDa, indicating the presence of complex N-linked carbohydrate chains. The receptor species do not appear to have high-mannose N-linked chains since they did not interact with concanavalin A and were not cleaved by endo-beta-acetylglucosaminidase H.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
VPAC(1) receptor subtype-specific G-protein interactions were identified using a strategy that exploits an essential initial signaling event, namely the functional and physical association of the receptor with G-protein. An immunoaffinity purification column was constructed using a previously characterized antibody that had been raised against the first extracellular loop of the VPAC(1) receptor. VPAC(1)/G-protein complexes were solubilized from membranes and copurified. Receptor and Galpha-proteins were detected in eluates using (125)I-VIP labeling and immunoblotting, respectively. Human VPAC(1) transfected in HEK293 cells couples to Gs but not Gi3, Gi1/2, or Gq. Rat VPAC(1) in brain membranes is coupled to Gs and Gi3. Rat VPAC(1) in lung membranes couples to Gs, Gi3, and Gq. Pretreatment of membranes with VIP increased the level of all G-proteins copurifying with VPAC(1). Immunoaffinity chromatography also revealed VPAC(1) receptor precoupling to G-protein in the absence of VIP pretreatment. This was confirmed using a cross-linking procedure to capture VIP receptor/G-protein complexes in the native membrane milieu prior to solubilization. Precoupling suggests that there is a significant basal level of VPAC(1) receptor activity especially in cells, such as some human malignant tumor cells, that express high levels of receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号