首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We have reported the solubilization of complexes between vasoactive intestinal peptide (VIP) and its receptor from rat liver in a GTP-sensitive form of Mr 150,000 [Couvineau, A., Amiranoff, B. & Laburthe, M. (1986) J. Biol. Chem. 261, 14482-14489]. In the present study, we demonstrate a stable association of solubilized VIP receptor and stimulatory guanine nucleotide-binding protein (Gs protein), taking advantage of the ability of the glycoproteic VIP receptor (Mr 48,000), and the inability of the Gs protein, to adsorb to wheat germ agglutinin (WGA). 125I-VIP-receptor complexes solubilized in Triton X-100 were adsorbed on WGA-Sepharose, extensively washed and the radioactivity retained was eluted with 1 mM GTP showing that: (a) radioactivity corresponds to free 125I-VIP and (b) alpha s (Mr 42,000) and beta (Mr 35,000) subunits of Gs protein are detectable in the GTP eluate by immunoblotting using antisera against these subunits. Such an effect of GTP implied that a stable ternary complex consisting of VIP, receptor and Gs protein had been adsorbed to WGA-Sepharose. When Triton-solubilized 125I-VIP-receptor complexes were adsorbed on WGA-Sepharose, then retained material was specifically eluted with 0.3 M N-acetylglucosamine, analysis of the sugar eluate showed the following results. (a) GTP induces the dissociation of 125I-VIP-receptor complexes of Mr 150,000 contained in the eluate indicating that 125I-VIP-receptor-G protein complexes had been adsorbed to the WGA column. (b) The Mr-42,000 alpha s subunit can be specifically ADP-ribosylated by cholera toxin. (c) Immunoblotting using antisera against the alpha s and beta subunits of Gs protein, reveals Mr-42,000 and Mr-35,000 components corresponding to alpha s and beta subunits, respectively. (d) Affinity cross-linking using dithiobis(succinimidyl-propionate) of 125-I-VIP-receptor complexes eluted from the WGA column reveals a major band corresponding to Mr 150,000. Immunoblotting using antisera against the beta-subunit shows the presence of the beta subunit (Mr 35,000) in this Mr-150,000 component. In conclusion, these data provide functional and immunochemical evidence for the physical association of solubilized VIP-receptor complexes with alpha s and beta subunits of Gs protein.  相似文献   

2.
To identify the molecular components of the vasoactive intestinal peptide (VIP) binding sites in the liver, 125I-labelled VIP was covalently linked to liver membranes by using the cleavable cross-linker dithiobis(succinimidylpropionate). Purified rat liver plasma membranes were incubated with 125I-VIP, washed and treated with 1 mM-cross-linker. Polyacrylamide-gel electrophoresis of membrane proteins followed by autoradiography revealed a major 125I-VIP-protein complex of Mr 51 000. A minor Mr 89 000 complex was also observed. An identical pattern of protein labelling was obtained using crude membranes from rat liver. Labelling of the Mr 51 000 and 89 000 species was specific in that it could be abolished by native VIP, but was unaffected by 1 microM-glucagon and cholecystokinin octapeptide. Densitometric scanning of autoradiographs indicated that the labelling of the two species was abolished by similar low VIP concentrations (0.1-100 nM). It was also reduced by two VIP agonists, peptide histidine isoleucine amide and secretin, with a potency that is 1/7 and 1/200 that of native VIP, respectively. The guanine nucleotide GTP in the concentration range between 10(-7) and 10(-3) M reduces the labelling of the major Mr 51 000 protein and that of the minor Mr 89 000 protein, but with a slightly higher potency. Assuming one molecule of 125I-VIP was bound per molecule of protein, a major Mr 48 000 protein and a minor Mr 86 000 protein were identified as components of the high-affinity VIP binding sites in liver. This contrasts markedly with the pattern of labelling of rat intestinal epithelial membranes, where a Mr 73 000 protein was identified as a high-affinity VIP receptor and a Mr 33 000 protein as a low-affinity VIP binding site [Laburthe, Bréant & Rouyer-Fessard (1984) Eur. J. Biochem. 139, 181-187], suggesting structural differences between VIP binding sites in rat liver and intestinal epithelium.  相似文献   

3.
N-Hydroxysuccinimidyl 4-azidobenzoate, a u.v.-sensitive heterobifunctional reagent, was used to synthesize photoreactive derivatives of the vasoactive intestinal peptide (VIP). Products of the reaction were purified by reverse-phase h.p.l.c. Three 4-azidobenzoyl-VIP (4-AB-VIP) derivatives were able to compete with monoiodinated 125I-VIP with an apparent KD of 2.5, 6.3 and 12.5 nM compared with 0.6 nM for native VIP. H.p.l.c.-purified mono[125I]iodinated VIP was used to synthesize 4-AB-125I-VIP derivatives. They were used to photoaffinity-label the VIP-binding site of HT29-D4 cells, a clone derived from the human colonic adenocarcinoma cell line HT29. Only one polypeptide, of Mr 70,000 +/- 5000 (mean +/- S.D.) was specifically labelled. The Mr of the component thus characterized was slightly higher than that of the major species (Mr 67,000) labelled after cross-linking experiments using 125I-VIP, conventional homobifunctional reagents and HT29 cells. Nevertheless, the specificity and extent of glycosylation of these two components were identical. These new photosensitive VIP derivatives should be useful tools with which to investigate further VIP-receptor structure and metabolism.  相似文献   

4.
Vasoactive intestinal peptide (VIP) receptors were solubilized from rat liver using the zwitterionic detergent CHAPS. Optimal conditions of solubilization were obtained with 5 mM CHAPS and 2.5 mg protein/ml. The binding of 125I-VIP to CHAPS extracts was time- and pH-dependent, saturable and reversible. The following order of potency of unlabeled VIP-related peptides for inhibiting 125I-VIP binding was observed: VIP greater than helodermin greater than peptide histidine isoleucine amide (PHI) greater than rat growth hormone releasing factor (rGRF) greater than secretin. This peptide specificity is identical to that of rat liver membrane-bound receptors. VIP binding activity in the CHAPS extract was destroyed by trypsin or dithiothreitol in accordance with the known sensitivity of membrane-bound receptors to these agents. VIP receptors in CHAPS extracts were stable for at least 5 days at 4 degrees C. Scatchard analysis of equilibrium binding data indicated the presence in CHAPS extracts of high (H) and low (L) affinity binding sites with the following characteristics: KdH = 0.27 nM and BmH = 34 fmol/mg protein; KdL = 51 nM and BmL = 1078 fmol/mg protein. The guanine nucleotide GTP inhibited 125I-VIP binding to soluble receptors and enhanced the dissociation of soluble VIP-receptor complexes, suggesting that GTP-binding proteins were functionally associated with VIP receptors in solution. Gel filtration of solubilized VIP receptors on Sephacryl S-300 revealed a single binding component with a Stokes radius of 6.1 nm. It is concluded that active VIP receptors can be extracted from liver membranes by CHAPS. The availability of this CHAPS-soluble, stable and functional receptor from a tissue which can be obtained in large amounts represents a major step toward the purification of VIP receptors.  相似文献   

5.
The human colon adenocarcinoma cell line HT-29 in culture exhibits a cyclic AMP production system highly sensitive to vasoactive intestinal peptide (VIP), making HT-29 cells a unique cultured cell system for studying the mechanism of VIP action [Laburthe, Rousset, Boissard, Chevalier, Zweibaum & Rosselin (1978) Proc. Natl. Acad. Sci. U.S.A. 75, 2772-2775]. The quantitative characteristics of VIP receptors in HT-29 cells and their structural requirement and molecular size were studied. 125I-labeled VIP bound in a time-dependent manner to HT-29 cell homogenates. At equilibrium (60 min incubation at 30 degrees C), unlabelled VIP in the 0.01-10 nM concentration range competed with 125I-VIP for binding to cell homogenates. Scatchard analysis of binding data gave a straight line, indicating that VIP bound to a single population of sites with a KD of 0.12 +/- 0.02 nM and a capacity of 120 +/- 9 fmol/mg of protein. The structural requirement of these receptors was studied with peptides structurally related to VIP, either natural or synthetic. Several peptides inhibited 125I-VIP binding to HT-29 cell homogenates with the following order of potency, which is typical of the human VIP receptor: VIP (IC50 = 0.1 nM) greater than VIP-(2-28)-peptide (IC50 = 13 nM) greater than human growth hormone releasing factor (IC50 = 56 nM) greater than peptide histidine isoleucine amide (IC50 = 80 nM) greater than secretin (IC50 greater than 10 000 nM). To characterize the molecular component(s) of the VIP receptor in HT-29 cells, 125I-VIP was covalently bound to cell homogenates by using the cross-linker dithiobis(succinimidyl propionate). Sodium dodecyl sulphate/polyacrylamide-gel autoradiographic studies of affinity-labelled cell homogenates revealed two major bands, corresponding to 125I-VIP-protein complexes of Mr 66 000 and 16 000. The labelling of the Mr-66 000 component was specific, since it was abolished by native VIP, whereas that of the Mr-16 000 component was not. Densitometric scanning of autoradiographs indicated that the labelling of the Mr-66 000 complex was inhibited by low VIP concentrations in the 0.1-10 nM range (IC50 = 0.6 nM), but was unaffected by 1 microM-glucagon or octapeptide of cholecystokinin. It was also decreased by VIP-(2-28)-peptide with a potency 1% that of VIP. Assuming that one molecule of 125I-VIP bound per molecule of protein, one protein of Mr 63 000 was identified as a component of the VIP receptor in HT-29 cells.  相似文献   

6.
125I-VIP bound specifically to sites on human, rat, guinea pig, and rabbit lung membranes with a dissociation constant (KD) of 60-200 pM and binding site maxima of 200-800 fmol/mg of protein. The presence of a second lower affinity site was detected but not investigated further. High affinity 125I-VIP binding was reversible and displaced by structurally related peptides with an order of potency: VIP greater than rGRF greater than PHI greater than hGRF greater than secretin = Ac Tyr1 D Phe2 GRF. 125I-VIP has been covalently incorporated into lung membranes using disuccinimidyl suberate. Sodium dodecyl sulfate-polyacrilamide gel electrophoresis of labeled human, rat, and rabbit lung membranes revealed major 125I-VIP-receptor complexes of: Mr = 65,000, 56,000, and 64,000 daltons, respectively. Guinea pig lung membranes exhibited two 125I-VIP-receptor complexes of Mr = 66,000 and 60,000 daltons. This labeling pattern probably reflects the presence of differentially glycosylated forms of the same receptor since treatment with neuroaminidase resulted in a single homogeneous band (Mr = 57,000 daltons). Soluble covalently labeled VIP receptors from guinea pig and human lung bound to and were specifically eluted from agarose-linked wheat germ agglutinin columns. Our studies indicate that mammalian lung VIP receptors are glycoproteins containing terminal sialic acid residues.  相似文献   

7.
Vasoactive intestinal peptide (VIP) receptors were solubilized from porcine liver membranes using CHAPS. The binding of 125I-VIP to solubilized receptors was reversible, saturable and specific. Scatchard analysis indicated the presence of one binding site with a Kd of 6.5 +/- 0.3 nM and a Bmax of 1.20 +/- 0.15 pmol/mg protein. Solubilized and membrane-bound receptors displayed the same pharmacological profile since VIP and VIP-related peptides inhibited 125I-VIP binding to both receptor preparations with the same rank order of potency e.g. VIP greater than helodermin greater than rat GRF greater than rat PHI greater than secretin greater than human GRF. GTP inhibited 125I-VIP binding to membrane-bound receptors but not to solubilized receptors supporting functional uncoupling of VIP receptor and G protein during solubilization. Affinity labeling of solubilized and membrane-bound VIP receptors with 125I-VIP revealed the presence of a single molecular component with Mr 55,000 in both cases. It is concluded that VIP receptors from porcine liver can be solubilized with a good yield, in a GTP-insentive, G protein-free form. This represents a major advance towards the purification of VIP receptors.  相似文献   

8.
The cleavable cross-linking reagent dithiobis (succinimidyl propionate) or DTSP was shown to link 125I-labeled vasoactive intestinal peptide (125I-VIP) covalently to its receptors in rat intestinal epithelial membranes. DTSP treatment of 125I-VIP-labeled membranes inhibited the dissociation of VIP-receptor complexes in a way which was dependent on both time and concentration (ED50 = 200 microM). Polyacrylamide gel electrophoresis of membrane proteins revealed three 125I-VIP-protein complexes of Mr 76 000, 36 000 and 17 000. The labeling of those compounds was not observed when: (a) treatment of membranes by DTSP was omitted; (b) the reagent quench, ammonium acetate, was added together with DTSP; (c) DTSP-treated membranes were incubated with 2-mercaptoethanol which reduces the disulfide bond present within DTSP. Labeling of Mr-76 000 and Mr-36 000 complexes was specific in that it could be abolished by native VIP, while the labeling of the Mr-17 000 was not. Densitometric scanning of autoradiographs indicated that: (a) labeling of the Mr-76 000 complex was abolished by low VIP concentrations (0.03--10 nM), by VIP agonists with the relative potency VIP greater than a peptide having N-terminal histidine and C-terminal isoleucine amide greater than secretin, and by GTP (10(-5)--1 mM) but was unaffected by various other peptide hormones; (b) labeling of the Mr-36 000 complex was inhibited by high VIP concentrations (1--300 nM), by VIP agonists at high concentrations but was not affected by GTP and various peptide hormones. Assuming one molecule of 125I-VIP was bound per molecule of protein, two proteins with Mr-73 000 and 33 000 were identified as VIP binding sites. The Mr-73 000 protein displays many characteristics (affinity, specificity, discriminating power toward agonists, sensitivity to GTP regulation) of the high-affinity VIP receptors mediating adenylate cyclase activation. The Mr-33 000 protein displays the characteristics (affinity, specificity) of a low-affinity VIP binding site. This study thus shows the molecular characteristics of the VIP receptor and further argues for the molecular heterogeneity of VIP binding sites.  相似文献   

9.
[125I]Monoiodinated vasoactive intestinal peptide (125I-VIP) was cross-linked with human colonic adenocarcinoma cells (HT29 cells) grown as a monolayer using dithiobis(succinimidylpropionate) as cross-linking reagent. The cross-linked polypeptides were separated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. A major polypeptide of Mr = 67 000 was characterized and it behaved like a high-affinity binding site for VIP according to the following data. The concentration of native VIP (0.5 nM) giving half-maximum inhibition of 125I-VIP covalent cross-linking with this polypeptide was very similar to that giving half-maximum displacement of 125I-VIP on HT 29 cells (0.6 nM). Glucagon or insulin was unable to inhibit the labelling of the Mr-67 000 component. In our experimental conditions neither specific 125I-VIP binding nor covalent labelling was observed with monolayers of Madin Darby canine kidney epithelial cells (MDCK cells) or African green monkey kidney fibroblasts (Vero cells) while the Mr-67 000 polypeptide was also characterized with human rectal adenocarcinoma cells (HRT 18 cells), known to possess the VIP receptor. Preincubation of HT 29 cells with native VIP at 37 degrees C, before 125I-VIP binding and subsequent cross-linking reaction, decreased the labelling of the Mr-67 000 polypeptide up to 80%. Assuming one molecule of 125I-VIP cross-linked per polypeptide, we have characterized, for the first time, a major polypeptide of Mr = 64 000, which belongs to the high-affinity VIP binding site of an intestinal human cell line.  相似文献   

10.
We have characterized vasoactive intestinal peptide (VIP) receptor/G-protein coupling in rat alveolar macrophage (AM) membranes and find that pertussis toxin treatment and antisera against G(alphai3) and G(alphas) reduce high-affinity (125)I-VIP binding, indicating that both G(alphas) and G(alphai3) couple to the VIP-receptor. The predominant VIP-receptor subtype in AM is VPAC(1) and we examined the G-protein interactions of the human VPAC(1) that had been transfected into HEK293 cells. VPAC(1) has a molecular mass of 56 kDa; GTP analogs reduced (125)I-VIP binding to this protein demonstrating that high-affinity binding of VIP to the receptor requires coupling to G-protein. Functional VIP/VPAC(1)/G-protein complexes were captured by covalent cross-linking and analyzed by Western blotting. The transfected human VPAC(1) receptor in HEK293 was found to be coupled to G(alphas) but not G(alphai) or G(alphaq). Furthermore, pertussis toxin treatment had no effect on VPAC(1)/G-protein coupling in these cells. These observations suggest that the G-proteins activated by VPAC(1) may be dependent upon species and cell type.  相似文献   

11.
Endocytosis of vasoactive intestinal peptide (VIP) and of transferrin (Tf) was comparatively studied in human cancerous colonic HT-29 cells. Cellular depletion in potassium inhibits the internalization of VIP (23%) and to a greater extent (42%) that of Tf. This indicates that clathrin-coated pits are also involved, at least in part, in VIP uptake. The distribution of 125I-Tf- or 125I-VIP-containing vesicles in sucrose gradients revealed low and high density vesicle subpopulations. The low density vesicle subpopulation represented a transient compartment from which incoming vesicles containing N-leucyl-beta naphthylamidase were recycled back to the membrane while those containing beta-hexosaminidase (HA) and ligand were mostly transferred into the high density compartment. Subsequent fusion of the latter with heavy vesicles was demonstrated by the shift of HA and ligand with vesicles that had been prelabeled with horseradish peroxidase (HRP). Simultaneous internalization of Tf-HRP and 125I-VIP showed that both the low and high density vesicle subpopulations comprised of two types of VIP-containing vesicle, as confirmed by the density shift reaction: two-thirds of VIP shifted with the Tf-HRP-containing vesicles to denser fractions and the remaining was found with unshifted vesicles. These findings indicate that the VIP-receptor complex processing in HT-29 cells follows two routes, the major route being common with Tf endocytosis.  相似文献   

12.
In human antral membranes, VIP and its natural analogs inhibited the binding of HPLC-purified 125I-VIP, according to the following order of potency: VIP greater than rh GRF greater than helodermin greater than r PHI greater than PHM greater than p PHI greater than hp GRF greater than h, p secretin. No specific binding was detected in plasma membranes purified from the human fundus. In human antral membranes, Scatchard plots were compatible with the existence of two classes of VIP receptors, the first class with high affinity and low binding capacity (Kd = 0.1 nM, Bmax = 10 fmol/mg protein) and another class with a low affinity and higher binding capacity (Kd = 12) nM, Bmax = 1,000 fmol/mg protein). The structure of the VIP receptor in purified plasma membranes prepared from human antral glands and from the HGT-1 human gastric cancer cells was subsequently probed using the cross-linking reagent DSP and 125I-VIP. In agreement with the pharmacological study and the Scatchard analysis of the binding data, SDS gel electrophoresis of the solubilized receptor identified two radiolabeled peptides Mr 67,000 and 34,000 containing disulfide bonds. According to its sensitivity to low doses of VIP and to GTP, the Mr 67,000 binding site represents the membrane domains involved in the physiologial regulation of adenylate cyclase by VIP in normal and transformed human gastric epithelia.  相似文献   

13.
125I-labeled vasoactive intestinal polypeptide (125I-VIP) was covalently cross-linked with its binding sites on intact cultured human lymphoblasts by each of three bifunctional reagents: disuccinimidyl suberate (DSS), ethylene glycol bis(succinimidyl succinate) (EGS), and N-succinimidyl 6-(4'-azido-2'-nitrophenylamino) hexanoate (SANAH). A fourth cross-linking agent with a shorter chain length, N-hydroxysuccinimidyl 4-azidobenzoate (HSAB), was much less effective in cross-linking 125I-VIP to the site. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography demonstrated a band of Mr approximately equal to 50,000 +/- 3,000, regardless of which cross-linker was used. The labeling of this band was specific in that it was prevented by 10(-6) M unlabeled VIP and was partially blocked by the homologous hormones secretin and glucagon. The relative potencies of these peptides in blocking the cross-linking of 125I-VIP to the Mr approximately equal to 50,000 band of the lymphoblasts (VIP greater than secretin greater than or equal to glucagon) were similar to those previously found for competitive inhibition of 125I-VIP binding to its putative high-affinity receptor on these cells. The covalent cross-linking required a bifunctional reagent; it was dependent on both the number of Molt cells and the concentration of 125I-VIP. The apparent molecular weight of the cross-linked species was unchanged by treatment with dithiothreitol. These observations suggest that the Mr = 50,000 species represents 125I-VIP cross-linked to a specific plasma membrane receptor and that the receptor does not contain interchain disulfide bonds.  相似文献   

14.
The non-ionic detergent n-octyl-beta-D-glucopyranoside was used to solubilize the VIP (vasoactive intestinal peptide) receptor from human colonic adenocarcinoma cell line HT29-D4. The binding of monoiodinated 125I-VIP to the solubilized receptor was specific, time-dependent, and reversible. Scatchard analysis of data obtained from competitive displacement of monoiodinated 125I-VIP by native VIP suggested the presence of two classes of VIP binding sites with Kd values of 0.32 and 46.7 nM. The binding capacities of these two classes were 1.7 x 10(10) and 30.2 x 10(10) sites/mg of proteins, respectively. The solubilized receptor retained the specificity of the human VIP receptor towards the peptides of the VIP/secretin/glucagon family. The order of potency in inhibiting monoiodinated 125I-VIP binding was VIP (IC50 = 1.0 x 10(-9) M) much greater than peptide histidine methionine amide (IC50 = 10(-7) M) greater than growth hormone-releasing factor (IC50 = 3 x 10(-7) M) greater than secretin (IC50 greater than 10(-6) M); glucagon had no effect on VIP binding. The reducing agent dithiothreitol inhibited in a dose-dependent manner the binding of 125I-VIP. Covalent cross-linking experiments between the solubilized receptor and 125I-VIP showed that after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography two major and one minor polypeptides of Mr 67,000, 72,000, and 83,000 were specifically labeled. When analyzed by gel filtration, the n-octyl-beta-D-glucopyranoside-solubilized 125I-VIP-receptor complex was resolved into two major peaks with molecular mass in the range of 60-70 and 270-300 kDa. Thus, the soluble form of the VIP receptor was probably a multimeric complex in which disulfide bonds may play an important role to hold the receptor in an active configuration.  相似文献   

15.
The purpose of this work was to solubilize vasoactive intestinal peptide (VIP) receptors from rat small intestinal plasma membranes and to analyze the nature and function of its molecular form(s) in a nondenaturing environment. Membranes were incubated with 3 nM 125I-VIP, washed, and treated with 1% Triton X-100. Chromatography on Sephadex G-50 showed that 60% of the extractable radioactivity was eluted with macromolecular components in the void volume. This radioactive material was dramatically reduced when 1 microM unlabeled VIP was present in the incubation medium or when membranes were pretreated with trypsin or dithiothreitol. Macromolecular components that had bound 125I-VIP were further chromatographed on Sephacryl S-300. Two peaks were observed: a major one (80%) and a minor one (20%) with Stokes radii of 5.2 and 3.1 nm, respectively. The labeling of both components was inhibited by unlabeled VIP or peptide with NH2-terminal histidine and COOH-terminal isoleucine amide (a VIP agonist). The presence of GTP (0.1 mM) in the incubation medium of membranes completely abolished the labeling of the 5.2-nm component but did not affect that of the 3.1-nm one. Moreover, GTP induced dissociation of 125I-VIP from the 5.2-nm component isolated by Sephacryl S-300 chromatography. This effect was time dependent and nucleotide specific. In contrast, GTP did not affect the stability of the 3.1-nm component. After cholera toxin catalyzed [32P]ADP-ribosylation of membranes, chromatography of solubilized material on Sephacryl S-300 showed that a peak of 32P radioactivity was coeluted with the 5.2-nm component.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
125I-GIP binds reversibly to a high affinity binding site in crude plasma membranes prepared from a hamster pancreatic beta cell tumor. The treatment of labeled membranes with the cross-linker dithiobis (succinimidylpropionate) prevents, to a greater extent, the rapid dissociation of 125I-GIP-membrane complexes which is observed when 10(-6) M native GIP is added. Polyacrylamide gel electrophoresis of membrane proteins reveals a major 125I-GIP-protein complex of Mr 64,000. This labeling decreases when increasing concentrations (10(-9) -10(-6)M) of native GIP are added but is not altered by other peptide hormones (tested at 10(-6)M) including glucagon, VIP and insulin. The Mr 64,000 complex is not observed in tissues which have no specific binding sites for GIP such as intestinal epithelium. Assuming one molecule of 125I-GIP is bound per molecule of protein, one protein with Mr 59,000 is identified as the specific GIP binding site.  相似文献   

17.
Vasoactive intestinal peptide (VIP) receptors have been identified in CNS by their chemical specificity and molecular size. Using synaptosomes isolated from rat cerebral cortex, it was shown that central VIP receptors discriminated among natural and synthetic VIP-related peptides, because half-maximal inhibition of [125I]VIP binding to synaptosomes was obtained for 0.6 nM VIP, 9 nM peptide histidine isoleucineamide (PHI), 50 nM VIP 2-28, 70 nM secretin, 100 nM rat growth hormone-releasing factor (GRF), and 350 nM human GRF. Other peptides of the VIP family, such as glucagon and gastric inhibitory polypeptide, did not interact with cortical VIP receptors. The molecular components of VIP receptors in rat cerebral cortex were identified after [125I]VIP cross-linking to synaptosomes using the cross-linker dithiobis(succinimidyl propionate). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of synaptosomal proteins revealed two major [125I]VIP-protein complexes of Mr 49,000 and 18,000. The labeling of the Mr 49,000 component was specific, because it was abolished by native VIP, whereas the labeling of the Mr 18,000 component was not. Natural VIP agonists reduced the labeling of the Mr 49,000 component with the following order of potency: VIP greater than PHI greater than secretin approximately equal to rat GRF. In contrast, glucagon and octapeptide of cholecystokinin were without effect, a result indicating its peptide specificity. Densitometric scanning of autoradiographs showed that the labeling of the Mr 49,000 component was inhibited by low VIP concentrations between 10(-10) and 10(-6) M (IC50 = 0.8 nM), a result indicating the component's high affinity for VIP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Vasoactive intestinal peptide (VIP) receptors were solubilized from porcine liver membrane using the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid. The solubilized VIP receptor has been purified approximately 50,000-fold to apparent homogeneity by a one-step affinity chromatography using a newly designed VIP-polyacrylamide resin. The purified receptor bound 125I-VIP with a Kd of 22.3 +/- 0.7 nM and retained its peptide specificity toward VIP-related peptides. The specific activity of the purified receptor (16,400 pmol/mg of protein) was very close to the theoretical value (18,900 pmol/mg of protein) calculated assuming one binding site/protein. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of purified receptor revealed a single band with an Mr of 53,000 after either silver staining or radioiodination. Affinity labeling of the purified receptor with 125I-VIP using dithiobis(succinimidyl propionate) gave a single radioactive band, the labeling of which was completely inhibited by an excess of unlabeled VIP. In conclusion, an Mr 53,000 protein containing the VIP-binding site was purified to homogeneity by a one-step affinity chromatography using immobilized VIP.  相似文献   

19.
Apamin is a neurotoxic octadecapeptide from bee venom, which has been shown to inhibit the non-adrenergic, non-cholinergic inhibitory innervation of the smooth muscle of the gut. Since vasoactive intestinal polypeptide (VIP) has been proposed as a possible inhibitory neurotransmitter, the effect of apamin on the receptor binding of 125I-VIP was studied using the following assays: (1) isolated synaptosomes from rat cerebral cortex, (2) crude plasma membranes from hog uterine smooth muscle, and (3) purified plasma membranes and isolated hepatocytes from hog liver. Apamin inhibited the receptor-bound 125I-VIP on membranes from brain or myometrium, although the binding affinity was 100-1000 times lower than for VIP. The displacement curves for VIP and apamin were parallel suggesting that apamin interacts with both the low and high affinity VIP receptors. In membranes and cells from liver, apamin was unable to displace receptor-bound 125I-VIP in concentrations up to 50 mumol/l. The findings suggest that the VIP receptors in liver are different from those in the brain cortex and myometrium.  相似文献   

20.
The properties of the specific receptors for vasoactive intestinal peptide (VIP) in rat liver plasma membranes have been studied by using 125I-VIP as a tracer. The binding of the peptide was a reversible, saturable and specific process, as well as time and temperature dependent. Peptide inactivation was also dependent on time and temperature and remained relatively low in the standard conditions used, as it happened in the inactivation of the binding sites. The binding data were compatible with the existence of two classes of VIP receptors: a high affinity (Kd = 4.2 x 10(-10) M) and low binding capacity (1.5 pmol VIP/mg protein) class and another one of low affinity (Kd = 1.7 x 10(-7) M) and high binding capacity (38.6 pmol VIP/mg protein). The specificity of the binding sites of VIP was established from the fact that binding of 125I-VIP was inhibited by native VIP and by 60-fold higher concentrations of secretin but not by the parent hormone glucagon, by insulin or somatostatin at concentrations as high as 10(-6) M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号