首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Candida methylica (cm) recombinant wild type formate dehydrogenase (FDH) gene has been cloned into the pQE-2 TAGZyme expression vector and the 6xHis-tagged FDH gene has been overexpressed in JM105 cells to purify the FDH protein more efficiently, by the use of exopeptidases, TAGZyme Purification System, which has allowed the complete removal of the small N-terminal His-tag. After the purification procedure, 1.2 mg/mL cmFDH protein of >95% purity was obtained. The kinetic parameters of cmFDH have been determined by observing the oxidation of the nicotinamide coenzyme at 340 nm. The results have also been compared to the yield of standard vs. affinity purification of FDH.  相似文献   

2.
Phosphorylation of formate dehydrogenase in potato tuber mitochondria   总被引:3,自引:0,他引:3  
Two highly phosphorylated proteins were detected after two-dimensional (blue native/SDS-PAGE) gel electrophoretic separation of the matrix fraction isolated from potato tuber mitochondria. These two phosphoproteins were identified by mass spectrometry as formate dehydrogenase (FDH) and the E1alpha-subunit of pyruvate dehydrogenase (PDH). Isoelectric focusing/SDS-PAGE two-dimensional gels separated FDH and PDH and resolved several different phosphorylated forms of FDH. By using combinations of matrix-assisted laser desorption/ionization mass spectrometry and electrospray ionization tandem mass spectrometry, several phosphorylation sites were identified for the first time in FDH and PDH. FDH was phosphorylated on Thr76 and Thr333, whereas PDH was phosphorylated on Ser294. Both Thr76 and Thr333 in FDH were accessible to protein kinases, as demonstrated by protein structure homology modeling. The extent of phosphorylation of both FDH and PDH was strongly decreased by NAD+, formate, and pyruvate, indicating that reversible phosphorylation of FDH and PDHs was regulated in a similar fashion. At low oxygen concentrations inside the intact potato tubers, FDH activity was strongly increased relative to cytochrome c oxidase activity pointing to a possible involvement of FDH in hypoxic metabolism. Computational sequence analysis indicated that a conserved local sequence motif of pyruvate formate-lyase is found in the Arabidopsis thaliana genome, and this enzyme might be the source of formate for FDH in plants.  相似文献   

3.
The three-dimensional structures of NAD-dependent D-lactate dehydrogenase (D-LDH) and formate dehydrogenase (FDH), which resemble each other, imply that the two enzymes commonly employ certain main chain atoms, which are located on corresponding loop structures in the active sites of the two enzymes, for their respective catalytic functions. These active site loops adopt different conformations in the two enzymes, a difference likely attributable to hydrogen bonds with Asn97 and Glu141, which are also located at equivalent positions in D-LDH and FDH, respectively. X-ray crystallography at 2.4-A resolution revealed that replacement of Asn97 with Asp did not markedly change the overall protein structure but markedly perturbed the conformation of the active site loop in Lactobacillus pentosus D-LDH. The Asn97-->Asp mutant D-LDH exhibited virtually the same k(cat), but about 70-fold higher K(M) value for pyruvate than the wild-type enzyme. For Paracoccus sp. 12-A FDH, in contrast, replacement of Glu141 with Gln and Asn induced only 5.5- and 4.3-fold increases in the K(M) value, but 110 and 590-fold decreases in the k(cat) values for formate, respectively. Furthermore, these mutant FDHs, particularly the Glu141-->Asn enzyme, exhibited markedly enhanced catalytic activity for glyoxylate reduction, indicating that FDH is converted to a 2-hydroxy-acid dehydrogenase on the replacement of Glu141. These results indicate that the active site loops play different roles in the catalytic reactions of D-LDH and FDH, stabilization of substrate binding and promotion of hydrogen transfer, respectively, and that Asn97 and Glu141, which stabilize suitable loop conformations, are essential elements for proper loop functioning.  相似文献   

4.
An homology model of Candida methylica formate dehydrogenase (cmFDH) was constructed based on the Pseudomonas sp. 101 formate dehydrogenase (psFDH) structure. An aspartic acid residue in the model was predicted to interact with the adenine ribose of the NAD cofactor, in common with many NAD-dependent oxoreductases. Replacement of this aspartic acid residue by serine in cmFDH removed the absolute requirement for NAD over NADP shown by the wild type enzyme. Taken with similar results shown by d- and l-lactate dehydrogenases, this suggests that an aspartic acid in this position is a major determinant of coenzyme specificity in NAD/NADP-dependent dehydrogenases.  相似文献   

5.
The structural gene (FDH1) coding for NAD(+)-dependent formate dehydrogenase (FDH) was cloned from a genomic library of Candida boidinii, and the FDH1 gene was disrupted in the C. boidinii genome (fdh1 delta) by one-step gene disruption. In a batch culture experiment, although the fdh1 delta strain was still able to grow on methanol, its growth was greatly inhibited and a toxic level of formate was detected in the medium. In a methanol-limited chemostat culture at a low dilution rate (0.03 to 0.05 h[-1]), formate was not detected in the culture medium of the fdh1 delta strain; however, the fdh1 delta strain showed only one-fourth of the growth yield of the wild-type strain. Expression of FDH1 was found to be induced by choline or methylamine (used as a nitrogen source), as well as by methanol (used as a carbon source). Induction of FDH1 was not repressed in the presence of glucose when cells were grown on methylamine, choline, or formate, and expression of FDH1 was shown to be regulated at the mRNA level. Growth on methylamine or choline as a nitrogen source in a batch culture was compared between the wild type and the fdh1 delta mutant. Although the growth of the fdh1 delta mutant was impaired and the level of formate was higher in the fdh1 delta mutant than in the wild-type strain, the growth defect caused by FDH1 gene disruption was small and less severe than that caused by growth on methanol. As judged from these results, the main physiological role of FDH with all of the FDH1-inducing growth substrates seems to be detoxification of formate, and during growth on methanol, FDH seems to contribute significantly to the energy yield.  相似文献   

6.
Featuring unique planar structure, large surface area and biocompatibility, graphene oxide (GO) has been widely taken as an ideal scaffold for the immobilization of various enzymes. In this regard, nickel‐coordinated graphene oxide composites (GO‐Ni) were prepared as novel supporters for the immobilization of formate dehydrogenase. The catalytic activity, stability and morphology were studied. Compared with GO, the enzyme loading capacity of GO‐Ni was enhanced by 5.2‐fold, besides the immobilized enzyme GO‐Ni‐FDH exhibited better thermostability, storage stability and reuse stability than GO‐FDH. GO‐Ni‐FDH retained 40.9% of its initial activity after 3 h at 60°C, and retained 31.4% of its initial relative activity after 20 days’ storage at 4°C. After eight times usages, GO‐Ni‐FDH maintained 63.8% of its initial activity. Mechanism insights of the multiple interactions of enzyme with the GO‐Ni were studied, considering coordination bonds, hydrogen bonds, electrostatic forces, coordination bonds, and etc. A practical and simple immobilization strategy by metal ions coordination for multimeric dehydrogenase was developed.  相似文献   

7.
A mutant of Methylobacterium extorquens AM1 with lesions in genes for three formate dehydrogenase (FDH) enzymes was previously described by us (L. Chistoserdova, M. Laukel, J.-C. Portais, J. A. Vorholt, and M. E. Lidstrom, J. Bacteriol. 186:22-28, 2004). This mutant had lost its ability to grow on formate but still maintained the ability to grow on methanol. In this work, we further investigated the phenotype of this mutant. Nuclear magnetic resonance experiments with [13C]formate, as well as 14C-labeling experiments, demonstrated production of labeled CO2 in the mutant, pointing to the presence of an additional enzyme or a pathway for formate oxidation. The tungsten-sensitive phenotype of the mutant suggested the involvement of a molybdenum-dependent enzyme. Whole-genome array experiments were conducted to test for genes overexpressed in the triple-FDH mutant compared to the wild type, and a gene (fdh4A) was identified whose translated product carried similarity to an uncharacterized putative molybdopterin-binding oxidoreductase-like protein sharing relatively low similarity with known formate dehydrogenase alpha subunits. Mutation of this gene in the triple-FDH mutant background resulted in a methanol-negative phenotype. When the gene was deleted in the wild-type background, the mutant revealed diminished growth on methanol with accumulation of high levels of formate in the medium, pointing to an important role of FDH4 in methanol metabolism. The identity of FDH4 as a novel FDH was also confirmed by labeling experiments that revealed strongly reduced CO2 formation in growing cultures. Mutation of a small open reading frame (fdh4B) downstream of fdh4A resulted in mutant phenotypes similar to the phenotypes of fdh4A mutants, suggesting that fdh4B is also involved in formate oxidation.  相似文献   

8.
Rhizobium japonicum CJ1 was capable of growing using formate as the sole source of carbon and energy. During aerobic growth on formate a cytoplasmic NAD+-dependent formate dehydrogenase and ribulose bisphosphate carboxylase activity was demonstrated in cell-free extracts, but hydrogenase enzyme activity could not be detected. Under microaerobic growth conditions either formate or hydrogen metabolism could separately or together support ribulose bisphosphate carboxylase-dependent CO2 fixation. A number of R. japonicum strains defective in hydrogen uptake activity were shown to metabolise formate and induce ribulose bisphosphate carboxylase activity. The induction and regulation of ribulose bisphosphate carboxylase is discussed.Abbreviations hup hydrogen uptake - MOPS 3-(N-morpholino)-propanesulphonate - TSA tryptone soya agar - RuBP ribulose 1,5-bisphosphate - FDH formate dehydrogenase  相似文献   

9.
Summary A genetical study of mutants of Salmonella typhimurium deficient in formate dehydrogenase activity was performed. The affected gene was designated fdh A and mapped at 116 min, the order of genes in that region being xyl-fdh A-mtl-cys E.Abbreviations FHL formate hydrogenylase - FDH (PMS) formate dehydrogenase (phenazine methosulfate) - FDH (BV) formate dehydrogenase (benzyl viologen) - HYD hydrogenase - NR nitrate-reductase - TTR tetrathionate-reductase  相似文献   

10.
The potential role played by formate dehydrogenase (FDH) in formate metabolism has been examined by the overexpression of FDH in Arabidopsis thaliana. Three independent transgenic lines were selected and shown to produce elevated amounts of FDH protein with a corresponding elevated FDH activity (2.5-5 fold) over wild-type (WT) plants. Under normal growth conditions, no altered phenotype was observed in these transgenic plants; in growth media supplied with formate, however, significant differences in shoot and root growth, compared to that of WT plants, were observed. WT plants were severely injured if grown in the presence of 16 mmol/L formate, while the transgenic plants were able to grow well. Formate delayed germination of both WT and transgenic seeds at concentrations above 4 mmol/L, but both types of seeds were eventually able to complete more than 95 % germination even at 32 mmol/L formate. Formate markedly inhibited primary root elongation, and its inhibitory action on WT was much stronger than on transgenic plants. Different formate salts affected root elongation similarly, indicating that the formate ion was the major factor inhibiting root growth. Sodium acetate (NaAc), an analogue of formate, also inhibited root elongation, but its action on WT and transgenic plants was the same, indicating that tolerance of transgenic plants to formate toxicity was specific. Transgenic plants showed no significant tolerance to the toxicity of two other one-carbon metabolites, methanol and formaldehyde. A role for FDH in detoxifying formate is proposed.  相似文献   

11.
12.
NAD-Dependent formate dehydrogenase (FDH) has been isolated from methylotrophyc strain Bacterium sp 1 by (NH4)2SO4 fractionation of cell extract, ion-exchange chromatography and preparative isotachophoresis. Preparation of FDH is homogeneous in analytical polyacrylamide gel electrophoresis and under ultracentrifugation. Sedimentation coefficient of FDH is 4.9S. Mikhaelis constants are 1.1-10(-4) M for NAD and 1.5-10(-2) M for formate. In the absence of sulfhydril compounds FDH is unstable, but it is stable in the presence of mercaptoethanol or ditiotreitol.  相似文献   

13.
Formate dehydrogenase ( FDH ) from Clostridium thermoaceticum is a known tungsten enzyme. FDH was tested for the presence of nitrogenase-type cofactor and nitrate reductase-type cofactor by the Azotobacter vinelandii UW-45 and Neurospora crassa nit-1 reconstitution assays, respectively. Tungsten formate dehydrogenase (W- FDH ), containing only a small Mo impurity, activated the nit-1 nitrate reductase extracts when molybdate was also added, but not when tungstate was added. These results show W- FDH contains the cofactor common to all known Mo-enzymes except nitrogenase. The difference between the redox chemistries of W- FDH and W-substituted sulfite oxidase appears to relate to differences in tungsten ligation other than that donated by the cofactor or to variations in the protein environment surrounding the tungsten active site.  相似文献   

14.
Pyruvate was produced from glucose by Escherichia coli BW25113 that contained formate dehydrogenase (FDH) from Mycobacterium vaccae. In aerobic shake-flask culture (K (L) a?=?4.9?min(-1)), the recombinant strain produced 6.7?g pyruvate?l(-1) after 24?h with 4?g sodium formate?l(-1) and a yield of 0.34?g pyruvate?g?glucose(-1). These values were higher than those of the original strain (0.2?g?l(-1) pyruvate and 0.02?g pyruvate?g?glucose(-1)). Based on the reaction mechanism of FDH, the introduction of FDH into E. coli enhances the accumulation of pyruvate by the regeneration of NADH from NAD(+) since NAD(+) is a shared cosubstrate with the pyruvate dehydrogenase complex, which decarboxylates pyruvate to acetyl-CoA and CO(2). The oxygenation level was enough high to inactivate lactate dehydrogenase, which was of benefit to pyruvate accumulation without lactate as a by-product.  相似文献   

15.
甲醛脱氢酶(formaldehyde dehydrogenase,ADH)与甲酸脱氢酶(formate dehydrogenase,FDH)是甲醛氧化途径的两个关键酶.恶臭假单胞菌(Pseudomonas putida)的PADH是一种不依赖谷胱甘肽可以把游离甲醛直接氧化为甲酸的脱氢酶,博伊丁假丝酵母菌(Candida boidinii)的FDH在有NAD+存在时可以把甲酸氧化为二氧化碳.以基因组DNA为模板用PCR方法,从P.putida中扩增出PADH基因的编码区(padh),从C.boidinii中扩增出FDH的编码区(fdh),然后亚克隆到pET-28a(+)中分别构建这两个基因的原核表达载体pET-28a-padh和pET-28a-fdh,转化大肠杆菌,利用IPTG诱导重组蛋白PADH和FDH的表达.通过优化条件使重组蛋白的表达量占菌体总蛋白的70%以上,通过亲和层析法纯化出可溶性PADH和FDH重组蛋白.对重组蛋白的生化特性分析结果表明:PADH在最适反应温度50℃的活性为1.95 U/mg;FDH在最适反应温度40℃的活性为0.376 U/mg.所表达的重组蛋白与之前报道过的相比,具有更好的热稳定性和更广的温度适应范围.将PADH、FDH两个重组蛋白及辅因子NAD+固定到聚丙烯酰胺载体基质上,对固定化酶甲醛吸收效果的初步分析结果显示固定化酶对空气中的甲醛有一定的吸收效果,说明这两种酶被固定后具有开发成治理甲醛污染环保产品的潜力.  相似文献   

16.
Serine (Ser) biosynthesis in C(3) plants can occur via several pathways. One major route involves the tetrahydrofolate (THF)-dependent activities of the glycine decarboxylase complex (GDC, EC 2.1.1.10) and serine hydroxymethyltransferase (SHMT, EC 2.1.2.1) with glycine (Gly) as one-carbon (1-C) source. An alternative THF-dependent pathway involves the C1-THF synthase/SHMT activities with formate as 1-C source. Here, we have investigated aspects of the regulation of these two folate-mediated pathways in Arabidopsis thaliana (L.) Heynh. Columbia using two approaches. Firstly, transgenic plants overexpressing formate dehydrogenase (FDH, EC 1.2.1.2) were used to continue our previous studies on the function of FDH in formate metabolism. The formate pool size was approximately 73 nmol (g FW)(-1) in wild type (WT) Arabidopsis plants; three independent transgenic lines had similar-sized pools of formate. Transgenic plants produced more (13)CO(2) from supplied [(13)C]formate than did WT plants but were not significantly different from WT plants in their synthesis of Ser. We concluded that FDH has no direct role in the regulation of the above two pathways of Ser synthesis; the breakdown of formate to CO(2) by the FDH reaction is the primary and preferred fate of the organic acid in Arabidopsis. The ratio between the GDC/SHMT and C1-THF synthase/SHMT pathways of Ser synthesis from [alpha-(13)C]Gly and [(13)C]formate, respectively, in Arabidopsis shoots was 21 : 1; in roots, 9 : 1. In shoots, therefore, the pathway from formate plays only a small role in Ser synthesis; in the case of roots, results indicated that the 9 : 1 ratio was as a result of greater fluxes of (13)C through both pathways together with a relatively higher contribution from the C1-THF synthase/SHMT route than in shoots. We also examined the synthesis of Ser in a GDC-deficient mutant of Arabidopsis (glyD) where the GDC/SHMT pathway was impaired. Compared with WT, glyD plants accumulated 5-fold more Gly than WT after supplying [alpha-(13)C]Gly for 24 h; the accumulation of Ser from [alpha-(13)C]Gly was reduced by 25% in the same time period. On the other hand, the accumulation of Ser through the C1-THF synthase/SHMT pathway in glyD plants was 2.5-fold greater than that in WT plants. Our experiments confirmed that the GDC/SHMT and C1-THF synthase/SHMT pathways normally operate independently in Arabidopsis plants but that when the primary GDC/SHMT pathway is impaired the alternative C1-THF synthase/SHMT pathway can partially compensate for deficiencies in the synthesis of Ser.  相似文献   

17.
An air-stable formate dehydrogenase (FDH), an enzyme that catalyzes the oxidation of formate to carbon dioxide, was purified from the sulfate reducing organism Desulfovibrio gigas (D. gigas) NCIB 9332. D. gigas FDH is a heterodimeric protein [alpha (92 kDa) and beta (29 kDa) subunits] and contains 7 +/- 1 Fe/protein and 0.9 +/- 0.1 W/protein. Selenium was not detected. The UV/visible absorption spectrum of D. gigas FDH is typical of an iron-sulfur protein. Analysis of pterin nucleotides yielded a content of 1.3 +/- 0.1 guanine monophosphate/mol of enzyme, which suggests a tungsten coordination with two molybdopterin guanine dinucleotide cofactors. Both M?ssbauer spectroscopy performed on D. gigas FDH grown in a medium enriched with (57)Fe and EPR studies performed in the native and fully reduced state of the protein confirmed the presence of two [4Fe-4S] clusters. Variable-temperature EPR studies showed the presence of two signals compatible with an atom in a d(1) configuration albeit with an unusual relaxation behavior as compared to the one generally observed for W(V) ions.  相似文献   

18.
Crude extracts of Clostridium thermoaceticum DSM 521 contain various AMAPORs (artificial mediator accepting pyridine nucleotide oxidoreductases). The specific activities of this mixture of AMAPORs is about 8-9 U mg-1 protein (µmoles mg-1 min-1) for NADPH and 3-4 U mg-1 protein for NADH formation with reduced methylviologen (MV++) as electron donor. These AMAPOR-activities are only slightly oxygen sensitive. The reoxidation of NADPH and NADH with carboxamido-methylviologen is catalysed by crude extracts with 2.0 and 1.6 U mg-1 protein, respectively. The same crude extracts also catalyse the dehydrogenation of reduced pyridine nucleotides with suitable quinones such as anthraquinone-2,6-disulphonate. The reduced quinone can be reoxidised by dioxygen.

The Km-values of these enzymes for the pyridine nucleotides and also for the artificial electron mediators are in a suitable range for preparative transformations.

Furthermore the crude extract of C. thermoaceticum contains about 2.5 U mg-1 protein of an NADP+-dependent formate dehydrogenase (FDH), which is suitable for NADPH and/or MV++ regeneration. The regeneration of MV++ with FDH and formate as electron donor proceeds with a specific activity of about 5 U mg-1 protein of the crude extract. The reduced viologen in turn reduces NAD(P)+ by AMAPOR. The formate dehydrogenase is sensitive to oxygen.

Examples of compounds which have been prepared by combination of AMAPORs or formate dehydrogenase with an oxidoreductase are: (S)-3-hydroxycarboxylates, esters of (S)-3-hydroxycarboxylates, (1R,2S)-1-hydroxypropane-tricarboxylate (Ds-(+)-isocitrate), Ls-(-)-isocitrate and 6-phosphogluconate.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号