首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
3.
Jarid2/Jumonji critically regulates developmental processes including cardiovascular development. Jarid2 knock-out mice exhibit cardiac defects including hypertrabeculation with noncompaction of the ventricular wall. However, molecular mechanisms underlying Jarid2-mediated cardiac development remain unknown. To determine the cardiac lineage-specific roles of Jarid2, we generated myocardial, epicardial, cardiac neural crest, or endothelial conditional Jarid2 knock-out mice using Cre-loxP technology. Only mice with an endothelial deletion of Jarid2 recapitulate phenotypic defects observed in whole body mutants including hypertrabeculation and noncompaction of the ventricle. To identify potential targets of Jarid2, combinatorial approaches using microarray and candidate gene analyses were employed on Jarid2 knock-out embryonic hearts. Whole body or endothelial deletion of Jarid2 leads to increased endocardial Notch1 expression in the developing ventricle, resulting in increased Notch1-dependent signaling to the adjacent myocardium. Using quantitative chromatin immunoprecipitation analysis, Jarid2 was found to occupy a specific region on the endogenous Notch1 locus. We propose that failure to properly regulate Notch signaling in Jarid2 mutants likely leads to the defects in the developing ventricular chamber. The identification of Jarid2 as a potential regulator of Notch1 signaling has broad implications for many cellular processes including development, stem cell maintenance, and tumor formation.  相似文献   

4.
《Cellular signalling》2014,26(12):3016-3026
Notch signaling pathway unravels a fundamental cellular communication system that plays an elemental role in development. It is evident from different studies that the outcome of Notch signaling depends on signal strength, timing, cell type, and cellular context. Since Notch signaling affects a spectrum of cellular activity at various developmental stages by reorganizing itself in more than one way to produce different intensities in the signaling output, it is important to understand the context dependent complexity of Notch signaling and different routes of its regulation. We identified, TRAF6 (Drosophila homolog of mammalian TRAF6) as an interacting partner of Notch intracellular domain (Notch-ICD). TRAF6 genetically interacts with Notch pathway components in trans-heterozygous combinations. Immunocytochemical analysis shows that TRAF6 co-localizes with Notch in Drosophila third instar larval tissues. Our genetic interaction data suggests that the loss-of-function of TRAF6 leads to the rescue of previously identified Kurtz–Deltex mediated wing notching phenotype and enhances Notch protein survival. Co-expression of TRAF6 and Deltex results in depletion of Notch in the larval wing discs and down-regulates Notch targets, Wingless and Cut. Taken together, our results suggest that TRAF6 may function as a negative regulator of Notch signaling.  相似文献   

5.
Despite a relatively simple core-signaling transduction machinery, Notch signaling controls cell differentiation in many different tissues and at multiple stages in a given cell lineage. To understand how Notch generates this multitude of cellular responses, it is important to learn how the Notch-signaling output is modulated at various levels. Pathway-intrinsic as well as pathway-extrinsic mechanisms, including cross-talk between Notch and other major signaling mechanisms, modulate Notch signaling, contributing to the versatile output. In this review, we discuss how Notch signaling is altered in tumors and illustrate the complexity in signaling pathway cross-talk with examples of how Notch synergizes with NF-kappaB signaling and the cellular response to lowered oxygen (hypoxia).  相似文献   

6.
Endometrial cancer is one of the most common gynecological malignancies in Japan, where the disease shows an increasing morbidity. However, surgical therapy remains the treatment of choice for endometrial cancers that tend to be insensitive to radiation therapy and chemotherapy. Therefore, novel therapeutic strategies are required. The Notch signaling pathway regulates embryogenesis and cellular development, but deregulated Notch signaling may contribute to tumorigenesis in several cancers. Moreover, γ-secretase inhibitors have been shown to be potent inhibitors of the Notch signaling pathway; they suppress cellular proliferation and induce apoptosis in several cancer cells. In the present study, we investigated the effect of N-[N-(3, 5-difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester (DAPT, γ-secretase inhibitor) on the cell proliferation and apoptosis in Ishikawa endometrial cancer cells. Real-time PCR detected mRNA derived from NOTCH1 and HES1, which are target genes of the Notch signaling pathway, in Ishikawa endometrial cancer cells. After blocking Notch signaling, cellular proliferation decreased, accompanied by increased expression of p21 mRNA and decreased expression of the cyclin A protein. Furthermore, blockade of Notch signaling induced apoptosis. These results suggest that the Notch signaling pathway may be involved in cell proliferation through cell cycle regulation and apoptosis in Ishikawa endometrial cancer cells. Inhibition of the Notch signaling pathway by γ-secretase inhibitors is expected to be a potential target of novel therapeutic strategies for endometrial cancer.  相似文献   

7.
8.
Genetic studies have implicated Notch signaling in the maintenance of pancreatic progenitors. However, how Notch signaling regulates the quiescent, proliferative or differentiation behaviors of pancreatic progenitors at the single-cell level remains unclear. Here, using single-cell genetic analyses and a new transgenic system that allows dynamic assessment of Notch signaling, we address how discrete levels of Notch signaling regulate the behavior of endocrine progenitors in the zebrafish intrapancreatic duct. We find that these progenitors experience different levels of Notch signaling, which in turn regulate distinct cellular outcomes. High levels of Notch signaling induce quiescence, whereas lower levels promote progenitor amplification. The sustained downregulation of Notch signaling triggers a multistep process that includes cell cycle entry and progenitor amplification prior to endocrine differentiation. Importantly, progenitor amplification and differentiation can be uncoupled by modulating the duration and/or extent of Notch signaling downregulation, indicating that these processes are triggered by distinct levels of Notch signaling. These data show that different levels of Notch signaling drive distinct behaviors in a progenitor population.  相似文献   

9.
Notch signaling pathway regulates a wide variety of cellular processes during development and it also plays a crucial role in human diseases. This important link is firmly established in cancer, since a rare T-ALL-associated genetic lesion has been initially reported to result in deletion of Notch1 ectodomain and constitutive activation of its intracellular region. Interestingly, the cellular response to Notch signaling can be extremely variable depending on the cell type and activation context. Notch signaling triggers signals implicated in promoting carcinogenesis and autoimmune diseases, whereas it can also sustain responses that are critical to suppress carcinogenesis and to negatively regulate immune response. However, Notch signaling induces all these effects via an apparently simple signal transduction pathway, diversified into a complex network along evolution from Drosophila to mammals. Indeed, an explanation of this paradox comes from a number of evidences accumulated during the last few years, which dissected the intrinsic canonical and non-canonical components of the Notch pathway as well as several modulatory extrinsic signaling events. The identification of these signals has shed light onto the mechanisms whereby Notch and other pathways collaborate to induce a particular cellular phenotype. In this article, we review the role of Notch signaling in cells as diverse as T lymphocytes and epithelial cells of the epidermis, with the main focus on understanding the mechanisms of Notch versatility.  相似文献   

10.
11.
Notch signaling: simplicity in design, versatility in function   总被引:1,自引:0,他引:1  
Notch signaling is evolutionarily conserved and operates in many cell types and at various stages during development. Notch signaling must therefore be able to generate appropriate signaling outputs in a variety of cellular contexts. This need for versatility in Notch signaling is in apparent contrast to the simple molecular design of the core pathway. Here, we review recent studies in nematodes, Drosophila and vertebrate systems that begin to shed light on how versatility in Notch signaling output is generated, how signal strength is modulated, and how cross-talk between the Notch pathway and other intracellular signaling systems, such as the Wnt, hypoxia and BMP pathways, contributes to signaling diversity.  相似文献   

12.
13.
14.
RUNX3 takes a strong suppressive effect in many tumors including hepatocellular carcinoma (HCC). HES-1, a downstream target of Notch signaling, is shown to be decreased in human HCC cell line SMMC7721 with RUNX3 gene transfection. Since Notch signaling is oncogenic in HCC, RUNX3 might exert its inhibitory effect in HCC partly through the suppression on Notch signaling. To investigate the possible mechanism of the down-regulation of HES-1 by RUNX3, we performed Western blot and reporter assay and found that RUNX3 suppressed intracellular domain of Notch1 (ICN1)-mediated transactivation of Notch signaling while it did not alter the expression of ICN1 and recombination signal binding protein-Jκ (RBP-J) in SMMC7721 cells. Besides, confocal microscopy, co-immunoprecipitation and GST pull-down assays showed that RUNX3 could co-localize with ICN1 and RBP-J, forming a complex with these two molecules in nucleus of SMMC7721 cells by its direct interaction with ICN1. Furthermore, RUNX3 was recruited to RBP-J recognition motif of HES-1 promoter, which was identified by chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA). Taken together, these findings indicate that RUNX3 suppresses Notch signaling in HCC SMMC7721 cells by its interaction with ICN1 and thus recruitment to the RBP-J recognition motif of downstream genes of Notch signaling.  相似文献   

15.
The Notch signaling pathway plays a crucial role in specifying cellular fates by interaction between cellular neighbors; however, the molecular mechanism underlying smooth muscle cell (SMC) differentiation by Notch signaling has not been well characterized. Here we demonstrate that Jagged1-Notch signaling promotes SMC differentiation from mesenchymal cells. Overexpression of the Notch intracellular domain, an activated form of Notch, up-regulates the expression of multiple SMC marker genes including SMC-myosin heavy chain (Sm-mhc) in mesenchymal 10T1/2 cells, but not in non-mesenchymal cells. Physiological Notch stimulation by its ligand Jagged1, but not Dll4, directly induces Sm-mhc expression in 10T1/2 cells without de novo protein synthesis, indicative of a ligand-selective effect. Jagged1-induced expression of SM-MHC was blocked bygamma-secretase inhibitor, N-(N-(3,5-difluorophenyl)-l-alanyl)-S-phenylglycine t-butyl ester, which impedes Notch signaling. Using Rbp-jkappa-deficient cells and site-specific mutagenesis of the SM-MHC gene, we show that such an induction is independent of the myocardin-serum response factor-CArG complex, but absolutely dependent on RBP-Jkappa, a major mediator of Notch signaling, and its cognate binding sequence. Of importance, Notch signaling and myocardin synergistically activate SM-MHC gene expression. Taken together, these data suggest that the Jagged1-Notch pathway constitutes an instructive signal for SMC differentiation through an RBP-Jkappa-dependent mechanism and augments gene expression mediated by the myocardin-SRF-CArG complex. Given that Notch pathway components are expressed in vascular SMC during normal development and disease, Notch signaling is likely to play a pivotal role in such situations to modulate the vascular smooth muscle cell phenotype.  相似文献   

16.
17.
Regulation of Notch signaling is critical to development and maintenance of most eukaryotic organisms. The Notch receptors and ligands are integral membrane proteins and direct cell-cell interactions are needed to activate signaling. Ligand-expressing cells activate Notch signaling through an unusual mechanism involving Notch proteolysis to release the intracellular domain from the membrane, allowing the Notch receptor to function directly as the downstream signal transducer. In the absence of ligand, the Notch receptor is maintained in an autoinhibited, protease resistant state. Genetic studies suggest that Notch ligands require ubiquitylation, epsin endocytic adaptors and dynamin-dependent endocytosis for signaling activity. Here we discuss potential models and supporting evidence to account for the absolute requirement for ligand endocytosis to activate signaling in Notch cells. Specifically, we focus on a role for ligand-mediated endocytic force to unfold Notch, override the autoinhibited state, and activate proteolysis to direct Notch-specific cellular responses.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号