首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytoplasmic Ca2+ is a major regulator of exocytosis in secretory cells; however, the Ca(2+)-dependent mechanisms that trigger secretion have not been elucidated. Protein kinase C (PKC) has been proposed to be an important Ca(2+)-dependent component of this regulation; however, the effects of this enzyme on the exocytotic apparatus have not been identified. We developed a PKC-deficient, semi-intact PC12 cell system in which direct stimulatory effects of purified PKC on Ca(2+)-dependent norepinephrine secretion were studied. The reconstitution of optimal Ca(2+)-activated norepinephrine secretion by semi-intact PC12 cells required the addition of MgATP and cytosolic proteins. PKC-deficient cytosol exhibited reduced reconstituting activity that was fully restored by the addition of purified PKC. The restoration of Ca(2+)-dependent norepinephrine secretion by PKC required the presence of other proteins in the cytosol, in particular, a high molecular weight protein. The high molecular weight protein was identified as p145, a recently characterized 145-kDa brain protein. The addition of PKC enhanced phosphorylation of p145 under conditions of fully reconstituted Ca(2+)-activated norepinephrine secretion. The results indicate that 1) PKC is neither necessary nor sufficient for Ca(2+)-activated secretion, whereas other cytosolic proteins are required; and 2) the stimulation of Ca(2+)-activated secretion by PKC is dependent upon cytosolic proteins such as p145 and may be largely mediated through the phosphorylation of p145.  相似文献   

2.
Permeabilized adrenal chromaffin cells secrete catecholamines by exocytosis in response to micromolar calcium concentrations. Recently, we have demonstrated that chromaffin cells permeabilized with digitonin progressively lose their capacity to secrete due to the release of certain cytosolic proteins essential for exocytosis (Sarafian T., D. Aunis, and M. F. Bader. 1987. J. Biol. Chem. 34:16671-16676). Here we show that one of the released proteins is calpactin I, a calcium-dependent phospholipid-binding protein known to promote in vitro aggregation of chromaffin granules at physiological micromolar calcium levels. The addition of calpactin I into digitonin- or streptolysin-O-permeabilized chromaffin cells with reduced secretory capacity as a result of the leakage of cytosolic proteins partially restores the calcium-dependent secretory activity. This effect is specific of calpactin I since other annexins (p32, p37, p67) do not stimulate secretion at similar or higher concentrations. Calpactin I requires the presence of Mg-ATP, suggesting that a phosphorylating step may regulate the activity of calpactin. Calpactin is unable to restore the secretory activity in cells which have completely lost their cytosolic protein kinase C or in cells having their protein kinase C inhibited by sphingosine or downregulated by long-term incubation with TPA. In contrast, calpactin I prephosphorylated in vitro by purified protein kinase C is able to reconstitute secretion in cells depleted of their protein kinase C activity. This stimulatory effect is also observed with thiophosphorylated calpactin I which is resistant to cellular phosphatases or with phosphorylated calpactin I introduced into cells in the presence of microcystin, a phosphatase inhibitor. These results suggest that calpactin I is involved in the exocytotic machinery by a mechanism which requires phosphorylation by protein kinase C.  相似文献   

3.
The biochemical events and components responsible for ATP-dependent Ca(2+)-activated secretion remain to be identified. To simplify the molecular dissection of regulated secretion, we have resolved norepinephrine (NE) secretion from semi-intact PC12 cells into two kinetically distinct stages, each of which was studied separately to discern its molecular requirements. The first stage consisted of MgATP-dependent priming of the secretory apparatus in the absence of Ca2+. MgATP-dependent priming was readily reversible and inhibited by a broad range of protein kinase inhibitors. The second stage consisted of Ca(2+)-triggered exocytosis which, in contrast to priming, occurred in the absence of MgATP. Both priming and triggering were found to be dependent upon or stimulated by cytosolic proteins. The priming and triggering activities of cytosol were functionally distinct as indicated by differing thermolability. Furthermore, active components in cytosol resolved by gel filtration were found to support either priming or triggering, but not both. For both priming and triggering reactions, several peaks of activity were detected; one of each type of factor was partially purified from rat brain cytosol, and found to be enriched for stage-specific activity. Two partially purified factors exhibiting stage-specific activity, a approximately 20-kD priming factor and approximately 300-kD triggering factor, were able to support regulated secretion as effectively as crude cytosol when used sequentially in the partial reactions. Further characterization of stage-specific cytosolic factors should clarify the nature of MgATP- and Ca(2+)-dependent events in the regulated secretory pathway.  相似文献   

4.
Ca2+ is a major regulator of exocytosis in secretory cells, however, the biochemical mechanisms underlying regulation remain to be identified. To render the secretory apparatus accessible for biochemical studies, we have developed a cell permeabilization method (cell cracking) which utilizes mechanical shear. GH3 pituitary cells subjected to cracking were permeable to macromolecules but retained a normal cytoplasmic ultrastructure including secretory granules. Incubation of the permeable cells at 30-37 degrees C with 0.1-1.0 microM Ca2+ and millimolar MgATP resulted in the release of the secretory proteins, prolactin (PRL) and a proteoglycan, but not lysosomal enzymes. Extensively washed permeable cells were incapable of releasing PRL in response to Ca2+ and MgATP addition. However, addition of cytosol was found to restore Ca2+-activated, MgATP-dependent PRL release. The cytosolic factor responsible for activity was thermolabile and protease sensitive. The protein was partially purified, and its molecular mass was estimated to be equivalent to that of a globular protein of 200-350 kDa by molecular sieve chromatography. Inhibitors of calmodulin or protein kinase C (trifluroperazine, calmidazolium, H-7) failed to inhibit Ca2+-activated PRL release, and the required cytosolic protein could not be replaced by purified calmodulin, calmodulin-dependent protein kinase II, protein kinase C, or calpactin I. Further purification and characterization of the cytosolic protein should reveal the nature of biochemical events involved in regulated secretory exocytosis.  相似文献   

5.
Calcium sensors in regulated exocytosis   总被引:8,自引:0,他引:8  
Burgoyne RD  Morgan A 《Cell calcium》1998,24(5-6):367-376
Neurotransmitter release, hormone secretion and a variety of other secretory process are tightly regulated with exocytotic fusion of secretory vesicles being triggered by a rise in cytosolic Ca2+ concentration. A series of proteins that act as part of a conserved core machinery for vesicle docking and fusion throughout the cell have been identified. In regulated exocytosis this core machinery must be controlled by Ca(2+)-sensor proteins that allow rapid activation of the fusion process following elevation of cytosolic Ca2+ concentration. The properties of such Ca2+ sensors are known from physiological studies but their molecular identity remains to be unequivocally established. The multiple Ca(2+)-dependent steps in the exocytotic pathway suggest the likely involvement of several Ca(2+)-binding proteins with distinct properties. Functional evidence for the role of various Ca(2+)-binding proteins and their possible sites of action is accumulating but a definitive identification of the major Ca(2+)-sensor in the final step of Ca(2+)-triggered membrane fusion in different cell types awaits further analysis.  相似文献   

6.
Lactating mammary epithelial cells secrete high levels of caseins and other milk proteins. The extent to which protein secretion from these cells occurs in a regulated fashion was examined in experiments on secretory acini isolated from the mammary glands of lactating mice at 10 d postpartum. Protein synthesis and secretion were assayed by following the incorporation or release, respectively, of [35S]methionine-labeled TCA-precipitable protein. The isolated cells incorporated [35S]methionine into protein linearly for at least 5 h with no discernible lag period. In contrast, protein secretion was only detectable after a lag of approximately 1 h, consistent with exocytotic secretion of proteins immediately after passage through the secretory pathway and package into secretory vesicles. The extent of protein secretion was unaffected by the phorbol ester PMA, 8-bromo-cAMP, or 8-bromo-cGMP but was doubled by the Ca2+ ionophore ionomycin. In a pulse-label protocol in which proteins were prelabeled for 1 h before a chase period, constitutive secretion was unaffected by depletion of cytosolic Ca2+ but ionomycin was found to give a twofold stimulation of the secretion of presynthesized protein in a Ca(2+)-dependent manner. Ionomycin was still able to stimulate protein secretion after constitutive secretion had terminated. These results suggest that lactating mammary cells possess both a Ca(2+)-independent constitutive pathway and a Ca(2+)-activated regulatory pathway for protein secretion. The same proteins were secreted by both pathways. No ultrastructural evidence for apocrine secretion was seen in response to ionomycin and so it appears that regulated casein release involves exocytosis. Ionomycin was unlikely to be acting by disassembling the cortical actin network since cytochalasin D did not mimic its effects on secretion. The regulated pathway may be controlled by Ca2+ acting at a late step such as exocytotic membrane fusion.  相似文献   

7.
J H Walent  B W Porter  T F Martin 《Cell》1992,70(5):765-775
The regulated secretory pathway is activated by elevated cytoplasmic Ca2+; however, the components mediating Ca2+ regulation have not been identified. In semi-intact neuroendocrine cells, Ca(2+)-activated secretion is ATP- and cytosol protein-dependent. We have identified a novel brain protein, p145, as a cytosolic factor that reconstitutes Ca(2+)-activated secretion in two neuroendocrine cell types. The protein is a dimer of 145 kd subunits, exhibits Ca(2+)-dependent interaction with a hydrophobic matrix, and binds phospholipid vesicles, suggesting a membrane-associated function. A p145-specific antibody inhibits the reconstitution of Ca(2+)-activated secretion by cytosol, indicating an essential role for p145. The restricted expression of p145 in tissues exhibiting a regulated secretory pathway suggests a key role for this protein in the transduction of Ca2+ signals into vectorial membrane fusion events.  相似文献   

8.
CRHSP-28 is a Ca(2+)-regulated heat-stable phosphoprotein, abundant in the apical cytoplasm of epithelial cells that are specialized in exocrine protein secretion. To define a functional role for the protein in pancreatic secretion, recombinant CRHSP-28 (rCRHSP-28) was introduced into streptolysin-O-permeabilized acinar cells, and amylase secretion in response to elevated Ca(2+) was determined. Secretion was enhanced markedly by rCRHSP-28 over a time course that closely corresponded with the loss of the native protein from the intracellular compartment. No effects of rCRHSP-28 were detected until approximately 50% of the native protein was lost from the cytosol. Secretion was enhanced by rCRHSP-28 over a physiological range of Ca(2+) concentrations with 2-3-fold increases in amylase release occurring in response to low micromolar levels of free Ca(2+). Further, rCRHSP-28 augmented secretion in a concentration-dependent manner with minimal and maximal effects occurring at 1 and 25 microg/ml, respectively. Covalent cross-linking experiments demonstrated that native CRHSP-28 was present in a 60-kDa complex in cytosolic fractions and in a high molecular mass complex in particulate fractions, consistent with the slow leak rate of the protein from streptolysin-O-permeabilized cells. Probing acinar lysates with rCRHSP-28 in a gel-overlay assay identified two CRHSP-28-binding proteins of 35 (pp35) and 70 kDa (pp70). Interestingly, preparation of lysates in the presence of 1 mm Ca(2+) resulted in a marked redistribution of both proteins from a cytosolic to a Triton X-100-insoluble fraction, suggesting a Ca(2+)-sensitive interaction of these proteins with the acinar cell cytoskeleton. In agreement with our previous study immunohistochemically localizing CRHSP-28 around secretory granules in acinar cells, gel-overlay analysis revealed pp70 copurified with acinar cell secretory granule membranes. These findings demonstrate an important cell physiological function for CRHSP-28 in the Ca(2+)-regulated secretory pathway of acinar cells.  相似文献   

9.
Guanosine triphosphate (GTP) has been implicated in the regulation of Ca(2+)-mediated secretion from neutrophils. We further examined the role of GTP in neutrophil secretion using streptolysin O permeabilized cells. We found that, in the presence of GTP, 1.0 microM free Ca(2+) causes maximum secretion-equivalent to that achieved with 100 microM free Ca(2+)-whereas GTPgammaS inhibits Ca(2+)-stimulated secretion. Interestingly, GTP by itself stimulates secretion. These results indicate the existence of a GTP-regulated mechanism of secretion in neutrophils that requires GTP hydrolysis to stimulate secretion in the presence and absence of Ca(2+). The stimulatory effect of GTP is only observed when GTP is present during permeabilization. Addition of GTP after permeabilization, when the cytosolic contents have leaked out from cells, gives no stimulatory response, implying that the GTP-dependent secretory apparatus requires at least one cytosolic protein. GTP-dependent secretion can be reconstituted with crude HL-60 and bovine liver cytosol. The reconstituting activity binds to GTP-agarose, suggesting that the cytosolic factor is a GTP-binding protein or forms a complex with a GTP-binding protein. However, it is not a member of the rho or rac families of GTPases. By gel filtration chromatography, the secretion-reconstituting activity eluted at 870 and 200 kDa, but in the presence of GTP, eluted at 120 kDa, indicating that it is part of a high-molecular-weight complex that dissociates in the presence of GTP. Retention of adenosine diphosphate-ribosylation factor (ARF) in permeabilized cells and insensitivity of the cytosolic reconstituting activity to brefeldin A led to our speculation that ARF6 may be the GTPase involved in GTP-dependent secretion, and that activity from a BFA-insensitive ARF6 guanine nucleotide exchange factor reconstitutes secretion.  相似文献   

10.
Proteomic analysis of calcium-dependent secretion in Toxoplasma gondii   总被引:3,自引:0,他引:3  
Kawase O  Nishikawa Y  Bannai H  Zhang H  Zhang G  Jin S  Lee EG  Xuan X 《Proteomics》2007,7(20):3718-3725
Toxoplasma gondii is an intracellular protozoan parasite that invades a wide range of nucleated cells. In the course of intracellular parasitism, the parasite releases a large variety of proteins from three secretory organelles, namely, micronemes, rhoptries and dense granules. Elevation of intracellular Ca(2+) in the parasite causes microneme discharge, and microneme secretion is essential for the invasion. In this study, we performed a proteomic analysis of the Ca(2+)-dependent secretion to evaluate the protein repertoire. We found that Ca(2+)-mobilising agents, such as thapsigargin, NH(4)Cl, ethanol and a Ca(2+) ionophore, A23187, promoted the secretion of the parasite proteins. The proteins, artificially secreted by A23187, were used in a comparative proteomic analysis by 2-DE followed by PMF analysis and/or N-terminal sequencing. Major known microneme proteins (MICs), such as MIC2, MIC4, MIC6 and MIC10 and apical membrane antigen 1 (AMA1), were identified, indicating that the proteomic analysis worked accurately. Interestingly, new members of secretory proteins, namely rhoptry protein 9 (ROP9) and Toxoplasma SPATR (TgSPATR), which was a homologue of a Plasmodium secreted protein with an altered thrombospondin repeat (SPATR), were detected in Ca(2+)-dependent secretion. Thus, we succeeded in detecting Ca(2+)-dependent secretory proteins in T. gondii, which contained novel secretory proteins.  相似文献   

11.
Astrocytes do not merely serve as the supporting cast and scenery against which starring roles would be played by neurons. Rather, these glial cells are intimately involved in many of the brain's functions by responding to neuronal activity and modulating it. Such interplay between two principle neural cells, neurons and astrocytes, is evidenced in bi-directional glutamatergic astrocyte-neuron signaling. A key feature in this signaling pathway is astrocytic excitability based on variations of cytosolic Ca(2+). It enables astrocytes, through the activation of their glutamatergic receptors, to respond to the same signal used by nearby neurons in synaptic transmission. Furthermore, increases in cytosolic Ca(2+) in astrocytes can subsequently lead to Ca(2+)-dependent exocytotic secretion of gliotransmitter glutamate that in turn can signal to adjacent neurons. Astrocytic secretory machinery includes an assortment of exocytotic proteins which governs a merger of secretory vesicles to the plasma membrane. A cumulative knowledge on astrocytic excitability will aid better understanding of operating procedures in the brain in health and disease.  相似文献   

12.
The secretion of neurotransmitters is a rapid Ca(2+)-regulated process that brings about vesicle fusion with the plasma membrane. This rapid process (< 100 microseconds) involves multiple proteins located at the plasma and vesicular membranes. Because of their homology to proteins participating in constitutive secretion and protein trafficking, they have been characterized extensively. The sequential events that lead these proteins to vesicle docking and fusion are still unclear. We will review recent studies that demonstrate the operative role played by voltage-sensitive Ca(2+) channels and discuss the relevance for the process of evoked transmitter release. The regulation of Ca(2+) influx by syntaxin, synaptosome-associated protein of 25 kDa (SNAP-25) and synaptotagmin, and the reciprocity of these proteins in controlling the kinetic properties of the channel will be discussed. Calcium channel and synaptic proteins expressed in Xenopus oocytes demonstrate a strong functional interaction, which could be pertinent to the mechanism of secretion. First, the voltage-sensitive Ca(2+) channels are negatively modulated by syntaxin: this inhibition is reversed by synaptotagmin. Second, the modulation of N-type Ca(2+) channel activation kinetics strongly suggests that the vesicle could be docked at the plasma membrane through direct interaction with synaptotagmin. Finally, these interactions provide evidence for the assembly of the voltage-sensitive Ca(2+) channel with syntaxin 1A, SNAP-25 and synaptotagmin into an excitosome complex: a putative fusion complex with a potential role in the final stages of secretion. Studies suggest that cross-talk between the synaptic proteins and the channel in a tightly organized complex may enable a rapid secretory response to an incoming signal such as membrane depolarization.  相似文献   

13.
Elevations in intracellular Ca(2+) ([Ca(2+)](i)) initiate insulin secretion from pancreatic beta-cells, but the secretory responses become rapidly desensitised to maintained elevations in [Ca(2+)](i). We have investigated the mechanisms underlying the Ca(2+) desensitization of insulin secretion using electrically permeabilized rat islets of Langerhans. Measurements of Ca(2+)/calmodulin-dependent protein kinase II (CaMK II) enzyme activity and immunoreactivity in permeabilized islets demonstrated Ca(2+)-induced reductions in enzyme activity which could not be attributed to reductions in CaMK II immunoreactive protein. Measurements in intact islets demonstrated that the Ca(2+)-induced reduction of CaMK II activity was also operative in intact cells, suggesting that this mechanism may have pathophysiological implications for beta-cell function.  相似文献   

14.
In an attempt to identify proteins involved in the secretory response, bovine chromaffin cells were modified with N-ethylmaleimide (NEM). NEM concentrations less than 30 microM enhanced norepinephrine secretion evoked by nicotine or by K+ depolarization and increased Ca(2+)-dependent secretion from digitonin-permeabilized cells. Higher concentrations of NEM inhibited secretion. The protein modified by NEM which was responsible for the enhancement of secretory activity appeared to rapidly diffuse out of the digitonin-permeabilized cells. When proteins which diffuse from control digitonin-permeabilized cells were incubated with pertussis toxin and [32P]NAD, several proteins were ADP-ribosylated. However, when proteins from cells preincubated with 30 microM NEM were incubated with pertussis toxin and [32P]NAD, these GTP-binding proteins (G-proteins) were not ADP-ribosylated, which suggests that they were modified in the cell by NEM. Stimulation of norepinephrine secretion by NEM was not additive with that caused by pertussis toxin. Modification of chromaffin cells with pertussis toxin or with 30 microM NEM caused a 40-50% decrease in the amount of cytoskeletal F-actin. This decrease in cytoskeletal F-actin may account for the increase in secretory activity.  相似文献   

15.
The relative importance of mitochondria, the Na(+)/Ca(2+) exchanger (NCX) and the endoplasmic reticulum (ER) in the regulation of the cytosolic Ca(2+) concentration ([Ca(2+)](i)) were examined in bovine chromaffin cells using fura-2 for average [Ca(2+)](i) and amperometry for secretory activity, which reflects the local Ca(2+) concentration near the exocytotic sites. Chromaffin cells were stimulated by a high concentration of K(+) when the three Ca(2+) removal mechanisms were individually or simultaneously inhibited. When the mitochondrial Ca(2+) uptake was inhibited, the [Ca(2+)](i) decayed at a significantly slower rate and the secretory activity was higher than the control cells. The NCX appears to function only in the initial phase of [Ca(2+)](i) decay and when the ER Ca(2+) pump is blocked. Similarly, the ER had a significant effect on the [Ca(2+)](i) decay and on the secretion only when the NCX was blocked. Inhibition of all three mechanisms leads to a substantial delay in [Ca(2+)](i) recovery and an increase in the secretion. The results suggest that the three mechanisms work together in the regulation of the Ca(2+) near the Ca(2+) channels and exocytotic sites and therefore modulate the secretory activity. When Ca(2+) diffuses away from the exocytotic sites, the mitochondrial Ca(2+) uptake becomes the dominant mechanism.  相似文献   

16.
Aberrant cytosolic Ca(2+) flux in pancreatic acinar cells is critical to the pathological pancreatic zymogen activation observed in acute pancreatitis, but the downstream effectors are not known. In this study, we examined the role of Ca(2+)-activated protein phosphatase 2B (or calcineurin) in zymogen activation. Isolated pancreatic acinar cells were stimulated with supraphysiological caerulein (100 nM) with or without the calcineurin inhibitors FK506 or cell-permeable calcineurin inhibitory peptide (CiP). Chymotrypsin activity was measured as a marker of zymogen activation, and the percent amylase secretion was used as a measure of enzyme secretion. Cytosolic Ca(2+) changes were recorded in acinar cells loaded with the intermediate Ca(2+)-affinity dye fluo-5F using a scanning confocal microscope. A 50% reduction in chymotrypsin activity was observed after pretreatment with 1 microM FK506 or 10 microM CiP. These pretreatments did not affect amylase secretion or the rise in cytosolic Ca(2+) after caerulein stimulation. These findings suggest that calcineurin mediates caerulein-induced intra-acinar zymogen activation but not enzyme secretion or the initial caerulein-induced cytosolic Ca(2+) signal.  相似文献   

17.
Exogenous activators of protein kinase C such as PMA in combination with a Ca2+ ionophore (A23187), cause secretion in rat basophilic (RBL-2H3) cells,but they do so through stimulatory signals that are not the same as those generated by Ag or oligomers of IgE. On the one hand, the synergy between PMA and A23187 and the suppression of Ag-mediated signals (hydrolysis of inositol phospholipids and rise in concentration of cytosolic Ca2+) by PMA were totally dependent on protein kinase C. The loss of synergistic and inhibitory actions of PMA, for example, correlated with the loss of protein kinase C (as determined by immunoblotting techniques) when cells were continuously exposed to PMA. Furthermore, the permeabilization of RBL-2H3 cells resulted in the loss of both protein kinase C and the inhibitory action of PMA, but both were retained if cells were exposed to PMA before permeabilization Ag-induced secretion, on the other hand, was not as dependent on the presence of protein kinase C. The potent inhibitor of this enzyme, staurosporine, which blocked completely the secretory response to the combination of PMA and A23187, did not inhibit Ag-induced secretion except at concentrations (greater than 10 nM) that inhibited Ag-stimulated hydrolysis of inositol phospholipids as well. Also RBL-2H3 cells still showed some secretory-response (approximately 25% of normal) to Ag when cells were depleted (greater than 98%) of protein kinase C by prolonged treatment with PMA. Previous studies have indicated that the secretory response to PMA and A23187 is much lower than that elicited by Ag when the concentrations of stimulants were matched to give the same increase in concentrations of cytosolic Ca2+.  相似文献   

18.
Mitochondrial Ca(2+) signals have been proposed to accelerate oxidative metabolism and ATP production to match Ca(2+)-activated energy-consuming processes. Efforts to understand the signaling role of mitochondrial Ca(2+) have been hampered by the inability to manipulate matrix Ca(2+) without directly altering cytosolic Ca(2+). We were able to selectively buffer mitochondrial Ca(2+) rises by targeting the Ca(2+)-binding protein S100G to the matrix. We find that matrix Ca(2+) controls signal-dependent NAD(P)H formation, respiration, and ATP changes in intact cells. Furthermore, we demonstrate that matrix Ca(2+) increases are necessary for the amplification of sustained glucose-dependent insulin secretion in β cells. Through the regulation of NAD(P)H in adrenal glomerulosa cells, matrix Ca(2+) also acts as a positive signal in reductive biosynthesis, which stimulates aldosterone secretion. Our dissection of cytosolic and mitochondrial Ca(2+) signals reveals the physiological importance of matrix Ca(2+) in energy metabolism required for signal-dependent hormone secretion.  相似文献   

19.
There is evidence showing that at fertilization the sperm introduces into egg cytoplasm a protein-based cytosolic factor, which serves as the physiological trigger for inducing Ca(2+) oscillations in mammalian eggs. Here we show that sperm of nonmammalian vertebrates also contain a cytosolic protein factor that can induce Ca(2+) oscillations when introduced into mammalian eggs. We have observed that cytosolic extracts derived from Xenopus or chicken sperm could induce mouse eggs to undergo Ca(2+) oscillations similar to those induced by bovine sperm extracts. The factor responsible for inducing Ca(2+) oscillations was of high molecular weight and heat- or proteinase K-labile. We show that 0.5 chicken sperm-equivalents or 1-2 Xenopus sperm-equivalents of the extracts had enough activity to trigger Ca(2+) oscillations in mouse eggs. Our findings illustrate that although Xenopus, chicken, and mammals are evolutionarily divergent species, the function of the sperm protein factor in triggering Ca(2+) oscillations in mammalian eggs appears not to be species specific in vertebrates.  相似文献   

20.
Exposure of chromaffin cells to digitonin causes the loss of many cytosolic proteins. Here we report that scinderin (a Ca(2+)-dependent actin-filament-severing protein), but not gelsolin, is among the proteins that leak out from digitonin-permeabilized cells. Chromaffin cells that were exposed to increasing concentrations (15-40 microM) of digitonin for 5 min released scinderin into the medium. One-minute treatment with 20 microM digitonin was enough to detect scinderin in the medium, and scinderin leakage levelled off after 10 min of permeabilization. Elevation of free Ca2+ concentration in the permeabilizing medium produced a dose-dependent retention of scinderin. Results were confirmed by immunofluorescence microscopy of digitonin-permeabilized cells. Subcellular fractionation of permeabilized cells showed that scinderin leakage was mainly from the cytoplasm (80%); the remaining scinderin (20%) was from the microsomal fraction. Other Ca(2+)-binding proteins released by digitonin and also retained by Ca2+ were calmodulin, protein kinase C, and calcineurins A and B. Scinderin leakage was parallel to the loss of the chromaffin cell secretory response. Permeabilization in the presence of increasing free Ca2+ concentrations produced a concomitant enhancement in the subsequent Ca(2+)-dependent catecholamine release. The experiments suggest that: (1) scinderin is an intracellular target for Ca2+, (2) permeabilization of chromaffin cells with digitonin in the presence of micromolar Ca2+ concentrations retained Ca(2+)-binding proteins including scinderin, and (3) the retention of these proteins may be related to the increase in the subsequent Ca(2+)-dependent catecholamine release observed in permeabilized chromaffin cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号