共查询到20条相似文献,搜索用时 0 毫秒
1.
Evanko DS Thiyagarajan MM Wedegaertner PB 《The Journal of biological chemistry》2000,275(2):1327-1336
Peripheral membrane proteins utilize a variety of mechanisms to attach tightly, and often reversibly, to cellular membranes. The covalent lipid modifications, myristoylation and palmitoylation, are critical for plasma membrane localization of heterotrimeric G protein alpha subunits. For alpha(s) and alpha(q), two subunits that are palmitoylated but not myristoylated, we examined the importance of interacting with the G protein betagamma dimer for their proper plasma membrane localization and palmitoylation. Conserved alpha subunit N-terminal amino acids predicted to mediate binding to betagamma were mutated to create a series of betagamma binding region mutants expressed in HEK293 cells. These alpha(s) and alpha(q) mutants were found in soluble rather than particulate fractions, and they no longer localized to plasma membranes as demonstrated by immunofluorescence microscopy. The mutations also inhibited incorporation of radiolabeled palmitate into the proteins and abrogated their signaling ability. Additional alpha(q) mutants, which contain these mutations but are modified by both myristate and palmitate, retained their localization to plasma membranes and ability to undergo palmitoylation. These findings identify binding to betagamma as a critical membrane attachment signal for alpha(s) and alpha(q) and as a prerequisite for their palmitoylation, while myristoylation can restore membrane localization and palmitoylation of betagamma binding-deficient alpha(q) subunits. 相似文献
2.
Ergosterol is required for targeting of tryptophan permease to the yeast plasma membrane 总被引:13,自引:0,他引:13
It was known that the uptake of tryptophan is reduced in the yeast erg6 mutant, which is defective in a late step of ergosterol biosynthesis. Here, we show that this is because the high affinity tryptophan permease Tat2p is not targeted to the plasma membrane. In wild-type cells, the plasma membrane localization of Tat2p is regulated by the external tryptophan concentration. Tat2p is transported from the Golgi apparatus to the vacuole at high tryptophan, and to the plasma membrane at low tryptophan. However, in the erg6 mutant, Tat2p is missorted to the vacuole at low tryptophan. The plasma membrane targeting of Tat2p is dependent on detergent-insoluble membrane domains, suggesting that sterol affects the sorting through the organization of lipid rafts. The erg6 mutation also caused missorting to the multivesicular body pathway in late endosomes. Thus, sterol composition is crucial for protein sorting late in the secretory pathway. Tat2p is subject to polyubiquitination, which acts as a vacuolar-targeting signal, and the inhibition of this process suppresses the Tat2p sorting defects of the erg6 mutant. The sorting mechanisms of Tat2p that depend on both sterol and ubiquitin will be discussed. 相似文献
3.
Dual lipid modification of Arabidopsis Ggamma-subunits is required for efficient plasma membrane targeting
下载免费PDF全文

Posttranslational lipid modifications are important for proper localization of many proteins in eukaryotic cells. However, the functional interrelationships between lipid modification processes in plants remain unclear. Here we demonstrate that the two heterotrimeric G-protein gamma-subunits from Arabidopsis (Arabidopsis thaliana), AGG1 and AGG2, are prenylated, and AGG2 is S-acylated. In wild type, enhanced yellow fluorescent protein-fused AGG1 and AGG2 are associated with plasma membranes, with AGG1 associated with internal membranes as well. Both can be prenylated by either protein geranylgeranyltransferase I (PGGT-I) or protein farnesyltransferase (PFT). Their membrane localization is intact in mutants lacking PFT activity and largely intact in mutants lacking PGGT-I activity but is disrupted in mutants lacking both PFT and PGGT-I activity. Unlike in mammals, Arabidopsis Ggammas do not rely on functional Galpha for membrane targeting. Mutation of the sixth to last cysteine, the putative S-acylation acceptor site, causes a dramatic change in AGG2 but not AGG1 localization pattern, suggesting S-acylation serves as an important additional signal for AGG2 to be targeted to the plasma membrane. Domain-swapping experiments suggest that a short charged sequence at the AGG2 C terminus contributes to AGG2's efficient membrane targeting compared to AGG1. Our data show the large degree to which PFT and PGGT-I can compensate for each other in plants and suggest that differential lipid modification plays an important regulatory role in plant protein localization. 相似文献
4.
Cytochrome bc(1) complex (complex III) and cytochrome c oxidase complex (complex IV) are multisubunit homodimers that are essential components of the mitochondrial respiratory chain. Complexes III and IV associate to form a supercomplex that can be displayed using blue native polyacrylamide gel electrophoresis. Both homodimeric complexes contain tightly associated cardiolipin (CL) required for function. We report here that in a crd1Delta strain of yeast (null in expression of CL synthase) approximately 90% of complexes III and IV were observed as individual homodimers; only the supercomplex was observed with CRD1 wild type cells. Introduction of a plasmid born copy of the CRD1 gene under exogenous regulation by doxycycline made possible controlled variation in the in vivo CL levels. At an intermediate level of CL, a mixture of individual homodimers (30%) and supercomplex (70%) was observed. These results strongly indicate that CL plays a central role in higher order organization of components of the respiratory chain of mitochondria. 相似文献
5.
The clathrin-associated AP-2 adaptor protein is a major polyphosphoinositide-binding protein in mammalian cells. A high affinity binding site has previously been localized to the NH(2)-terminal region of the AP-2 alpha subunit (Gaidarov et al. 1996. J. Biol. Chem. 271:20922-20929). Here we used deletion and site- directed mutagenesis to determine that alpha residues 21-80 comprise a discrete folding and inositide-binding domain. Further, positively charged residues located within this region are involved in binding, with a lysine triad at positions 55-57 particularly critical. Mutant peptides and protein in which these residues were changed to glutamine retained wild-type structural and functional characteristics by several criteria including circular dichroism spectra, resistance to limited proteolysis, and clathrin binding activity. When expressed in intact cells, mutated alpha subunit showed defective localization to clathrin-coated pits; at high expression levels, the appearance of endogenous AP-2 in coated pits was also blocked consistent with a dominant-negative phenotype. These results, together with recent work indicating that phosphoinositides are also critical to ligand-dependent recruitment of arrestin-receptor complexes to coated pits (Gaidarov et al. 1999. EMBO (Eur. Mol. Biol. Organ.) J. 18:871-881), suggest that phosphoinositides play a critical and general role in adaptor incorporation into plasma membrane clathrin-coated pits. 相似文献
6.
Calpain is required for the rapid, calcium-dependent repair of wounded plasma membrane 总被引:1,自引:0,他引:1
Mammalian cells require extracellular calcium ion to undergo rapid plasma membrane repair seconds after mechanical damage. Utilizing transformed fibroblasts from calpain small subunit knock-out (Capns1-/-) mouse embryos, we now show that the heterodimeric, typical subclass of calpains is required for calcium-mediated survival after plasma membrane damage caused by scraping a cell monolayer. Survival of scrape-damaged Capns1-/- cells was unaffected by calcium in the scraping medium, whereas more Capns1+/+ cells survived when calcium was present. Calcium-mediated survival was increased when Capns1-/- cells were scraped in the presence of purified m- or mu-calpain. Survival rates of scraped Capns1+/+, HFL-1, or Chinese hamster ovary cells were decreased by the calpain inhibitor, calpeptin, or the highly specific calpain inhibitor protein, calpastatin. Capns1-/- cells failed to reseal following laser-induced membrane disruption, demonstrating that their decreased survival after scraping resulted, at least in part, from failed membrane repair. Proteomic and immunologic analyses demonstrated that the known calpain substrates talin and vimentin were exposed at the cell surface and processed by calpain following cell scraping. Autoproteolytic activation of calpain at the scrape site was evident at the earliest time point analyzed and appeared to precede proteolysis of talin and vimentin. The results indicate that conventional calpains are required for calcium-facilitated survival after plasma membrane damage and may act by localized remodeling of the cortical cytoskeleton at the injury site. 相似文献
7.
PHLPP1 (PH domain leucine-rich-repeats protein phosphatase) is a Ser/Thr protein phosphatase that acts as a tumour suppressor by negatively regulating Akt. Here, we show that PHLPP1 is recruited to the cell membrane by binding to a scaffolding protein: Scribble. Knockdown of Scribble (Scrib) results in redistribution of PHLPP1 from the membrane to the cytoplasm and an increase in Akt phosphorylation, whereas overexpression of Scrib has the opposite effect. Furthermore, PHLPP1-dependent inhibition of cell proliferation is facilitated by the formation of a Scrib, PHLPP1 and Akt trimeric complex. Thus, our findings identify a functional interaction between PHLPP1 and Scrib in negatively regulating Akt signalling. 相似文献
8.
High frequencies of gene targeting can be achieved by infection of mammalian cells with recombinant adeno-associated virus (rAAV) vectors [D. W. Russell and R. K. Hirata (1998) Nature Genet., 18, 325–330; D. W. Russell and R. K. Hirata (2000) J. Virol., 74, 4612–4620; R. Hirata et al. (2002) Nat. Biotechnol., 20, 735–738], but the mechanism of targeting is unclear and random integration often occurs in parallel. We assessed the role of specific DNA repair and recombination pathways in rAAV gene targeting by measuring correction of a mutated enhanced green fluorescent protein (EGFP) gene in cells where homologous recombination (HR) or non-homologous end-joining (NHEJ) had been suppressed by RNAi. EGFP-negative cells were transduced with rAAV vectors carrying a different inactivating deletion in the EGFP, and in parallel with rAAV vectors carrying red fluorescent protein (RFP). Expression of RFP accounted for viral transduction efficiency and long-term random integration. Approximately 0.02% of the infected GFP-negative cells were stably converted to GFP positive cells. Silencing of the essential NHEJ component DNA-PK had no significant effect on the frequency of targeting at any time point examined. Silencing of the SNF2/SWI2 family members RAD54L or RAD54B, which are important for HR, reduced the rate of stable rAAV gene targeting ~5-fold. Further, partial silencing of the Rad51 paralogue XRCC3 completely abolished stable long-term EGFP expression. These results show that rAAV gene targeting requires the Rad51/Rad54 pathway of HR. 相似文献
9.
C S Fishburn P Herzmark J Morales H R Bourne 《The Journal of biological chemistry》1999,274(26):18793-18800
The subcellular location of a signaling protein determines its ability to transmit messages accurately and efficiently. Three different lipid modifications tether heterotrimeric G proteins to membranes: alpha subunits are myristoylated and/or palmitoylated, and gamma subunits are prenylated. In a previous study, we examined the role of lipid modifications in maintaining the membrane attachment of a G protein alpha subunit, alphaz, which is myristoylated and palmitoylated (Morales, J., Fishburn, C. S., Wilson, P. T., and Bourne, H. R. (1998) Mol. Biol. Cell 9, 1-14). Now we extend this analysis by characterizing the mechanisms that target newly synthesized alphaz to the plasma membrane (PM) and analyze the role of lipid modifications in this process. In comparison with newly synthesized alphas, which is palmitoylated but not myristoylated, alphaz moves more rapidly to the membrane fraction following synthesis in the cytosol. Newly synthesized alphaz associates randomly with cellular membranes, but with time accumulates at the PM. Palmitoylated alphaz is present only in PM-enriched fractions, whereas a nonpalmitoylated mutant of alphaz (alphazC3A) associates less stably with the PM than does wild-type alphaz. Expression of a C-terminal fragment of the beta-adrenoreceptor kinase, which sequesters free betagamma, impairs association of both alphaz and alphazC3A with the PM, suggesting that the alpha subunit must bind betagamma in order to localize at the PM. Based on these findings, we propose a model in which, following synthesis on soluble ribosomes, myristoylated alphaz associates randomly and reversibly with membranes; upon association with the PM, alphaz binds betagamma, which promotes its palmitoylation, thus securing it in the proper place for transmitting the hormonal signal. 相似文献
10.
Zoher Kapacee Susan H Richardson Yinhui Lu Tobias Starborg David F Holmes Keith Baar Karl E Kadler 《Matrix biology》2008,27(4):371-375
Embryonic tendon cells (ETCs) have actin-rich fibripositors that accompany parallel bundles of collagen fibrils in the extracellular matrix. To study fibripositor function, we have developed a three-dimensional cell culture system that promotes and maintains fibripositors. We show that ETCs cultured in fixed-length fibrin gels replace the fibrin during ~6 days in culture with parallel bundles of narrow-diameter collagen fibrils that are uniaxially aligned with fibripositors, thereby generating a tendon-like construct. Fibripositors occurred simultaneously with onset of parallel collagen fibrils. Interestingly, the constructs have a tendon-like crimp. In initial experiments to study the effects of tension, we showed that cutting the constructs resulted in loss of tension, loss of fibripositors and the appearance of immature fibrils with no preferred orientation. 相似文献
11.
Kato U Emoto K Fredriksson C Nakamura H Ohta A Kobayashi T Murakami-Murofushi K Kobayashi T Umeda M 《The Journal of biological chemistry》2002,277(40):37855-37862
Ro09-0198 (Ro) is a tetracyclic peptide antibiotic that binds specifically to phosphatidylethanolamine (PE) and causes cytolysis. To investigate the molecular basis of transbilayer movement of PE in biological membranes, we have isolated a series of budding yeast mutants that are hypersensitive to the Ro peptide. One of the most sensitive mutants, designated ros3 (Ro-sensitive 3), showed no significant change in the cellular phospholipid composition or in the sensitivity to amphotericin B, a sterol-binding polyene macrolide antibiotic. These results suggest that the mutation of ros3 affects the PE organization on the plasma membrane, rather than PE synthesis or overall organization of the membrane structures. By functional complementation screening, we identified the gene ROS3 affected in the mutant, and we showed that the hypersensitive phenotype was caused by the defective expression of the ROS3 gene product, Ros3p, an evolutionarily conserved protein with two putative transmembrane domains. Disruption of the ROS3 gene resulted in a marked decrease in the internalization of fluorescence-labeled analogs of PE and phosphatidylcholine, whereas the uptake of fluorescence-labeled phosphatidylserine and endocytic markers was not affected. Neither expression levels nor activities of ATP-binding cassette transporters of the ros3Delta cells differed from those of wild type cells, suggesting that Ros3p is not related to the multidrug resistance activities. Immunochemical analyses of the structure and subcellular localization showed that Ros3p was a glycosylated membrane protein localized in both the plasma membrane and the endoplasmic reticulum, and that a part of Ros3p was associated with the detergent-insoluble glycolipid-enriched complexes. These results indicate that Ros3p is a membrane glycoprotein that plays an important role in the phospholipid translocation across the plasma membrane. 相似文献
12.
P A Scotti Q A Valent E H Manting M L Urbanus A J Driessen B Oudega J Luirink 《The Journal of biological chemistry》1999,274(42):29883-29888
In Escherichia coli, signal recognition particle (SRP)-dependent targeting of inner membrane proteins has been described. In vitro cross-linking studies have demonstrated that short nascent chains exposing a highly hydrophobic targeting signal interact with the SRP. This SRP, assisted by its receptor, FtsY, mediates the transfer to a common translocation site in the inner membrane that contains SecA, SecG, and SecY. Here we describe a further in vitro reconstitution of SRP-mediated membrane insertion in which purified ribosome-nascent chain-SRP complexes are targeted to the purified SecYEG complex contained in proteoliposomes in a process that requires the SRP-receptor FtsY and GTP. We found that in this system SecA and ATP are dispensable for both the transfer of the nascent inner membrane protein FtsQ to SecY and its stable membrane insertion. Release of the SRP from nascent FtsQ also occurred in the absence of SecYEG complex indicating a functional interaction of FtsY with lipids. These data suggest that SRP/FtsY and SecB/SecA constitute distinct targeting routes. 相似文献
13.
In contrast to rat and human erythrocytes, nucleated erythrocytes from two fish species (Cyprinus carpio and Salmo trutta) underwent almost complete haemolysis in 20 min of EDTA addition. Using Ca2+/Mg2+ EGTA-citrate buffer, we observed that half-maximal haemolysis of fish erythrocytes occurs at [Ca2+]o approximately 10 microM independently of extracellular Mg2+ concentration. Attenuation of [Ca2+]o with EGTA also decreased stability of the plasma membrane of vascular smooth muscle cells (VSMC) and HeLa cells, indicated by a three- to five-fold elevation of lactate dehydrogenase release and passive permeability of plasma membrane for Na+. In VSMC, EGTA lowered [Ca2+]i by approximately 20%. This effect was absent in VSMC-loaded with the intracellular Ca2+ chelator BAPTA. In contrast to EGTA, BAPTA did not affect haemoglobin release from fish erythrocytes and passive permeability for Na+ in VSMC. Viewed collectively, our data show that in nucleated cells, extracellular Ca2+ plays a crucial role in the maintenance of plasma membrane integrity. 相似文献
14.
Huntingtin is a large membrane-associated scaffolding protein that associates with endocytic and exocytic vesicles and modulates their trafficking along cytoskeletal tracks. Although the progression of Huntington’s disease is linked to toxic accumulation of mutant huntingtin protein, loss of wild-type huntingtin function might also contribute to neuronal cell death, but its precise function is not well understood. Therefore, we investigated the molecular role of huntingtin in exocytosis and observed that huntingtin knockdown in HeLa cells causes a delay in endoplasmic reticulum (ER)-to-Golgi transport and a reduction in the number of cargo vesicles leaving the trans-Golgi network. In addition, we found that huntingtin is required for secretory vesicle fusion at the plasma membrane. Similar defects in the early exocytic pathway were observed in primary fibroblasts from homozygous Htt140Q/140Q knock-in mice, which have the expansion inserted into the mouse huntingtin gene so lack wild-type huntingtin expression. Interestingly, heterozygous fibroblasts from a Huntington’s disease patient with a 180Q expansion displayed no obvious defects in the early secretory pathway. Thus, our results highlight the requirement for wild-type huntingtin at distinct steps along the secretory pathway.KEY WORDS: Exocytosis, Huntingtin, ER, Golgi, Vesicle fusion 相似文献
15.
We study the amino acid transport system b(0,+) as a model for folding, assembly, and early traffic of membrane protein complexes. System b(0,+) is made of two disulfide-linked membrane subunits: the carrier, b(0,+) amino acid transporter (b(0,+)AT), a polytopic protein, and the helper, related to b(0,+) amino acid transporter (rBAT), a type II glycoprotein. rBAT ectodomain mutants display folding/trafficking defects that lead to type I cystinuria. Here we show that, in the presence of b(0,+)AT, three disulfides were formed in the rBAT ectodomain. Disulfides Cys-242-Cys-273 and Cys-571-Cys-666 were essential for biogenesis. Cys-673-Cys-685 was dispensable, but the single mutants C673S, and C685S showed compromised stability and trafficking. Cys-242-Cys-273 likely was the first disulfide to form, and unpaired Cys-242 or Cys-273 disrupted oxidative folding. Strikingly, unassembled rBAT was found as an ensemble of different redox species, mainly monomeric. The ensemble did not change upon inhibition of rBAT degradation. Overall, these results indicated a b(0,+)AT-dependent oxidative folding of the rBAT ectodomain, with the initial and probably cotranslational formation of Cys-242-Cys-273, followed by the oxidation of Cys-571-Cys-666 and Cys-673-Cys-685, that was completed posttranslationally. 相似文献
16.
Gabriela Andrejeva Sharon Gowan Gigin Lin Anne-Christine LF Wong Te Fong Elham Shamsaei Harry G. Parkes 《Autophagy》2020,16(6):1044-1060
ABSTRACT
Macroautophagy/autophagy can enable cancer cells to withstand cellular stress and maintain bioenergetic homeostasis by sequestering cellular components into newly formed double-membrane vesicles destined for lysosomal degradation, potentially affecting the efficacy of anti-cancer treatments. Using 13C-labeled choline and 13C-magnetic resonance spectroscopy and western blotting, we show increased de novo choline phospholipid (ChoPL) production and activation of PCYT1A (phosphate cytidylyltransferase 1, choline, alpha), the rate-limiting enzyme of phosphatidylcholine (PtdCho) synthesis, during autophagy. We also discovered that the loss of PCYT1A activity results in compromised autophagosome formation and maintenance in autophagic cells. Direct tracing of ChoPLs with fluorescence and immunogold labeling imaging revealed the incorporation of newly synthesized ChoPLs into autophagosomal membranes, endoplasmic reticulum (ER) and mitochondria during anticancer drug-induced autophagy. Significant increase in the colocalization of fluorescence signals from the newly synthesized ChoPLs and mCherry-MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) was also found on autophagosomes accumulating in cells treated with autophagy-modulating compounds. Interestingly, cells undergoing active autophagy had an altered ChoPL profile, with longer and more unsaturated fatty acid/alcohol chains detected. Our data suggest that de novo synthesis may be required to increase autophagosomal ChoPL content and alter its composition, together with replacing phospholipids consumed from other organelles during autophagosome formation and turnover. This addiction to de novo ChoPL synthesis and the critical role of PCYT1A may lead to development of agents targeting autophagy-induced drug resistance. In addition, fluorescence imaging of choline phospholipids could provide a useful way to visualize autophagosomes in cells and tissues. 相似文献
17.
Zahn C Jaschke A Weiske J Hommel A Hesse D Augustin R Lu L Hong W Florian S Scheepers A Joost HG Huber O Schürmann A 《The Journal of biological chemistry》2008,283(40):27179-27188
ADP-ribosylation factor-related protein 1 (ARFRP1) plays a specific role in Golgi function controlling recruitment of GRIP domain proteins and ARL1 to the trans-Golgi. Deletion of the mouse Arfrp1 gene causes embryonic lethality during early gastrulation, because epiblast cells detach from the ectodermal cell layer and do not differentiate to mesodermal tissue. Here we show that in Arfrp1(-/-) embryos E-cadherin is mistargeted to intracellular compartments, whereas in control embryos it is present at the cell surface of trophectodermal and ectodermal cells. In enterocytes of intestine-specific Arfrp1 null mutants (Arfrp1(vil)(-/-)), E-cadherin is associated with intracellular membranes, partially colocalizing with the cis-Golgi marker GM130 or with punctae close to the cell surface. In contrast, in control enterocytes E-cadherin is exclusively located in the lateral membranes. In addition, ARL1 is dislocated from Golgi membranes to the cytosol of Arfrp1(vil)(-/-) enterocytes. Depletion of endogenous ARFRP1 by RNA interference leads to a dislocation of E-cadherin from the cell surface in HeLa cells and to a reduced cell aggregation in Ltk(-)Ecad cells. ARFRP1 was coimmunoprecipitated in a complex with E-cadherin, alpha-catenin, beta-catenin, gamma-catenin, and p120(ctn) from lysates of Madin-Darby canine kidney cells stably expressing myc-ARFRP1. These data indicate that knock-out of Arfrp1 disrupts the trafficking of E-cadherin through the Golgi and suggest an essential role of the GTPase in trans-Golgi network function. 相似文献
18.
19.
Human biliverdin reductase is autophosphorylated, and phosphorylation is required for bilirubin formation 总被引:5,自引:0,他引:5
Biliverdin reductase (BVR) reduces heme oxygenase (HO) activity product, biliverdin, to bilirubin. BVR is unique in having dual pH/dual cofactor requirements. Using Escherichia coli-expressed human BVR and COS cells, we show that BVR is autophosphorylated and that phosphorylation is required for its activity. An "in blot" autophosphorylation assay showed that BVR is a renaturable phosphoprotein. Controls for the experiments were HO-1 and HO-2; both are phosphoproteins but are not autophosphorylated. Autophosphorylation was pH-dependent, with activity at pH 8.7 being most prominent. In addition, 2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate fluorescence titration of BVR gave a lower K(d) at pH 8.7 than at pH 7.4 (15.5 versus 28.0 micrometer). Mn(2+) was required for binding of the ATP analogue and for autophosphorylation; the autokinase activity was lost when treated at 60 degrees C for 10 min. The loss of transferred phosphates by alkaline treatment suggested that BVR is a serine/threonine kinase. Potato acid phosphatase treatment reversibly inactivated the enzyme. The enzyme was also inactivated by treatment with the serine/threonine phosphatase, protein phosphatase 2A; okadaic acid attenuated the inhibition. Titration of protein phosphatase 2A-released phosphates indicated a 1:6 molar ratio of BVR to phosphate. The BVR immunoprecipitated from COS cell lysates was a phosphoprotein, and its activity and phosphorylation levels increased in response to H(2)O(2). The results define a previously unknown mechanism for regulation of BVR activity and are discussed in the context of their relevance to heme metabolism. 相似文献
20.
ARF6 is required for growth factor- and rac-mediated membrane ruffling in macrophages at a stage distal to rac membrane targeting
下载免费PDF全文

Activation of Rac1, a member of the Rho family of GTPases, is associated with multiple cellular responses, including membrane ruffling and focal complex formation. The mechanisms by which Rac1 is coupled to these functional responses are not well understood. It was recently shown that ARF6, a GTPase implicated in cytoskeletal alterations and a membrane recycling pathway, is required for Rac1-dependent phagocytosis in macrophages (Q. Zhang et al., J. Biol. Chem. 273:19977-19981, 1998). To determine whether ARF6 is required for Rac1-dependent cytoskeletal responses in macrophages, we expressed wild-type (WT) or guanine nucleotide binding-deficient alleles (T27N) of ARF6 in macrophages coexpressing activated alleles of Rac1 (Q61L) or Cdc42 (Q61L) or stimulated with colony-stimulating factor 1 (CSF-1). Expression of ARF6 T27N but not ARF6 WT inhibited ruffles mediated by Rac1 Q61L or CSF-1. In contrast, expression of ARF6 T27N did not inhibit Rac1 Q61L-mediated focal complex formation and did not impair Cdc42 Q61L-mediated filopodial formation. Cryoimmunogold electron microscopy demonstrated the presence of ARF6 in membrane ruffles induced by either CSF-1 or Rac1 Q61L. Addition of CSF-1 to macrophages led to the redistribution of ARF6 from the interior of the cell to the plasma membrane, suggesting that this growth factor triggers ARF6 activation. Direct targeting of Rac1 to the plasma membrane did not bypass the blockade in ruffling induced by ARF6 T27N, indicating that ARF6 regulates a pathway leading to membrane ruffling that occurs after the activation and membrane association of Rac. These data demonstrate that intact ARF6 function is required for coupling activated Rac to one of several effector pathways and suggest that a principal function of ARF6 is to coordinate Rac activation with plasma membrane-based protrusive events. 相似文献