首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 528 毫秒
1.
Expression of foliar secondary compounds and extrafloral nectaries (EFNs) within the same leaves may be incompatible if secondary compounds repel beneficial insects that might otherwise be attracted to EFNs. This study examined the within-plant distributions of phenolic glycosides and EFNs in trembling aspen, Populus tremuloides, and their relationships to herbivore damage. Populus tremuloides expresses extrafloral nectaries (EFNs) on a subset of its leaves. We studied short and tall naturally occurring aspen ramets across multiple sites in interior Alaska. Contrary to our expectations, foliar phenolic glycoside concentrations were approximately 30% greater on leaves bearing EFNs than on leaves without EFNs. The mean concentration of foliar phenolic glycosides in short ramets was nine times that in tall ramets. Phenolic glycoside concentration was negatively related to leaf mining damage by Phyllocnistis populiella (Lepidoptera; Gracilliadae) at concentrations greater than 27 mg/g, whereas the presence of EFNs was unrelated to mining damage. The positive association of chemical defensive compounds and EFNs in leaves suggests that, for species with variation in EFN expression, negative correlations between herbivory and EFN expression may arise indirectly from associated effects of other, correlated types of defense.  相似文献   

2.
Mortensen B  Wagner D  Doak P 《Oecologia》2011,165(4):983-993
The effects of plant defenses on herbivory can differ among spatial scales. This may be particularly common with indirect defenses, such as extrafloral nectaries (EFNs), that attract predatory arthropods and are dependent on predator distribution, abundance, and behavior. We tested the defensive effects of EFNs in quaking aspen (Populus tremuloides Michx.) against damage by a specialist herbivore, the aspen leaf miner (Phyllocnistis populiella Cham.), at the scale of individual leaves and entire ramets (i.e., stems). Experiments excluding crawling arthropods revealed that the effects of aspen EFNs differed at the leaf and ramet scales. Crawling predators caused similar reductions in the percent leaf area mined on individual leaves with and without EFNs. However, the extent to which crawling predators increased leaf miner mortality and, consequently, reduced mining damage increased with EFN expression at the ramet scale. Thus, aspen EFNs provided a diffuse defense, reducing damage to leaves across a ramet regardless of leaf-scale EFN expression. We detected lower leaf miner damage and survival unassociated with crawling predators on EFN-bearing leaves, suggesting that direct defenses (e.g., chemical defenses) were stronger on leaves with than without EFNs. Greater direct defenses on EFN-bearing leaves may reduce the probability of losing these leaves and thus weakening ramet-scale EFN defense. Aspen growth was not related to EFN expression or the presence of crawling predators over the course of a single season. Different effects of aspen EFNs at the leaf and ramet scales suggest that future studies may benefit from examining indirect defenses simultaneously at multiple scales.  相似文献   

3.
Background and AimsIntraspecific variation in foundation species of forest ecosystems can shape community and ecosystem properties, particularly when that variation has a genetic basis. Traits mediating interactions with other species are predicted by simple allocation models to follow ontogenetic patterns that are rarely studied in trees. The aim of this research was to identify the roles of genotype, ontogeny and genotypic trade-offs shaping growth, defence and reproduction in aspen.MethodsWe established a common garden replicating >500 aspen genets in Wisconsin, USA. Trees were measured through the juvenile period into the onset of reproduction, for growth, defence chemistry (phenolic glycosides and condensed tannins), nitrogen, extrafloral nectaries, leaf morphology (specific leaf area), flower production and foliar herbivory and disease. We also assayed the TOZ19 sex marker and heterozygosity at ten microsatellite loci.Key ResultsWe found high levels of genotypic variation for all traits, and high heritabilities for both the traits and their ontogenetic trajectories. Ontogeny strongly shaped intraspecific variation, and trade-offs among growth, defence and reproduction supported some predictions while contradicting others. Both direct resistance (chemical defence) and indirect defence (extrafloral nectaries) declined during the juvenile stage, prior to the onset of reproduction. Reproduction was higher in trees that were larger, male and had higher individual heterozygosity. Growth was diminished by genotypic allocation to both direct and indirect defence as well as to reproduction, but we found no evidence of trade-offs between defence and reproduction.ConclusionsKey traits affecting the ecological communities of aspen have high levels of genotypic variation and heritability, strong patterns of ontogeny and clear trade-offs among growth, defence and reproduction. The architecture of aspen’s community genetics – its ontogeny, trade-offs and especially its great variability – is shaped by both its broad range and the diverse community of associates, and in turn further fosters that diversity.  相似文献   

4.
Abstract.  1. The effectiveness of ants as plant defenders is equivocal for plants that attract ants via extrafloral nectaries (EFNs).
2. This study focused on the myrmecophilic savannah tree Pseudocedrela kotschyi that attracts ants to EFNs and on the arthropod fauna associated with P. kotschyi . Herbivory and arthropod community composition were compared between trees that were dominated by one of three congeneric ant species, Camponotus acvapimensis , C. rufoglaucus , and C. sericeus , and between trees where ants were experimentally excluded and untreated control trees.
3. Short-term ant-exclusion experiments failed to demonstrate a consistent effect of ants on herbivory.
4. Plants dominated by different ant species differed significantly in leaf damage caused by herbivorous insects. The relative ranking of herbivory levels of the trees dominated by different ant species was persistent in three consecutive years.
5. Ants significantly reduced the abundance of different arthropod groups (Araneae, Blattodea, Coleoptera, Homoptera, non-ant Hymenoptera). Other groups, including important herbivores, seemed not to be affected (Lepidoptera, Orthoptera, Thysanoptera, Heteroptera).
6. The study suggests that the presence of ants only benefits plants when specific ant species are attracted, and protection by these ants is not counterbalanced by their negative effect on other beneficial arthropods.  相似文献   

5.
For many insect herbivores, maternal host selection is a critical determinant of offspring survival; however, maternal fitness is also affected by adult resources such as food availability. Consequently, adult resources may promote oviposition in sub-optimal locations when measured in terms of offspring performance. We tested whether oviposition site preference is primarily shaped by proximity to adult food resources or offspring performance in the aspen leaf miner (Phyllocnistis populiella). Quaking aspen (Populus tremuloides) produce extrafloral nectaries (EFNs) on a subset of their leaves. EFN expression on leaves is associated with decreased P. populiella damage and larval performance; however, P. populiella adults feed from EFNs. We reduced extrafloral nectar availability on entire aspen ramets and excluded crawling predators in a full factorial experiment at two sites in interior Alaska, USA. Patterns of egg deposition by P. populiella appeared to be primarily affected by offspring survival rather than adult resource availability. While oviposition was unaffected by nectar availability, adult moths laid fewer eggs on leaves with than without EFNs. By avoiding leaves with EFNs, moths increased offspring survival. Both moths and predators distinguished between leaves with and without EFNs even when nectar and visual cues were obscured, and therefore may respond to chemical cues associated with EFN expression.  相似文献   

6.
Sambucus javanica is a perennial herb with extrafloral nectaries (EFNs) on its inflorescences. To explore the ecological functions of EFNs, a factorial combination experiment of ant (access or exclusion) and EFNs (with or without) at the plant level was created in two populations. The role of EFNs in the attraction of ants and flying pollinators, the defensive role of ants against foliar herbivores, the effects of ants on pollinator visitation and the effects of ant–pollinator interactions on fruit production in one or both populations were assessed. Ants were common on the ant-access plants with EFNs, but absent from the ant-access plants without EFNs. Foliar herbivory was independent of ant and EFN treatments and their interactions. The visitation frequency of flying pollinators (honeybees and syrphid flies) and fruit set were significantly higher for plants with EFNs than plants without EFNs, but were not affected by ant treatments or their interactions with EFN treatments. These results suggest that EFNs in S. javanica attracted both ants and flying pollinators, but ants did not present a defensive role against herbivores, did not deter flying pollinators from visiting inflorescences and had no effects on fruit production. In addition, ants were not significant pollen vectors.  相似文献   

7.
Extrafloral nectaries (EFNs) are nectar secretory structures involved in the indirect defense of plants. In the sponge gourd (Luffa cylindrica), EFNs commonly occur on the lower surface of leaf blades and stipules and remain functional until leaf senescence. To test the hypothesis that the development of EFNs is influenced by herbivore damage and resource availability, we grew Luffa cylindrica under different concentrations of Hoagland's nutrient solution (nutrient-poor conditions: 10%, 50%; and control condition: 100%) and two herbivory treatments (damaged and undamaged leaves). We collected ten leaves from treated plants to quantify leaf area and EFN density. Overall, leaf area increased and EFN decreased in damaged plants, but this significantly depended on nutritional status. In undamaged plants, EFN density tended to remain constant, whereas foliar area increased with nutrient input. Under herbivory, foliar area increased at 10% but decreased at 50 and 100% of nutrients in relation to undamaged plants, whereas EFN density tended to increase with nutrient availability to exceed undamaged plants under control concentrations. Plants under nutrient-poor conditions subjected to herbivory exhibited an increased foliar area, characterizing a compensatory mechanism. Our results suggest that herbivore-induced indirect defense is a damage- and resource-dependent response in Luffa cylindrica. These findings contribute to understanding the factors that modulate indirect defenses and plant-herbivore-environment interactions.  相似文献   

8.
We conducted a study of natural variation in functional leaf traits and herbivory in 116 clones of European aspen, Populus tremula L., the Swedish Aspen (SwAsp) collection, originating from ten degrees of latitude across Sweden and grown in a common garden. In surveys of phytophagous arthropods over two years, we found the aspen canopy supports nearly 100 morphospecies. We identified significant broad-sense heritability of plant functional traits, basic plant defence chemistry, and arthropod community traits. The majority of arthropods were specialists, those coevolved with P. tremula to tolerate and even utilize leaf defence compounds. Arthropod abundance and richness were more closely related to plant growth rates than general chemical defences and relationships were identified between the arthropod community and stem growth, leaf and petiole morphology, anthocyanins, and condensed tannins. Heritable genetic variation in plant traits in young aspen was found to structure arthropod community; however no single trait drives the preferences of arthropod folivores among young aspen genotypes. The influence of natural variation in plant traits on the arthropod community indicates the importance of maintaining genetic variation in wild trees as keystone species for biodiversity. It further suggests that aspen can be a resource for the study of mechanisms of natural resistance to herbivores.  相似文献   

9.
In order to understand the distribution pattern of the extrafloral nectaried plants in the tropical rainforest in Xishuangbanna, Yunnan , China, we investigated seven forest communities ( three primary forests and four secondary forests at different ages) in Xishuangbanna Nature Reserve . Fifty-two species belonging to 36 genera and 23 families accounting for 12.3% of 424 angiosperm species in the seven communities were found to bear extrafloral nectaries ( EFNs ). Among which, eight genera and 37 species were the first time to be recorded as plants to bear EFNs. The study indicated, (1)The EFN species mainly occurred in subclasses Dilleniidae, Rosidae and Asteridae of the Magnoliopsida , and the most common EFNs were flattened glands situated on leaf blades ; (2) The proportions of EFN species within the seven communities ranged from 9.5% ( Vatica guangxiensis forest ) to 18 .5% ( Macaranga denticulata forest ), and the EFN species appeared to be more abundant in the secondary forests than those in the primary forests; (3) EFN species were disproportionally distributed among different growth forms, with the abundance being: tree > shrub > liana > herb , and no epiphytic and parasitic plants were found to bear EFNs.  相似文献   

10.
Phenotypic plasticity enables many damaged plants to increase nectar secretion rates from extrafloral nectaries (EFNs), or in the case of broad bean, Vicia faba L. to produce additional EFNs, to attract natural enemies of herbivores. While plants benefit greatly from these defensive mutualisms, the costs of producing EFNs are largely unknown. We hypothesized that if EFN production is costly, then damaged plants with high resource levels would be able to produce more EFNs than plants that are resource-limited. Here, we show that this indirect inducible defence does follow this general pattern. Vicia faba enriched with 6 or 12 g of 14:14:14 NPK fertilizer increased EFN numbers after leaf damage by 46 and 60%, respectively, compared with nutrient-poor plants. Thus, EFN production is both damage- and resource-dependent. Analogous to direct defences, production of EFNs may limit the overall loss of leaf tissue when risk of herbivory increases.  相似文献   

11.
Herbivory is an ecological process that is known to generate different patterns of selection on defensive plant traits across populations. Studies on this topic could greatly benefit from the general framework of the Geographic Mosaic Theory of Coevolution (GMT). Here, we hypothesize that herbivory represents a strong pressure for extrafloral nectary (EFN) bearing plants, with differences in herbivore and ant visitor assemblages leading to different evolutionary pressures among localities and ultimately to differences in EFN abundance and function. In this study, we investigate this hypothesis by analyzing 10 populations of Anemopaegma album (30 individuals per population) distributed through ca. 600 km of Neotropical savanna and covering most of the geographic range of this plant species. A common garden experiment revealed a phenotypic differentiation in EFN abundance, in which field and experimental plants showed a similar pattern of EFN variation among populations. We also did not find significant correlations between EFN traits and ant abundance, herbivory and plant performance across localities. Instead, a more complex pattern of ant–EFN variation, a geographic mosaic, emerged throughout the geographical range of A. album. We modeled the functional relationship between EFNs and ant traits across ant species and extended this phenotypic interface to characterize local situations of phenotypic matching and mismatching at the population level. Two distinct types of phenotypic matching emerged throughout populations: (1) a population with smaller ants (Crematogaster crinosa) matched with low abundance of EFNs; and (2) seven populations with bigger ants (Camponotus species) matched with higher EFN abundances. Three matched populations showed the highest plant performance and narrower variance of EFN abundance, representing potential plant evolutionary hotspots. Cases of mismatched and matched populations with the lowest performance were associated with abundant and highly detrimental herbivores. Our findings provide insights on the ecology and evolution of plant–ant guarding systems, and suggest new directions to research on facultative mutualistic interactions at wide geographic scales.  相似文献   

12.
Evidence in favour of the ability of extrafloral nectaries (EFNs) to form nectar drop(let)s, secrete extrafloral nectar (EFNec) also during the night and store starch was compiled in order to refute controversial assertions. Not only were more than 150 reports of direct observations of EFNec drop(let)s found, but also 90 studies which suggest that EFNec secretion is copious enough to form drop(let)s automatically by forces of physics (surface tension strength), provided nectar accumulation is not interrupted by predatory animals. Twenty direct observations of nocturnal production of EFNec sufficiently proved that it is not always produced during the day. Additionally, numerous observations of the nocturnal activities of nectar consumers on EFNs indirectly indicated very common nocturnal secretion of EFNec. Although there is an early report of a starch‐containing EFN from 1881 (Trelease), few similar observations in other EFNs followed. Nevertheless, four studies have described the disappearance of stored starch during secretion and senescence of the EFNs. Referring back to an apparent relationship between the degradation of starch stored in a floral nectary and programmed cell death, at least in EFNs with transient storage of starch, a similar relationship cannot be excluded.  相似文献   

13.
Plants bearing extrafloral nectaries (EFNs) often have traits typical of pioneer species, and may be expected to proliferate in disturbed habitats. However, a negative effect of disturbance on visitation by attendant ants could prevent EFN‐bearing plants from acting as disturbance winners. Here, we address the effects of chronic anthropogenic disturbance on the abundance of EFN‐bearing plants and their interactions with attendant ants in Caatinga vegetation of northeastern Brazil. We recorded the abundance of EFN‐bearing plants, proportion of plants visited by ants and composition of ant attendant species at 24 sites varying in levels of disturbance. EFN‐bearing plants as a whole did not behave as a disturbance winner group. The responses of the 13 species to increasing disturbance were highly variable, with three species declining in abundance (loser species). The richness of ant species attending EFNs did not vary with disturbance, but species composition did. The overall proportion of EFN‐bearing plants attended by ants per 5‐min period was not affected by disturbance. However, for the three loser species, attendance decreased from about 50 percent with low and moderate disturbance to half that with very high disturbance. We hypothesize that disturbed sites are more stressful for loser species compared with other EFN‐bearing plants, with physiological stress resulting in lower production of EFN secretions and reduced attraction of ants. This would make such species double losers, with physiological stress at disturbed sites not only directly influencing their performance but also indirectly affecting it through the disruption of a key mutualism.  相似文献   

14.
Much effort has been devoted to understanding the function of extrafloral nectaries (EFNs) for ant–plant–herbivore interactions. However, the pattern of evolution of such structures throughout the history of plant lineages remains unexplored. In this study, we used empirical knowledge on plant defences mediated by ants as a theoretical framework to test specific hypotheses about the adaptive role of EFNs during plant evolution. Emphasis was given to different processes (neutral or adaptive) and factors (habitat change and trade‐offs with new trichomes) that may have affected the evolution of ant–plant associations. We measured seven EFN quantitative traits in all 105 species included in a well‐supported phylogeny of the tribe Bignonieae (Bignoniaceae) and collected field data on ant–EFN interactions in 32 species. We identified a positive association between ant visitation (a surrogate of ant guarding) and the abundance of EFNs in vegetative plant parts and rejected the hypothesis of phylogenetic conservatism of EFNs, with most traits presenting K‐values < 1. Modelling the evolution of EFN traits using maximum likelihood approaches further suggested adaptive evolution, with static‐optimum models showing a better fit than purely drift models. In addition, the abundance of EFNs was associated with habitat shifts (with a decrease in the abundance of EFNs from forest to savannas), and a potential trade‐off was detected between the abundance of EFNs and estipitate glandular trichomes (i.e. trichomes with sticky secretion). These evolutionary associations suggest divergent selection between species as well as explains K‐values < 1. Experimental studies with multiple lineages of forest and savanna taxa may improve our understanding of the role of nectaries in plants. Overall, our results suggest that the evolution of EFNs was likely associated with the adaptive process which probably played an important role in the diversification of this plant group.  相似文献   

15.
Plants usually respond to environmental shifts with morpho-physiological adjustments, which trickles down to biotic interactions in the insect-plant system. We evaluate how Copaifera langsdorffii, a widespread tree species adapted to multiple ecosystems, responds to shifts in nutrient and water availability through experimental supplementation and how it affects its insect communities. We also evaluate how the presence of extrafloral nectaries (EFN) exudates modifies galling insect diversity and herbivory rates. Such experimental approach is scarce, as we simultaneously evaluate biotic and abiotic factors and cover the entire reproductive cycle of a species in natural environments, bringing important contributions to better understand how bottom-up factors drive species interactions and possibly community assembly. The experiment was set in an ironstone outcrop vegetation, where we deployed supplementation treatments in 80 plant individuals divided into the following field treatments: (T1 = Fertilizer, T2 = EFN simulation (Eppendorf tubes with a 20% sugar solution), T3 = fertilizer + EFN simulation, T4 = water spray, T5 = EFN control (microtube with water), and T6 = Control. We observed lower sclerophylly and greater leaf area in plant individuals that were supplemented with nutrients and water. Herbivory rates were lower and ant abundance was higher in plants with artificial EFNs available. While we did not observe variations in richness and abundance of galling insects, the patterns of co-occurrence of galls varied with the availability of resources (nesting space) in the plant. This study illustrates how variations in nutrient availability to plants modify interactions with insect communities. Ant-plant interactions can have a negative impact on general herbivory rates, however ants seem to have a more harmonious relationship with the galling insects.  相似文献   

16.
The extrafloral nectaries of many plants promote ant defense against insect herbivores. We examined the influence of extrafloral nectaries on the levels of parasitism of a generalist insect herbivore, the gypsy moth (Lymantria dispar L.). Larvae and pupae of the moth were collected from trees with and without extrafloral nectaries growing in the same forests in South Korea and reared to evaluate parasitism. More parasitism occurred on plants with extrafloral nectaries in seven of the nine season-long collections at the six sites and in four out of five collecting periods. Parasitism was higher on the four main genera of plants with extrafloral nectaries than on any of five main genera of plants without extrafloral nectaries. There was no difference in parasitoid richness; nine species occurred in each group, eight of which were the same. There was a positive and almost significant correlation between the abundance of plants with extrafloral nectaries and the parasitism of gypsy moth at the sites. Extrafloral nectaries may reduce herbivory by inducing more parasitism of the insect herbivores that attack plants bearing the glands.  相似文献   

17.
Plant fitness is often defined by the combined effects of herbivory and competition, and plants must strike a delicate balance between their ability to capture limiting resources and defend against herbivore attack. Many plants use indirect defenses, such as volatile compounds and extrafloral nectaries (EFN), to attract canopy arthropods that are natural enemies of herbivorous organisms. While recent evidence suggests that upon perception of low red to far-red (R:FR) ratios, which signal the proximity of competitors, plants down-regulate resource allocation to direct chemical defenses, it is unknown if a similar phytochrome-mediated response occurs for indirect defenses. We evaluated the interactive effects of R:FR ratio and simulated herbivory on nectar production by EFNs of passionfruit (Passiflora edulis f. flavicarpa). The activity of petiolar EFNs dramatically increased in response to simulated herbivory and hormonal treatment with methyl jasmonate (MeJA). Low R:FR ratios, which induced a classic “shade-avoidance” repertoire of increased stem elongation in P. edulis, strongly suppressed the EFN response triggered by simulated herbivory or MeJA application. Strikingly, the EFN response to wounding and light quality was localized to the branches that received the treatments. In vines like P. edulis, a local response would allow the plants to precisely adjust their light harvesting and defense phenotypes to the local conditions encountered by individual branches when foraging for resources in patchy canopies. Consistent with the emerging paradigm that phytochrome regulation of jasmonate signaling is a central modulator of adaptive phenotypic plasticity, our results demonstrate that light quality is a strong regulator of indirect defenses.  相似文献   

18.
Unraveling the diversification history of old, species-rich and widespread clades is difficult because of extinction, undersampling, and taxonomic uncertainty. In the context of these challenges, we investigated the timing and mode of lineage diversification in Senna (Leguminosae) to gain insights into the evolutionary role of extrafloral nectaries (EFNs). EFNs secrete nectar, attracting ants and forming ecologically important ant-plant mutualisms. In Senna, EFNs characterize one large clade (EFN clade), including 80% of its 350 species. Taxonomic accounts make Senna the largest caesalpinioid genus, but quantitative comparisons to other taxa require inferences about rates. Molecular dating analyses suggest that Senna originated in the early Eocene, and its major lineages appeared during early/mid Eocene to early Oligocene. EFNs evolved in the late Eocene, after the main radiation of ants. The EFN clade diversified faster, becoming significantly more species-rich than non-EFN clades. The shift in diversification rates associated with EFN evolution supports the hypothesis that EFNs represent a (relatively old) key innovation in Senna. EFNs may have promoted the colonization of new habitats appearing with the early uplift of the Andes. This would explain the distinctive geographic concentration of the EFN clade in South America.  相似文献   

19.
Conspicuous extra-floral nectaries are inducible in Vicia faba   总被引:2,自引:0,他引:2  
Mutualistic interactions are dynamic associations that vary depending on the costs and benefits to each of the interacting parties. Phenotypic plasticity in mutualistic interactions allows organisms to produce rewards to attract mutualists when the benefits of their presence outweigh the costs of producing the rewards. In ant–plant defensive mutualisms, defences are indirect as plants produce extra‐floral nectaries (EFN) to attract predatory ants to deter herbivores. Here we demonstrate that in broad bean, Vicia faba, the overall number of EFNs on a plant increases dramatically following leaf damage. In two damage treatments, removal of: (1) one‐third of one leaf in a single leaf pair or (2) one‐third of both halves of a single leaf pair, resulted in a 59 and 106% increase in the number of EFNs on the plants, respectively, over 1 week. We suggest that the increased production of visually conspicuous EFNs is an adaptive inducible response, to attract predatory arthropods when risk of herbivory increases.  相似文献   

20.
When aphids parasitize plants with extrafloral nectaries (EFNs) and aphid colony size is small, ants frequently use EFNs but hardly tend aphids. However, as the aphid colony size increases, ants stop using EFNs and strengthen their associations with aphids. Although the shift in ant behavior is important for determining the dynamics of the ant–plant–aphid interaction, it is not known why this shift occurs. Here, we test two hypotheses to explain the mechanism responsible for this behavioral shift: (1) Extrafloral nectar secretion changes in response to aphid herbivory, or (2) plants do not change extrafloral nectar secretion, but the total reward to ants from aphids will exceed that from EFNs above a certain aphid colony size. To judge which mechanism is plausible, we investigated secretion patterns of extrafloral nectar produced by plants with and without aphids, compared the amount of sugar supplied by EFNs and aphids, and examined whether extrafloral nectar or honeydew was more attractive to ants. Our results show that there was no inducible extrafloral secretion in response to aphid herbivory, but the sugar concentration in extrafloral nectar was higher than in honeydew, and more ant workers were attracted to an artificial extrafloral nectar solution than to an artificial aphid honeydew solution. These results indicate that extrafloral nectar is a more attractive reward than aphid honeydew per unit volume. However, even an aphid colony containing only two individuals can supply a greater reward to ants than EFNs. This suggests that the ant behavioral shift may be explained by the second hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号