首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sampling receptor flexibility is challenging for database docking. We consider a method that treats multiple flexible regions of the binding site independently, recombining them to generate different discrete conformations. This algorithm scales linearly rather than exponentially with the receptor's degrees of freedom. The method was first evaluated for its ability to identify known ligands of a hydrophobic cavity mutant of T4 lysozyme (L99A). Some 200000 molecules of the Available Chemical Directory (ACD) were docked against an ensemble of cavity conformations. Surprisingly, the enrichment of known ligands from among a much larger number of decoys in the ACD was worse than simply docking to the apo conformation alone. Large decoys, accommodated in the larger cavity conformations sampled in the ensemble, were ranked better than known small ligands. The calculation was redone with an energy correction term that considered the cost of forming the larger cavity conformations. Enrichment improved, as did the balance between high-ranking large and small ligands. In a second retrospective test, the ACD was docked against a conformational ensemble of thymidylate synthase. Compared to docking against individual enzyme conformations, the flexible receptor docking approach improved enrichment of known ligands. Including a receptor conformational energy weighting term improved enrichment further. To test the method prospectively, the ACD database was docked against another cavity mutant of lysozyme (L99A/M102Q). A total of 18 new compounds predicted to bind this polar cavity and to change its conformation were tested experimentally; 14 were found to bind. The bound structures for seven ligands were determined by X-ray crystallography. The predicted geometries of these ligands all corresponded to the observed geometries to within 0.7A RMSD or better. Significant conformational changes of the cavity were observed in all seven complexes. In five structures, part of the observed accommodations were correctly predicted; in two structures, the receptor conformational changes were unanticipated and thus never sampled. These results suggest that although sampling receptor flexibility can lead to novel ligands that would have been missed when docking a rigid structure, it is also important to consider receptor conformational energy.  相似文献   

2.
We present a combined experimental and modeling study of organic ligand molecules binding to a slightly polar engineered cavity site in T4 lysozyme (L99A/M102Q). For modeling, we computed alchemical absolute binding free energies. These were blind tests performed prospectively on 13 diverse, previously untested candidate ligand molecules. We predicted that eight compounds would bind to the cavity and five would not; 11 of 13 predictions were correct at this level. The RMS error to the measurable absolute binding energies was 1.8 kcal/mol. In addition, we computed “relative” binding free energies for six phenol derivatives starting from two known ligands: phenol and catechol. The average RMS error in the relative free energy prediction was 2.5 kcal/mol (phenol) and 1.1 kcal/mol (catechol). To understand these results at atomic resolution, we obtained x-ray co-complex structures for nine of the diverse ligands and for all six phenol analogs. The average RMSD of the predicted pose to the experiment was 2.0 Å (diverse set), 1.8 Å (phenol-derived predictions), and 1.2 Å (catechol-derived predictions). We found that predicting accurate affinities and rank-orderings required near-native starting orientations of the ligand in the binding site. Unanticipated binding modes, multiple ligand binding, and protein conformational change all proved challenging for the free energy methods. We believe that these results can help guide future improvements in physics-based absolute binding free energy methods.  相似文献   

3.
A model binding site was used to investigate charge-charge interactions in molecular docking. This simple site, a small (180A(3)) engineered cavity in cyctochrome c peroxidase (CCP), is negatively charged and completely buried from solvent, allowing us to explore the balance between electrostatic energy and ligand desolvation energy in a system where many of the common approximations in docking do not apply. A database with about 5300 molecules was docked into this cavity. Retrospective testing with known ligands and decoys showed that overall the balance between electrostatic interaction and desolvation energy was captured. More interesting were prospective docking scre"ens that looked for novel ligands, especially those that might reveal problems with the docking and energy methods. Based on screens of the 5300 compound database, both high-scoring and low-scoring molecules were acquired and tested for binding. Out of 16 new, high-scoring compounds tested, 15 were observed to bind. All of these were small heterocyclic cations. Binding constants were measured for a few of these, they ranged between 20microM and 60microM. Crystal structures were determined for ten of these ligands in complex with the protein. The observed ligand geometry corresponded closely to that predicted by docking. Several low-scoring alkyl amino cations were also tested and found to bind. The low docking score of these molecules owed to the relatively high charge density of the charged amino group and the corresponding high desolvation penalty. When the complex structures of those ligands were determined, a bound water molecule was observed interacting with the amino group and a backbone carbonyl group of the cavity. This water molecule mitigates the desolvation penalty and improves the interaction energy relative to that of the "naked" site used in the docking screen. Finally, six low-scoring neutral molecules were also tested, with a view to looking for false negative predictions. Whereas most of these did not bind, two did (phenol and 3-fluorocatechol). Crystal structures for these two ligands in complex with the cavity site suggest reasons for their binding. That these neutral molecules do, in fact bind, contradicts previous results in this site and, along with the alkyl amines, provides instructive false negatives that help identify weaknesses in our scoring functions. Several improvements of these are considered.  相似文献   

4.
Molecular docking programs screen chemical databases for novel ligands that fit protein binding sites. When one compound fits the site well, close analogs typically do the same. Therefore, many of the compounds that are found in such screens resemble one another. This reduces the variety and novelty of the compounds suggested. In an attempt to increase the diversity of docking hit lists, the Available Chemicals Directory was grouped into families of related structures. All members of every family were docked and scored, but only the best scoring molecule of a high-ranking family was allowed in the hit list. The identity and scores of the other members of these families were recorded as annotations to the best family member, but they were not independently ranked. This family-based docking method was compared with molecule-by-molecule docking in screens against the structures of thymidylate synthase, dihydrofolate reductase (DHFR), and the cavity site of the mutant T4 lysozyme Leu99 --> Ala (L99A). In each case, the diversity of the hit list increased, and more families of known ligands were found. To investigate whether the newly identified hits were sensible, we tested representative examples experimentally for binding to L99A and DHFR. Of the six compounds tested against L99A, five bound to the internal cavity. Of the seven compounds tested against DHFR, six inhibited the enzyme with apparent K(i) values between 0.26 and 100 microM. The segregation of potential ligands into families of related molecules is a simple technique to increase the diversity of candidates suggested by database screens. The general approach should be applicable to most docking methods. Proteins 2001;42:279-293.  相似文献   

5.
Isothermal titration calorimetry is able to provide accurate information on the thermodynamic contributions of enthalpy and entropy changes to free energies of binding. The Structure/Calorimetry of Reported Protein Interactions Online database of published isothermal titration calorimetry studies and structural information on the interactions between proteins and small-molecule ligands is used here to reveal general thermodynamic properties of protein-ligand interactions and to investigate correlations with changes in solvation. The overwhelming majority of interactions are found to be enthalpically favoured. Synthetic inhibitors and biological ligands form two distinct subpopulations in the data, with the former having greater average affinity due to more favourable entropy changes on binding. The greatest correlation is found between the binding free energy and apolar surface burial upon complex formation. However, the free-energy contribution per unit area buried is only 30-50% of that expected from earlier studies of transfer free energies of small molecules. A simple probability-based estimator for the maximal affinity of a binding site in terms of its apolar surface area is proposed. Polar surface area burial also contributes substantially to affinity but is difficult to express in terms of unit area due to the small variation in the amount of polar surface buried and a tendency for cancellation of its enthalpic and entropic contributions. Conventionally, the contribution of apolar desolvation to affinity is attributed to gain of entropy due to solvent release. Although data presented here are supportive of this notion, because the correlation of entropy change with apolar surface burial is relatively weak, it cannot, on present evidence, be confidently considered to be correct. Further, thermodynamic changes arising from small differences between ligands binding to individual proteins are relatively large and, in general, uncorrelated with changes in solvation, suggesting that trends identified across widely differing proteins are of limited use in explaining or predicting the effects of ligand modifications.  相似文献   

6.
Solvation plays an important role in ligand‐protein association and has a strong impact on comparisons of binding energies for dissimilar molecules. When databases of such molecules are screened for complementarity to receptors of known structure, as often occurs in structure‐based inhibitor discovery, failure to consider ligand solvation often leads to putative ligands that are too highly charged or too large. To correct for the different charge states and sizes of the ligands, we calculated electrostatic and non‐polar solvation free energies for molecules in a widely used molecular database, the Available Chemicals Directory (ACD). A modified Born equation treatment was used to calculate the electrostatic component of ligand solvation. The non‐polar component of ligand solvation was calculated based on the surface area of the ligand and parameters derived from the hydration energies of apolar ligands. These solvation energies were subtracted from the ligand‐receptor interaction energies. We tested the usefulness of these corrections by screening the ACD for molecules that complemented three proteins of known structure, using a molecular docking program. Correcting for ligand solvation improved the rankings of known ligands and discriminated against molecules with inappropriate charge states and sizes. Proteins 1999;34:4–16. © 1999 Wiley‐Liss, Inc.  相似文献   

7.
Zinc endopeptidase thermolysin can be inhibited by a series of phosphorus-containing peptide analogues, Cbz-Gly-psi (PO2)-X-Leu-Y-R (ZGp(X)L(y)R), where X = NH, O, or CH2; Y = NH or O; R = Leu, Ala, Gly, Phe, H, or CH3. The affinity correlation as well as an X-ray crystallography study suggest that these inhibitors bind to thermolysin in an identical mode. In this work, we calculate the electrostatic binding free energies for a series of 13 phosphorus-containing inhibitors with modifications at X, Y, and R moieties using finite difference solution to the Poisson-Boltzmann equation. A method has been developed to include the solvation entropy changes due to binding different ligands to a macromolecule. We demonstrate that the electrostatic energy and empirically derived solvation entropy can account for most of the binding energy differences in this series. By analyzing the binding contribution from individual residues, we show that the energy of a hydrogen bond is not confined to the donor and acceptor. In particular, the positive charges on Zn and Arg 203, which are not the acceptors, contribute significantly to the hydrogen bonds between two amides of ZGpLL and the thermolysin.  相似文献   

8.
Spitz JA  Derrien V  Baciou L  Sebban P 《Biochemistry》2005,44(4):1338-1343
We report here the first example of a reaction center mutant from Rhodobacter sphaeroides, where a single mutation (M266His --> Leu) taking place in the primary quinone protein pocket confers selective resistance to triazine-type inhibitors (terbutryn, ametryn, and atrazine), which bind in the secondary quinone protein pocket, at about 13 A from the mutation site. The M266His --> Leu mutation involves one of the iron atom ligands. Interestingly, neither the secondary quinone nor the highly specific inhibitor stigmatellin binding affinities are affected by the mutation. It is noticeable that in the M266His --> Ala mutant a nativelike behavior in observed. We suggest that the long side chain of Leu in position M266 may lack space to accommodate in the Q(A) pocket therefore transferring its hindrance to the Q(B) pocket. This may occur via the structural feature formed by the Q(A)-M219His-Fe-L190His-inhibitor (or Q(B)) connection, pushing L189Leu and/or L229Ile in closer contact to the triazine molecules, therefore decreasing their bindings. This opens the possibility to finely tune, in reaction center proteins, the affinity for herbicides by designing mutations distant from their binding sites.  相似文献   

9.
Cavity complementation has been observed in many proteins, where an appropriate small molecule binds to a cavity-forming mutant. Here, the binding of compounds to the W191G cavity mutant of cytochrome c peroxidase is characterized by X-ray crystallography and binding thermodynamics. Unlike cavities created by removal of hydrophobic side-chains, the W191G cavity does not bind neutral or hydrophobic compounds, but displays a strong specificity for heterocyclic cations, consistent with the role of the protein to stabilize a tryptophan radical at this site. Ligand dissociation constants for the protonated cationic state ranged from 6 microM for 2-amino-5-methylthiazole to 1 mM for neutral ligands, and binding was associated with a large enthalpy-entropy compensation. X-ray structures show that each of 18 compounds with binding behavior bind specifically within the artificial cavity and not elsewhere in the protein. The compounds make multiple hydrogen bonds to the cavity walls using a subset of the interactions seen between the protein and solvent in the absence of ligand. For all ligands, every atom that is capable of making a hydrogen bond does so with either protein or solvent. The most often seen interaction is to Asp235, and most compounds bind with a specific orientation that is defined by their ability to interact with this residue. Four of the ligands do not have conventional hydrogen bonding atoms, but were nevertheless observed to orient their most polar CH bond towards Asp235. Two of the larger ligands induce disorder in a surface loop between Pro190 and Asn195 that has been identified as a mobile gate to cavity access. Despite the predominance of hydrogen bonding and electrostatic interactions, the small variation in observed binding free energies were not correlated readily with the strength, type or number of hydrogen bonds or with calculated electrostatic energies alone. Thus, as with naturally occurring binding sites, affinities to W191G are likely to be due to a subtle balance of polar, non-polar, and solvation terms. These studies demonstrate how cavity complementation and judicious choice of site can be used to produce a protein template with an unusual ligand-binding specificity.  相似文献   

10.
In drug optimization calculations, the molecular mechanics Poisson‐Boltzmann surface area (MM‐PBSA) method can be used to compute free energies of binding of ligands to proteins. The method involves the evaluation of the energy of configurations in an implicit solvent model. One source of errors is the force field used, which can potentially lead to large errors due to the restrictions in accuracy imposed by its empirical nature. To assess the effect of the force field on the calculation of binding energies, in this article we use large‐scale density functional theory (DFT) calculations as an alternative method to evaluate the energies of the configurations in a “QM‐PBSA” approach. Our DFT calculations are performed with a near‐complete basis set and a minimal parameter implicit solvent model, within the self‐consistent calculation, using the ONETEP program on protein–ligand complexes containing more than 2600 atoms. We apply this approach to the T4‐lysozyme double mutant L99A/M102Q protein, which is a well‐studied model of a polar binding site, using a set of eight small aromatic ligands. We observe that there is very good correlation between the MM and QM binding energies in vacuum but less so in the solvent. The relative binding free energies from DFT are more accurate than the ones from the MM calculations, and give markedly better agreement with experiment for six of the eight ligands. Furthermore, in contrast to MM‐PBSA, QM‐PBSA is able to correctly predict a nonbinder. Proteins 2014; 82:3335–3346. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
A key challenge in structure-based discovery is accounting for modulation of protein-ligand interactions by ordered and bulk solvent. To investigate this, we compared ligand binding to a buried cavity in Cytochrome c Peroxidase (CcP), where affinity is dominated by a single ionic interaction, versus a cavity variant partly opened to solvent by loop deletion. This opening had unexpected effects on ligand orientation, affinity, and ordered water structure. Some ligands lost over ten-fold in affinity and reoriented in the cavity, while others retained their geometries, formed new interactions with water networks, and improved affinity. To test our ability to discover new ligands against this opened site prospectively, a 534,000 fragment library was docked against the open cavity using two models of ligand solvation. Using an older solvation model that prioritized many neutral molecules, three such uncharged docking hits were tested, none of which was observed to bind; these molecules were not highly ranked by the new, context-dependent solvation score. Using this new method, another 15 highly-ranked molecules were tested for binding. In contrast to the previous result, 14 of these bound detectably, with affinities ranging from 8 µM to 2 mM. In crystal structures, four of these new ligands superposed well with the docking predictions but two did not, reflecting unanticipated interactions with newly ordered waters molecules. Comparing recognition between this open cavity and its buried analog begins to isolate the roles of ordered solvent in a system that lends itself readily to prospective testing and that may be broadly useful to the community.  相似文献   

12.
A mouse monoclonal anti-2,4,6-trinitrophenyl IgE (clone Lb4) was screened with a random set of over 2000 compounds, and several ligands were found to bind with affinities comparable to that of the immunizing hapten (KD in the μM range). An automated docking algorithm was used for the prediction of complex structures formed by 2,4-dinitrophenyl (DNP) and non-DNP ligands in the fragment variable region of IgE(Lb4). All ligands were found to dock in an L-shaped cavity of 15 × 16 × 10 Å, surrounded by complementary-determining regions L1, L3, H2 and H3. The ligands were found to occupy the same binding site in different orientations. For rigid ligands the most stable orientation could be predicted with high probability, based on the calculated energy of binding and the occurrence frequencies of identical complexes obtained by repeated simulations. The localization of a flexible ligand (cycrimine-R) was more ambiguous, but it still docked in the same site. The results support a model for heteroligating antibody (Ab) binding sites, where different ligands utilize the total set of available contacts in different combinations. It is suggested that although pseudoenergies calculated by the docking algorithm do not correlate with experimentally measured binding energies, the screening-and-docking procedure can be useful for the mapping of Ab and other receptor binding sites ligating small molecules.  相似文献   

13.
Hemoglobin function is modulated by several non-heme ligands; among these effectors, organic phosphates generally bind to heterotropic sites with a one-to-one stoichiometry. The phosphate binding site of human hemoglobin is located at the interface between the two beta chains. An additional binding site for polyanions has been studied at the molecular level (Tamburrini, M., A. Riccio, M. Romano, B. Giardina, and G. di Prisco. 2000. Eur. J. Biochem. 267:6089-6098) in the hemoglobins of the south polar skua (Catharacta maccormicki). It is formed by a cluster of six positive charges of both alpha chains (Val-1, Lys-99, Arg-141); the two Lys-99alpha have an essential role in the site structure. The present investigation, carried out on skua deoxyhemoglobins by using a molecular dynamics approach, confirms the structural feasibility of the additional site, possibly having the role of an entry-leaving site, and leads to the proposal of a novel migration pathway for phosphate along the central cavity of hemoglobin from one binding site to the other, occurring according to the hypothesis of a site-site migratory mechanism, which may assign a functional role to the central cavity. The role of Lys-99alpha was further confirmed by molecular dynamics experiments on the mutant Lys-99alpha-->Ala in which, at the end of the simulation, the phosphate was external to the additional site.  相似文献   

14.
In this work, two different docking programs were used, AutoDock and FlexX, which use different types of scoring functions and searching methods. The docking poses of all quinone compounds studied stayed in the same region in the trypanothione reductase. This region is a hydrophobic pocket near to Phe396, Pro398 and Leu399 amino acid residues. The compounds studied displays a higher affinity in trypanothione reductase (TR) than glutathione reductase (GR), since only two out of 28 quinone compounds presented more favorable docking energy in the site of human enzyme. The interaction of quinone compounds with the TR enzyme is in agreement with other studies, which showed different binding sites from the ones formed by cysteines 52 and 58. To verify the results obtained by docking, we carried out a molecular dynamics simulation with the compounds that presented the highest and lowest docking energies. The results showed that the root mean square deviation (RMSD) between the initial and final pose were very small. In addition, the hydrogen bond pattern was conserved along the simulation. In the parasite enzyme, the amino acid residues Leu399, Met400 and Lys402 are replaced in the human enzyme by Met406, Tyr407 and Ala409, respectively. In view of the fact that Leu399 is an amino acid of the Z site, this difference could be explored to design selective inhibitors of TR. Docking and molecular dynamics simulation of genuine compounds with trypanocidal activity  相似文献   

15.
Stilbene analogs are a new class of anti-inflammatory compounds that effectively inhibit COX-2, which is the major target in the treatment of inflammation and pain. In this study, docking simulations were conducted using AutoDock 4 software that focused on the binding of this class of compounds to COX-2 protein. Our aim was to better understand the structural and chemical features responsible for the recognition mechanism of these compounds, and to explore their binding modes of interaction at the active site by comparing them with COX-2 co-crystallized with SC-558. The docking results allowed us to provide a plausible explanation for the different binding affinities observed experimentally. These results show that important conserved residues, in particular Arg513, Phe518, Trp387, Leu352, Leu531 and Arg120, could be essential for the binding of the ligands to COX-2 protein. The quality of the docking model was estimated based on the binding energies of the studied compounds. A good correlation was obtained between experimental logAr values and the predicted binding energies of the studied compounds.  相似文献   

16.
Predicting absolute ligand binding free energies to a simple model site   总被引:2,自引:0,他引:2  
A central challenge in structure-based ligand design is the accurate prediction of binding free energies. Here we apply alchemical free energy calculations in explicit solvent to predict ligand binding in a model cavity in T4 lysozyme. Even in this simple site, there are challenges. We made systematic improvements, beginning with single poses from docking, then including multiple poses, additional protein conformational changes, and using an improved charge model. Computed absolute binding free energies had an RMS error of 1.9 kcal/mol relative to previously determined experimental values. In blind prospective tests, the methods correctly discriminated between several true ligands and decoys in a set of putative binders identified by docking. In these prospective tests, the RMS error in predicted binding free energies relative to those subsequently determined experimentally was only 0.6 kcal/mol. X-ray crystal structures of the new ligands bound in the cavity corresponded closely to predictions from the free energy calculations, but sometimes differed from those predicted by docking. Finally, we examined the impact of holding the protein rigid, as in docking, with a view to learning how approximations made in docking affect accuracy and how they may be improved.  相似文献   

17.
In the present work, several computational methodologies were combined to develop a model for the prediction of PDE4B inhibitors' activity. The adequacy of applying the ligand docking approach, keeping the enzyme rigid, to the study of a series of PDE4 inhibitors was confirmed by a previous molecular dynamics analysis of the complete enzyme. An exhaustive docking procedure was performed to identify the most probable binding modes of the ligands to the enzyme, including the active site metal ions and the surrounding structural water molecules. The enzyme-inhibitor interaction enthalpies, refined by using the semiempirical molecular orbital approach, were combined with calculated solvation free energies and entropy considerations in an empirical free energy model that enabled the calculation of binding free energies that correlated very well with experimentally derived binding free energies. Our results indicate that both the inclusion of the structural water molecules close to the ions in the binding site and the use of a free energy model with a quadratic dependency on the ligand free energy of solvation are important aspects to be considered for molecular docking investigations involving the PDE4 enzyme family.  相似文献   

18.
To investigate the relative importance of size and polarizability in ligand binding within proteins, we have determined the crystal structures of pseudo wild-type and cavity-containing mutant phage T4 lysozymes in the presence of argon, krypton, and xenon. These proteins provide a representative sample of predominantly apolar cavities of varying size and shape. Even though the volumes of these cavities range up to the equivalent of five xenon atoms, the noble gases bind preferentially at highly localized sites that appear to be defined by constrictions in the walls of the cavities, coupled with the relatively large radii of the noble gases. The cavities within pseudo wild-type and L121A lysozymes each bind only a single atom of noble gas, while the cavities within mutants L133A and F153A have two independent binding sites, and the L99A cavity has three interacting sites. The binding of noble gases within two double mutants was studied to characterize the additivity of binding at such sites. In general, when a cavity in a protein is created by a "large-to-small" substitution, the surrounding residues relax somewhat to reduce the volume of the cavity. The binding of xenon and, to a lesser degree, krypton and argon, tend to expand the volume of the cavity and to return it closer to what it would have been had no relaxation occurred. In nearly all cases, the extent of binding of the noble gases follows the trend xenon>krypton>argon. Pressure titrations of the L99A mutant have confirmed that the crystallographic occupancies accurately reflect fractional saturation of the binding sites. The trend in noble gas affinity can be understood in terms of the effects of size and polarizability on the intermolecular potential. The plasticity of the protein matrix permits repulsion due to increased ligand size to be more than compensated for by attraction due to increased ligand polarizability. These results have implications for the mechanism of general anesthesia, the migration of small ligands within proteins, the detection of water molecules within apolar cavities and the determination of crystallographic phases.  相似文献   

19.
We have recently generated a new mutant of cytochrome b(562) (cytb(562)) in which Met7, one of the axial heme ligands, is replaced by Ala (M7A cytb(562)). The M7A cytb(562) can bind heme and the UV-visible absorption spectrum is of a typical high-spin ferric heme. To investigate the effect of the lack of Met7 ligation on the structural integrity of cytb(562), thermal transition analyses of M7A cytb(562) were conducted. From the thermodynamic parameters obtained, it is concluded that the folding of M7A cytb(562) is comparable to the apoprotein despite the presence of heme. On the other hand, exogenous ligands such as cyanide and azide ions are readily bound to the heme iron, indicating that the axial coordination site is available for substrate binding. The peroxidase activity of this mutant is thus examined to evaluate new enzymatic function at this site and M7A cytb(562) was found to catalyze an oxidation reaction of aromatic substrates with hydrogen peroxide. These observations demonstrate that the Met7/His102 bis-ligation to the heme iron is crucial for the stable folding of cytb(562), whereas the functional conversion of cytb(562) is successfully achieved by the loose folding together with the open coordination site.  相似文献   

20.
Predicting absolute protein–ligand binding affinities remains a frontier challenge in ligand discovery and design. This becomes more difficult when ionic interactions are involved because of the large opposing solvation and electrostatic attraction energies. In a blind test, we examined whether alchemical free-energy calculations could predict binding affinities of 14 charged and 5 neutral compounds previously untested as ligands for a cavity binding site in cytochrome c peroxidase. In this simplified site, polar and cationic ligands compete with solvent to interact with a buried aspartate. Predictions were tested by calorimetry, spectroscopy, and crystallography. Of the 15 compounds predicted to bind, 13 were experimentally confirmed, while 4 compounds were false negative predictions. Predictions had a root-mean-square error of 1.95 kcal/mol to the experimental affinities, and predicted poses had an average RMSD of 1.7 Å to the crystallographic poses. This test serves as a benchmark for these thermodynamically rigorous calculations at predicting binding affinities for charged compounds and gives insights into the existing sources of error, which are primarily electrostatic interactions inside proteins. Our experiments also provide a useful set of ionic binding affinities in a simplified system for testing new affinity prediction methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号