首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— 45Ca2+ uptake by cerebral cortex synaptosomes was determined by gel filtration, glass fibre disc filtration under suction and by centrifugation with EGTA present. The filtration methods gave comparable results which were higher than values obtained by the centrifugation method. Uptake was increased by 25mM-K+ at all times investigated. The accumulated 45Ca2+ was bound within the synaptosome. 45Ca2+-ionophore A23187 stimulated uptake only during the first min; levels of intra-synaptosomal 45Ca2+ then returned to control values. A23187 also increased intra-synaptosomal Na+ and Cl contents. Botulinum toxin inhibits the K.+-stimulated release of [14C]ACh from synaptosomes but the ionophore released [14C]ACh from both normal and botulinum-treated preparations in a Ca2+-dependent manner. However, it also elicited Ca2+-dependent release of [choline. Increased extracellular Ca2+ (10 mM and 20 mM) released [14C]ACh (but not [14C]choline) from both normal and botulinum-treated synaptosomes. It is concluded that botulinum toxin interferes with the provision of Ca2+ essential for the mechanism of ACh release.  相似文献   

2.
Abstract: Using isolated cholinergic synaptosomes prepared from Torpedo electric organ, we studied the effects of N,N'-dicyclohexylcarbodiimide (DCCD) on acetylcholine (ACh) synthesis, compartmentation, and release after stimulation. Whereas ACh synthesis was unchanged, ACh compartmentation inside synaptosomes was affected by the presence of DCCD. In resting conditions, the uptake into the synaptic vesicle pool of newly synthesized ACh (i.e., [14C]ACh synthesized in the presence of the drug) was progressively and markedly inhibited as the duration of DCCD preincubation was increased, whereas compartmentation of endogenous ACh was unchanged in the presence of DCCD. After stimulation, the release of endogenous ACh from DCCD-treated synaptosomes was similar to that of control, in contrast to the release of [14C]ACh, which was markedly inhibited. This inhibition was observed whatever the conditions of stimulation used (gramicidin D, calcium ionophore A23187, or KCI depolarization). The study of the compartmentation of [14C]ACh during stimulation revealed a transfer of highly labeled ACh from the free to the bound ACh compartment in the presence of DCCD, suggesting the existence of several ACh subcompartments within the free and bound ACh pools. The present results are discussed in comparison with the previously reported effects of vesamicol (AH5183) on ACh compartmentation and release.  相似文献   

3.
Abstract: The effect of platelet-activating factor (PAF) on neurotransmitter release from rat brain slices prelabeled with [3H]acetylcholine ([3H]ACh), [3H]norepinephrine ([3H]NE), or [3H]serotonin ([3H]5-HT) was studied. PAF inhibited K+ depolarization-induced [3H]ACh release in slices of brain cortex and hippocampus by up to 59% at 10 n M but did not inhibit [3H]ACh release in striatal slices. PAF did not affect 5-HT or NE release from cortical brain slices. The inhibition of K+-evoked [3H]ACh release induced by PAF was prevented by pretreating tissues with several structurally different PAF receptor antagonists. The effect of PAF was reversible and was not affected by pretreating brain slices with tetrodotoxin. PAF-induced inhibition of [3H]ACh release was blocked 90 ± 3 and 86 ± 2% by pertussis toxin and by anti-Gαi1/2 antiserum incorporated into cortical synaptosomes, respectively. The results suggest that PAF inhibits depolarization-induced ACh release in brain slices via a Gαi1/2 protein-mediated action and that PAF may serve as a neuromodulator of brain cholinergic system.  相似文献   

4.
Abstract: To test the hypothesis that a pool of newly synthesized acetylcholine (ACh) turns over independently of preformed ACh, compartmentation and K+ -evoked release of ACh were examined in perfused synaptosomal beds intermittently stimulated by 50 m M K+. In resting synaptosomes, endogenous and labeled ACh was distributed between synaptic vesicles and the cytoplasm in a dynamic equilibrium ratio of 4:6. In the absence of new ACh synthesis, five sequential K+ -depolarizations caused a decremental release of preformed labeled ACh totaling 30% of the initial transmitter store. Further depolarization evoked little additional release, despite the fact that 60% of the labeled ACh remained in these preparations. Release of the preformed [14C]ACh was unaltered while new ACh was being synthesized from exogenous [3H]choline. Since the evoked release of [3H]ACh was maintained while that of [14C]ACh was decreasing, the [3H]ACh/[14C]ACh ratio in perfusate increased with each successive depolarization. This ratio was six to ten times higher than the corresponding ratio in vesicles or cytoplasm. These results indicate that the newly synthesized ACh did not equilibrate with either the depot vesicular or cytoplasmic ACh pools prior to release.  相似文献   

5.
SYNTHESIS AND RELEASE OF [14C]ACETYLCH0LINE IN SYNAPTOSOMES   总被引:4,自引:2,他引:2  
Abstract— Synaptosomes took up [14C]choline, about half or more of which was converted to [I4C]acetylcholine when incubated in an appropriate medium containing 1 to 5 μ M-[14C] choline and neostigmine. The amount of [14C]acetylcholine synthesized in synaptosomes increased in parallel with the increase of Na+ concentration in the incubation medium. The effect of Na+ on the uptake of [I4C]choline into synaptosomes was dependent on the concentration of choline in the incubation medium.
About 25 per cent of [14C]acetylcholine synthesized in synaptosomes was released rapidly into the medium by increasing the K+ concentration in the medium from 5 m m to 35 m m . The change of Na+ concentration hardly affected the release of [14C]acetylcholine. The effect of K+ on the release of [14C]choline was rather small compared to that on [14C] acetylcholine. Ouabain promoted the release of [14C]acetylcholine.  相似文献   

6.
Abstract— —Continuous cell lines, primary cell cultures derived from embryonic CNS, and homogenates made from adult and embryonic CNS were compared with respect to their lipid pattern and their ability to bind 125I-labelled tetanus toxin. In parallel experiments de novo synthesis of gangliosides in the cell lines was studied, using [14C]glucosamine as precursor. Of the total lipid only gangliosides were specifically labelled by [14C]glucosamine. The patterns of the de novo synthesized gangliosides corresponded to those present in the respective cells.
Pronounced binding of 125I-labelled toxin was only detectable in tissues containing long-chain gangliosides (ganglioside C which represents GDIb and GTI).
Accordingly, hybrid (neuroblastoma x glioma) cells, due to their lack of long-chain gangliosides, bound just-discernible amounts of labelled toxin. When previously exposed to gangliosides, their binding of tetanus toxin tremendously increased.
It was concluded that only the long-chain gangliosides in the neuronal cells are functionally involved in the binding of the tetanus toxin and that these acceptors of tetanus toxin can be transplanted.  相似文献   

7.
Studies on the Osmotic Disruption and Resealing of Synaptosomes   总被引:2,自引:2,他引:0  
Abstract: The release of lactate dehydrogenase and K+ when synaptosomes are exposed to resuspension in media of various osmolarity has been investigated in order to measure their disruption. Even when resuspended in distilled water a significant percentage (10–20%) of lactate dehydrogenase and K+ remains unreleased. The particles containing these substances sediment to the same density as synaptosomes. Synaptosomes retaining their internal organlles after hypoosmotic treatment can be seen in electron micrographs. Resealing of disrupted synaptosomes was measured by the inclusion of [14C]sucrose. The resealing is spontaneous, essentially complete (80–90%) within 20 min and not noticeably affected by temperature, pH, or the addition of fusogen. The synaptosome preparation after hypoosmotic disruption will therefore contain some undisrupted synaptosomes with some or all of their complement of cytoplasmic constituents, as well as resealed synaptosomes. The retention of the ability of the hypoosmotically treated preparation to convert [14C]choline to [14C]acetylcholine is demonstrated as an example of the disproportionate effect these undisrupted particles have on its properties.  相似文献   

8.
Abstract— Slices of electric organ of Torpedo marmorata were chopped and incubated in a saline-urea-sucrose medium. This preparation of minced tissue exhibited a relative enrichment in ACh and nerve endings, which was attributed to a loss of electroplaque cytoplasm. Electron microscopic controls showed nerve endings of normal morphology, some of them forming 'chaplets' separated from electro-plaques. Miniature endplate potentials were recorded on sealed fragments also present in this preparation. ACh levels remained unchanged during incubation periods as long as 19 h. The time course of the incorporation of [1-14C]acetate of [2-14C]pyruvate into ACh pools was studied. These incorporations were similarly affected by the choline added to the medium. In the presence of increasing choline concentrations (up to 10-4 m ), the incorporation of [14C]acetate or [14C]pyruvate into ACh increased. They both diminished when choline was added above 10-4M. The ACh content of the tissue was not affected by added choline. From the constancy of ACh levels in the presence of various choline concentrations and from the steady state of our preparation, we can conclude that the release of transmitter varied in parallel to the incorporation rate of the precursor of the acetyl moiety of ACh. This fact was also found using the efflux of [14C]acetate as an evaluation of ACh release. The values of release calculated by this method were in good agreement with those determined from the incorporations of acetate and pyruvate into ACh. It is suggested that the primary action of choline is on its high affinity carrier system. This triggers a secondary action on the ACh release mechanisms.  相似文献   

9.
Abstract: Little is known about the specificity of the mechanisms involved in the synthesis and release of acetylcholine for the acetyl moiety. To test this, blocks of tissue from the electric organ of Torpedo were incubated with either [1-14C]acetate or [1-14C]propionate, and the synthesis, storage, and release of [1-14C]acetylcholine and [14C]propionylcholine were compared. To obtain equivalent amounts of the two labeled choline esters, a 50-fold higher concentration of propionate than of acetate was needed. Following subcellular fractionation, similar proportions of [14C]acetylcholine and [14C]propionylcholine were recovered with synaptosomes and with synaptic vesicles. Furthermore, both labeled choline esters were protected to a similar extent from degradation during homogenization of tissue in physiological medium, indicating that the two choline esters were equally well incorporated into synaptic vesicles. Yet depolarization of tissue blocks by 50 m M KCI released much less [14C]propionylcholinc than [14C]acetylcholine. During field stimulation of the tissue blocks, the difference between the releasibility of the two choline esters was less marked, but acetylcholine was still released in preference to propionylcholine. Evidence for specificity of the release mechanism was also obtained when the release of the two choline esters in response to field stimulation was compared in tissue blocks preincubated with both [3H]choline and [14C]propionate.  相似文献   

10.
Abstract: The K+-induced release of amino acids and dopamine from synaptosomes of basal ganglia and substantia nigra of sheep was studied. K+ (56 mM) caused an increase in the release of GABA from caudate, putamen, globus pallidus, and substantia nigra, the increased release being 227, 171, 198, and 366%, respectively, compared with samples incubated without stimulation. The release of glutamate was also increased by 56 mM-K+ (136–183%) from all regions except the globus pallidus, and a significant release of aspartate was only seen in response to K+ stimulation of synaptosomes from putamen (50%). Veratrine (75 μM) also stimulated a similar pattern of amino acid release from these regions. Regional correlation was shown between the presence of an uptake system for an amino acid and its evoked release. [14C]Dopamine formed from L-[U-14C]tyrosine was released only from caudate and putamen synaptosomes by K+ stimulation, the increases being 105% and 74%, respectively. Synthesis of [14C]dopamine from L-[U-14C]tyrosine occurred only in synaptosomes prepared from these two regions and was not detected in synaptosomes from substantia nigra or globus pallidus although whole-tissue homogenates of substantia nigra were able to synthesise dopamine.  相似文献   

11.
Abstract: The ability of adenosine agonists to modulate K+-evoked 4D†-[3H]aminobutyric acid ([3H]GABA) and acetylcholine (ACh) release from rat striatal synaptosomes was investigated. The A2a receptor-selective agonist CGS 21680 inhibited Ca2+-dependent [3H]GABA release evoked by 15 m M KCI with a maximal inhibition of 29 ± 4% (IC50 of ∼4 ± 10 −12 M ). The relative order of potency of three agonists was CGS 21680 ± 5'- N -ethylcarboxamidoadenosine > R-phenylisopropyladenosine (R-PIA), with the inhibition being blocked by A2a receptor-selective antagonists (CP 66,713 and CGS 15943A) but not by the A1-selective antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). When release of [3H]GABA was evoked by 30 mM KCI, no significant inhibition was observed. In contrast, CGS 21680 stimulated the release of [3H]ACh evoked by 30 m M KCI, with a maximal stimulation of 26 ± 5% (IC50 of ∼10−11 M ). This effect was blocked by CP 66,713 but not by DPCPX. The A1 agonist R -PIA inhibited [3H]ACh release, an effect blocked by DPCPX. It is concluded that adenosine A2a receptors are present on both GABAergic and cholinergic striatal nerve terminals where they inhibit and stimulate transmitter release, respectively. Key Words : GABA—Acetylcholine—Adenosine receptors—Striatum.  相似文献   

12.
Abstract: The effect of tetanus toxin on the uptake and release of radiolabelled transmitters from slices prepared from substantia nigra (SN) and striatum of rats has been investigated. Tetanus toxin-500–750 mouse lethal doses (MLD)-injected into the SN 6 h before preparing the slices significantly reduced the calcium-dependent, potassium-evoked release of [3H]GABA. Endogenous GABA levels in the SN and [3H]GABA uptake by nigral slices were unaffected by pretreatment with the toxin. Injections of tetanus toxin (1000–2000 MLD) into the striatum significantly reduced the calcium-dependent, potassium-evoked release of [14C]GABA and also [3H]dopamine, but had no effect on the K+-evoked release of [3H]5-hydroxytryptamine or [14C]acetylcholine. It is concluded that tetanus toxin inhibits GABA release directly and not by interference with synthesis or inactivation processes.  相似文献   

13.
Abstract: The abilities of d -fenfluramine ( d -F) and that of d -norfenfluramine ( d -NF) to inhibit [3H]serotonin ([3H]5-HT) accumulation in normal and reserpinized synaptosomes were compared to establish to what extent the serotonin-releasing activity of the two drugs might contribute to reduced accumulation of [3H]5-HT. The results indicate that the inhibitory action of ( d -NF) on [3H]5-HT accumulation is due principally to its ability to release [3H]5-HT. In contrast, the interference of release in accumulation studies does not seem to play an important role for d -F, suggesting that release from the granular pool and true uptake inhibition are two different mechanisms by which d -F affects serotonin neurons in vitro .  相似文献   

14.
Abstract— Isolated frog or toad hemicords were incubated for 40 min with either [14C]glycine, [3H]GABA, l -[14C]glutamate. l -[14C]aspartate, l -[14C]serine, l [14C]threonine or l -[3H]leucine, and the release of these compounds from the cord was measured under resting conditions and during electrical stimulation. Stimulation of spinal roots produced no significant change in the efflux of any of the compounds tested. Direct stimulation of the rostral cord however, produced a large increase in the efflux of [14C]glycine, [3H]GABA, l -[14C]glutamate and l -[14C]aspartate. These increased effluxes were calcium dependent, the effects of stimulation being reduced in a calcium-free, or magnesium-supplemented (10 mM) medium. Stimulation failed to produce an increase in the efflux of l -[14C]serine, l -[14C]threonine, l -[14H]leucine, [14C]mannitol or [14C]urea. These results are consistent with the suggestions that glycine, GABA, glutamate and aspartate may be synaptic transmitters in the spinal cord.  相似文献   

15.
Abstract: Synaptosomes from normoxic and hypoxic rats were incubated aerobically in the presence and absence of veratridine. In the absence of veratridine, no significant difference was observed between the two types of preparation regarding either ATP/ADP ratio or 14CO2 or [14C]acetylcholine synthesis from D-[U-14C]glucose. However, in the presence of veratridine, significant reductions in the output of 14CO2 and [14C]acetylcholine by synaptosomes from hypoxic rats were apparent. It was concluded that irreversible metabolic lesions occur at the synapse as a result of hypoxia, which are apparent only when the metabolism of the preparation is accelerated to a level comparable with the maximal rate occurring in vivo. The presence of such lesions is further evidenced by the significant reductions in ATP/ADP ratio, 14CO2 output, and [14C]acetylcholine synthesis that occur in synaptosomes from hypoxic rats made anoxic in vitro and permitted to recover. Such decreases are not seen when synaptosomes from normoxic rats are similarly treated.  相似文献   

16.
Abstract— Uptake systems for [14C]aspartate and [14C]glutamate were characterized in two distinct synaptosomal fractions solated from rabbit retina. The P, synaptosomal fraction was highly enriched in large photoreceptor cell synaptosomes but contained very few conventional sized synaptosomes from amacrine, horizontal or bipolar cells. In contrast, the P2 synaptosomal fraction contained numerous conventional sized synaptosomes and was virtually free of photoreceptor cell synaptosomes. Both synaptosomal fractions took up [14C]aspartate and [14C]glutamate with high affinity [ K m= 1–2μM). Uptake characteristics were similar to those described for high affinity uptake systems in brain synaptosomes, i.e. saturation kinetics; temperature and Na+ dependence. Although the presence of a high affinity uptake system is not a definitive criterion for demonstration of functional neurotransmitter systems, it is an important and necessary prerequisite and can thus be considered as supportive evidence for the involvement of asparate and glutamate in neurotransmission in rabbit retina.  相似文献   

17.
Abstract: The present work tested whether pharmacological activation of protein kinase C (PKC) influences the release of [3H]-acetylcholine ([3H]ACh) synthesized in the presence of vesamicol, an inhibitor of the vesicular acetylcholine transporter (VAChT). Newly synthesized [3H]ACh was released from hippocampal slices by field stimulation (15 Hz) in the absence of vesamicol, but as expected [3H]ACh synthesized during exposure to vesamicol was not released significantly by stimulation. Treatment of slices with the PKC activator phorbol myristate acetate (PMA) decreased the inhibitory effect of vesamicol on [3H]ACh release. The effect of PMA was dose-dependent, was sensitive to calphostin C, a PKC-selective inhibitor, and could not be mimicked by α-PMA, an inactive phorbol ester. PMA did not alter the release of [3H]ACh in the absence of vesamicol, suggesting that the site of PKC action could be related to the VAChT. In agreement with this observation, immunoprecipitation of VAChT from 32P-labeled synaptosomes showed that phosphorylation occurs and that incorporation of 32P in the VAChT protein increases in the presence of PMA. We suggest that PKC alters the output of [3H]ACh formed in the presence of vesamicol and also provide circumstantial evidence for a role of phosphorylation of VAChT in this process.  相似文献   

18.
Abstract: K+-evoked acetyl[3H]choline ([3H]ACh) release was inhibited in a concentration-dependent manner by apomorphine and the D2 agonist quinpirole in striatal slices prepared from euthyroid and hypothyroid rats. However, there was a significant increase in the maximum inhibition observed with both agonists in the hypothyroid compared with the euthyroid group, which paralleled the increased D2 agonist sensitivity reported for stereotyped behavior. The D2 antagonist raclopride decreased, and the D, antagonist SCH 23390 increased, the inhibition of [3H]ACh release by apomorphine, confirming an inhibitory role for D2 receptors and an opposing role for D1 receptors. Because there is no difference in D1 or D2 receptor concentration between the euthyroid and hypothyroid groups, it is suggested that thyroid hormone modulation of D2 receptor sensitivity affects a receptor-mediated event. Following intrastriatal injection of pertussis toxin (PTX), apomorphine no longer inhibited [3H]ACh release. In fact, increased [3H]- ACh release was observed, an effect reduced by SCH 23390, providing evidence that D1 receptors enhance [3H]- ACh release, and confirming that a PTX-sensitive G protein mediates the D2 response. As it has been reported that thyroid hormones modulate G protein expression, this mechanism may underlie their effect on dopamine agonist- mediated inhibition of ACh.  相似文献   

19.
Lumiflavin and Lumichrome Transport in the Central Nervous System   总被引:1,自引:0,他引:1  
Abstract: The transport of the lipid-soluble sugarless flavins, [14C]lumiflavin and [14C]lumichrome, into and from the isolated choroid plexus and brain slices was studied in vitro. The isolated choroid plexus accumulated both [14C] flavins by a saturable, energy-requiring process that did not depend on binding or intracellular metabolism of the [14C] flavins. Both sugar-containing and sugarless flavins, as well as cyclic organic acids, significantly inhibited [14C]lumiflavin and [14C]Iumichrome uptake by the isolated choroid plexus. Within 2.5 min, 75% of the [14C]lumiflavin accumulated by the isolated choroid plexus was released into the medium. Brain slices accumulated [14C]lumiflavin by a saturable process that did not meet all the criteria for active transport. Ninety-five percent of the [14C]lumiflavin accumulated by brain slices was released into the medium within 7.5 min. In vivo , 2 h after the intraventricular injection of 6.5 nmol [14C]lumiflavin, almost all of the [14C]flavin was cleared from the CNS. Addition of 3.5 μmol FMN to the intraventricular injectate significantly decreased the clearance of [14C]lumiflavin from the CNS. These studies document that the sugarless flavins are transported by the flavin transport systems in the CNS.  相似文献   

20.
Abstract— Choline acetyltransferase from bovine brain has been extensively purified to a specific activity of 2.5 μmol ACh/min mg protein. Attempts to isolate an acetyl enzyme intermediate after incubation of the enzyme with [1-14C]acetyl-CoA were unsuccessful. Such an intermediate could only be isolated using a 30-fold less purified enzyme preparation. The protein, binding 14C in this preparation, did not correspond to choline acetyltransferase as shown by disc-electrophoresis. The highly purified enzyme could, however, be labelled when choline acetyltransferase was immobilized on a mercuribenzoate sepharose gel and incubated with [1-14C]acetyl-CoA. Subsequently, the immobilized labelled enzyme or the labelled enzyme which had been released by cysteine from the gel. formed ACh after incubation with choline. The labelling and the following formation of [14C]ACh was pH dependent.
Masking htstidine residues of the enzyme with diethylpyrocarbonate almost abolished the labelling of the immobilized enzyme and completely abolished the formation of [14C]ACh. Enzyme inhibited with 5.5'-dithiobis(2-nitrobenzoate) was partially reactivated when the thionitrobenzoatederivative was cleaved by KCN treatment to a thiocyanatederivalive. A reaction mechanism for ChAT is proposed based on the present data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号