首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Between 1974 and 2004, Tijuana Estuary's natural salt marsh underwent pulse disturbance (an 8-month nontidal period in 1984), which caused the sudden loss of two short-lived halophytes ( Salicornia bigelovii [Sb] and Suaeda esteroa [Se]) and rapid dominance of a productive native succulent ( Sa. virginica [Sv]), plus ramp disturbance that led to gradual codominance by Jaumea carnosa (Jc) (another productive succulent) by 1994. Species richness was high in 1974 (4.2 species/0.25-m2 plot), low in 1984 (1.4 species), and not fully recovered by 1994 (3.7 species) or 2004 (3.9 species). Restoration efforts (reseeding former habitat and excavating and planting new sites) did not recover the populations of Sb or Se. In a 1997 project, plantings of these and six other native halophytes survived initially, but by 2005, short-lived species were lost and Sv and Jc dominated, as in the natural marsh. In a 2000 restoration site, planting mortality was high for five species, but Sv recruited voluntarily and dominated by 2005. We attribute recent vegetation changes to frequent catastrophic storms, flooding, and sedimentation, which contrasted strongly with the benign conditions of decades prior to 1974. Sediment blocked tidal channels in 1984 and gradually elevated the marsh plain, degrading the diverse salt marsh and hindering efforts to restore it. Future restoration efforts will require even greater control over sediment inflows plus contouring sites to include natural topographic features that appear critical to sustaining high species richness and evenness.  相似文献   

2.
Functional responses of estuarine fish species to environmental perturbations such as wetland impoundment, changes in water quality, and sediment accretion are investigated. The study focuses on the feeding, growth and habitat use by California killifish (Fundulus parvipinnis), topsmelt (Antherinops affinis), and juvenile California halibut (Paralichthys californicus) in impacted coastal wetlands to provide an ecological basis for guidance on the management and restoration of these ecosystems. The ecology of California killifish, Fundulus parvipinnis, is closely tied with the marsh surface, which they access at high tide to feed and grow. Field estimates of food consumption show that killifish can increase their food intake by two-fold to five-fold by adding marsh surface foods to their diet. Bioenergetics modeling predicts that killifish can grow over an order of magnitude faster if they add intertidal marsh surfaces to their subtidal feeding areas. Tidal inlet closures and increased marsh surface elevations due to sediment accretion can restrict killifish access to the marsh surface, affecting its growth and fitness. An open tidal inlet and tidal creek networks that allow killifish to access the marsh at high tide must be incorporated into the restoration design. Topsmelt and California halibut are also adversely affected by tidal inlet closures. Food consumption rates of topsmelt are 50% lower when the tidal inlet is closed, compared to when the estuary is tidally-flushed. Tidal inlet closures inadvertently induce variations in water temperature and salinity and negatively affect growth of juvenile California halibut. Tidal creek networks which consist of channels and creeks of various orders are also important to halibut. Large halibut (>200 mm TL) inhabit deeper, high order channels for thermal refuge, while small halibut (<120 mm TL) are abundant in lower order channels where they can feed on small-sized prey which are typically less abundant in high order channels. Maintaining an open tidal inlet, implementing sediment management programs and designing coastal wetlands with tidal creek networks adjacent to intertidal salt marsh habitat (for fish access) are key elements that need to be considered during the planning and implementation of coastal wetland restoration projects.  相似文献   

3.
Bergen  A.  Alderson  C.  Bergfors  R.  Aquila  C.  Matsil  M.A. 《Wetlands Ecology and Management》2000,8(2-3):185-195
In the seven years since 2.5 million liters of No. 2fuel oil spilled into the Arthur Kill, the Salt MarshRestoration Team of New York City Parks has restoredSpartina alterniflora(Salt Marsh Cordgrass)to 2.43 ha of shoreline, planting seedlings andtransplants in areas of low salt marsh severelyimpacted by oil. Restoration was undertaken to haltsurface erosion and the loss of surviving vegetationand remnant peat. Biomass, stem density, flowerdensity, height of plants, rhizome spread, basal areaand plant cover were monitored for a minimum of threeyears between 1993 and 1997. Unplanted SeverelyImpacted (USI) reference sites and Existing Vegetation(EV) in the severe impact zone were also monitored.Ninety-five percent of the surface area denuded ofvegetation by oil at USI reference sites remainedunvegetated seven years after the spill. SedimentTotal Petroleum Hydrocarbon (TPH) content was measuredbefore and after plantings and these results indicateda high level of persistent contamination. Residual oilwas not the determining factor in the survival or lossof Spartina alternifloraseedlings andtransplants at planting sites. Instead, plantspacing, shoreline morphology, wave energy generatedby passing vessels, and predation by Brantacanadensis(Canada Goose) were the most criticalfactors. Three years after planting, the abovegroundbiomass at two of the three restoration sites wascomparable to the biomass at existing and restoredeastern North American salt marshes. Seedlings spaced30 cm apart provided rapid cover at two of three sitesand contributed to overall survival. Where initialsurvival was high, goose predation was low. Whereinitial survival was low, shoreline morphology andwave energy were the primary causes of mortality, withgoose predation an important secondary cause. Bedformsat one planting site indicated a high energyshoreline as did sediment texture results for allsites. The fetch along the Arthur Kill is not longenough to generate such high-wave energy, but passingvessels do generate plunging and surging breakers ona regular basis. A reduction in the frequency of oilspills since 1990 has been beneficial to the saltmarshes along the Arthur Kill. A reduction in otheranthropogenic stresses would further enhance theplanted and existing vegetation.  相似文献   

4.
Efforts are underway to restore tidal flow in New England salt marshes that were negatively impacted by tidal restrictions. We evaluated a planned tidal restoration at Mill Brook Marsh (New Hampshire) and at Drakes Island Marsh (Maine) where partial tidal restoration inadvertently occurred. Salt marsh functions were evaluated in both marshes to determine the impacts from tidal restriction and the responses following restoration. Physical and biological indicators of salt marsh functions (tidal range, surface elevations, soil water levels and salinities, plant cover, and fish use) were measured and compared to those from nonimpounded reference sites. Common impacts from tidal restrictions at both sites were: loss of tidal flooding, declines in surface elevation, reduced soil salinity, replacement of salt marsh vegetation by fresh and brackish plants, and loss of fish use of the marsh.Water levels, soil salinities and fish use increased immediately following tidal restoration. Salt-intolerant vegetation was killed within months. After two years, mildly salt-tolerant vegetation had been largely replaced in Mill Brook Marsh by several species characteristic of both high and low salt marshes. Eight years after the unplanned, partial tidal restoration at Drakes Island Marsh, the vegetation was dominated bySpartina alterniflora, a characteristic species of low marsh habitat.Hydrologic restoration that allowed for unrestricted saltwater exchange at Mill Brook restored salt marsh functions relatively quickly in comparison to the partial tidal restoration at Drakes Island, where full tidal exchange was not achieved. The irregular tidal regime at Drakes Island resulted in vegetation cover and patterns dissimilar to those of the high marsh used as a reference. The proper hydrologic regime (flooding height, duration and frequency) is essential to promote the rapid recovery of salt marsh functions. We predict that functional recovery will be relatively quick at Mill Brook, but believe that the habitat at Drakes Island will not become equivalent to that of the reference marsh unless the hydrology is further modified.Corresponding Editor: R.E. Turner Manuseript  相似文献   

5.
Salt marshes exhibit striking vegetation zonation corresponding to spatially variable elevation gradients which dictate their frequency of inundation by the tides. The salt marshes in the upper Bay of Fundy, a dynamic hypertidal system, are of considerable interest due to increasing recognition of salt marsh ecosystem values and the extent of prior conversion of salt marshes to agricultural lands, much of which are no longer in use. To determine the suitability of two potential restoration sites at Beausejour Marsh in New Brunswick, Canada, geomatics technologies and techniques were used to assess vegetation and elevation patterns in an adjacent reference salt marsh and the proposed restoration sites. Light detection and ranging digital elevation models (DEMs) were created for the reference marsh and the restoration sites in both the spring (leaf-off) and late summer (leaf-on, maximum biomass) periods. Aerial photographs and Quickbird multispectral imagery were used to visually interpret vegetation zones on the reference marsh and were field validated using vegetation characteristics from quadrats referenced with differential GPS. Elevation limits of the salt marsh vegetation zones were extracted from the DEM of the reference marsh and applied to the DEM of the restoration sites to determine the percentage area of each site that would be immediately suitable for new salt marsh growth. Of the two restoration sites assessed, one had experienced significant subsidence since dyking; only about 40 % of the site area was determined to be of sufficient elevation for immediate vegetation colonization. The second site, while more than 88 % suitable, would require the installation of a large dyke on the landward side of the restoration site to prevent flooding of adjacent lands. This study provides essential high resolution elevation and vegetation zonation data for use in restoration site assessments, and highlights the usefulness of applied geomatics in the salt marsh restoration planning process.  相似文献   

6.
Experimental restoration of Halodule wrightii (shoalgrass) to its former range on Galveston Island, Texas, began in April 1994. We tested the effects of site, planting density, water depth, and fertilizer addition on survival and growth through June 1996. Temperature, salinity, light transmittance, turbidity, and sediment properties at two restoration sites, Redfish Cove and Snake Island Cove, were similar to those in naturally occurring grassbeds in nearby Christmas Bay. Halodule survival, coverage, and new shoot densities were affected by site (significantly higher at Redfish Cove than at Snake Island Cove, which eventually failed), by planting density (significantly higher when planted on 0.25-m or 0.5-m centers rather than on 1.0-m centers), and by water depth (significantly higher when planted in relatively shallow water). Propagation (spreading from transplant units) was significantly greater from 0.25-m or 0.5-m center plantings but was not consistently affected by site or water depth. Fertilizer enhanced propagation but not survival. After two years, Redfish Cove produced belowground biomass similar to that observed in Christmas Bay, but aboveground biomass remained significantly less. Snake Island Cove plant mortality in September 1995 may have been presaged by low root-rhizome carbohydrate levels observed in October 1994, but causes remain unknown. Further restoration of Halodule to Galveston Bay is possible at selected sites, but structural equivalency will take longer than two growing seasons to achieve.  相似文献   

7.
Efforts are underway to restore tidal flow in New England salt marshes that were negatively impacted by tidal restrictions. We evaluated a planned tidal restoration at Mill Brook Marsh (New Hampshire) and at Drakes Island Marsh (Maine) where partial tidal restoration inadvertently occurred. Salt marsh functions were evaluated in both marshes to determine the impacts from tidal restriction and the responses following restoration. Physical and biological indicators of salt marsh functions (tidal range, surface elevations, soil water levels and salinities, plant cover, and fish use) were measured and compared to those from nonimpounded reference sites. Common impacts from tidal restrictions at both sites were: loss of tidal flooding, declines in surface elevation, reduced soil salinity, replacement of salt marsh vegetation by fresh and brackish plants, and loss of fish use of the marsh. Water levels, soil salinities and fish use increased immediately following tidal restoration. Salt-intolerant vegetation was killed within months. After two years, mildly salt-tolerant vegetation had been largely replaced in Mill Brook Marsh by several species characteristic of both high and low salt marshes. Eight years after the unplanned, partial tidal restoration at Drakes Island Marsh, the vegetation was dominated bySpartina alterniflora, a characteristic species of low marsh habitat. Hydrologic restoration that allowed for unrestricted saltwater exchange at Mill Brook restored salt marsh functions relatively quickly in comparison to the partial tidal restoration at Drakes Island, where full tidal exchange was not achieved. The irregular tidal regime at Drakes Island resulted in vegetation cover and patterns dissimilar to those of the high marsh used as a reference. The proper hydrologic regime (flooding height, duration and frequency) is essential to promote the rapid recovery of salt marsh functions. We predict that functional recovery will be relatively quick at Mill Brook, but believe that the habitat at Drakes Island will not become equivalent to that of the reference marsh unless the hydrology is further modified.  相似文献   

8.
Despite their central role in lakeshore restoration, most littoral wetland plantings fail. The reasons for these failures are poorly understood, in part due to limited information on the effects of planting time, water depth, and propagation on the survival of emergent macrophyte plantings. We planted pots and prevegetated mats of softstem bulrush (Schoenoplectus tabernaemontani (C.C. Gmel.) Palla) at two different water depths (0–30 and 31–60 cm) in five lakes each month between May and September 2006 to evaluate the effects of planting month, water depth, and transplant type on the survival of planted S. tabernaemontani. Overall survival decreased from 73% at 30 days after planting to 40% pre-winter to 15% post-winter. The timing of planting was the most important factor influencing bulrush survival. Survival of bulrush planted later in the growing season is poor, regardless of the transplant type used, and should be avoided. During the optimal planting season of early-to-mid summer, transplants from pots are more likely to outperform mats, despite lower pre-planting biomass. Water depth is only important immediately after planting, after which time, its influence on successful establishment diminishes. Overall, our research indicated that key choices made by the practitioner can improve the likelihood that transplants establish in littoral wetland restorations.  相似文献   

9.
Re-establishing plant cover is essential for restoring ecosystem functions, but revegetation can be difficult in severe sites, such as salt marshes that experience hypersalinity and sedimentation. We tested three treatments (adding tidal creeks, planting seedlings in tight clusters, and rototilling kelp compost into the soil) in a site that was excavated to reinstate tidal flows and restore salt marsh. The magnitude of responses was the reverse of expectations, with tidal creeks having the least effect and kelp compost the most. On the marsh plain, kelp compost significantly increased soil organic matter (by 17% at 0–5 cm; p = 0.026 and 11.5% at 5–20 cm; p = 0.083), total Kjeldahl nitrogen (45% at 5–8 cm; p < 0.001) and inorganic nitrogen (35% at 5–8 cm; p < 0.006), and decreased bulk density (16% at 0–5 cm; p < 0.001 and 21% at 5–8 cm depth; p < 0.001) compared to control plots. Survivorship of kelp compost treated plantings increased, along with growth (> 50% increase in a growth index at 20 months after planting; p < 0.0001). In Spartina foliosa plots, kelp compost did not affect soil organic matter, but plants were taller (by ~11 cm; p = 0.003) and denser (47% more stems; p = 0.003). Planting seedlings 10-cm apart in tight clusters on the marsh plain increased survivorship by 18% (compared to 90-cm apart in loose clusters; p = 0.053), but not growth. Tidal creek networks increased survivorship of Batis maritima and Jaumea carnosa by ≥20% (p = 0.060 and 0.077, respectively). Kelp compost had a strong, positive influence on vegetation establishment by ameliorating some of the abiotic stress.  相似文献   

10.
Salt marshes restored through managed coastal realignment (MR) often develop slowly and show persistent differences in vegetation from natural marshes. Development might be constrained by the availability of propagules or poor suitability of the abiotic environment for their establishment. To distinguish between these factors, we compared vegetation colonization and environmental conditions at a salt marsh created by MR at Brancaster, Norfolk, UK, with five reference marshes, varying in age from 30 to circa 6,000 years. After 5 years, plant communities of the MR site remained different from those in mature reference marshes. In contrast, the communities of the youngest reference marsh were not significantly different from mature reference marshes. At the MR site, abundance of perennial and later‐successional species was low and large areas remained unvegetated. These differences are unlikely to be due to dispersal limitation, because 76% of the species from the local species pool colonized the site within 5 years. Although the annuals Salicornia europaea and Suaeda maritima were abundant by year 2, they were not ubiquitous until the end of the study. Tidal elevations of the MR site were suitable for vegetation development, but soil redox potentials were lower than that at the reference sites. Reducing conditions in the MR site appear to be the major cause of vegetation differences from the reference marshes, as they are associated with an abundance of bare ground and a small range of vegetation clusters. Measures to avoid low sediment redox potentials may have a great benefit in some salt marsh restoration projects.  相似文献   

11.
A growing number of studies have assessed the functional equivalency of restored and natural salt marshes. Several of these have explored the use of functional trajectories to track the increase in restored marsh function over time; however, these studies have disagreed as to the usefulness of such models in long‐term predictions of restored marsh development. We compared indicators of four marsh functions (primary production, soil organic matter accumulation, sediment trapping, and maintenance of plant communities) in 6 restored and 11 reference (matched to restored marshes using principal components analysis) salt marshes in the Great Bay Estuary. The restored marshes were all constructed and planted on imported substrate and ranged in age from 1 to 14 years. We used marsh age in a space‐for‐time substitution to track constructed salt marsh development and explore the use of trajectories. A high degree of variability was observed among natural salt marsh sites, displaying the importance of carefully chosen reference sites. As expected, mean values for constructed site (n = 6) and reference site (n = 11) functions were significantly different. Using constructed marsh age as the independent variable and functional indicator values as dependent variables, nonlinear regression analyses produced several ecologically meaningful trajectories (r 2> 0.9), demonstrating that the use of different‐aged marshes can be a viable approach to developing functional trajectories. The trajectories illustrated that although indicators of some functions (primary production, sediment deposition, and plant species richness) may reach natural site values relatively quickly (<10 years), others (soil organic matter content) will take longer.  相似文献   

12.
The salt marsh harvest mouse (Reithrodontomys raviventris) is an endangered species, endemic to the marshes of the San Francisco Bay, California, USA. This species is thought to feed primarily on pickleweed (Salicornia pacifica), although its diet is poorly understood, and a large proportion of remaining habitat for salt marsh harvest mice is managed for non-pickleweed vegetation to provide habitat for waterfowl. Using 2 sets of cafeteria trials, we tested food preferences of the salt marsh harvest mouse when offered a variety of plants and invertebrates from the Suisun Marsh, Solano County, California. In a set repeated menu, and unique seasonal menus, salt marsh harvest mice showed strong preferences for food types commonly grown for waterfowl, and also for non-native plants; in contrast, pickleweed was the most preferred during only some of the set and some of the seasonal trials. These results suggest that salt marsh harvest mice have a more flexible diet than previously thought, and will allow land managers in areas such as the Suisun Marsh to promote the growth of plants that provide foods that are preferred by both waterfowl and salt marsh harvest mice. © 2019 The Authors. The Journal of Wildlife Management published by Wiley Periodicals, Inc. on behalf of The Wildlife Society.  相似文献   

13.
Modeling Habitat Change in Salt Marshes After Tidal Restoration   总被引:4,自引:0,他引:4  
Salt marshes continue to degrade in the United States due to indirect human impacts arising from tidal restrictions. Roads or berms with inadequate provision for tidal flow hinder ecosystem functions and interfere with self‐maintenance of habitat, because interactions among vegetation, soil, and hydrology within tidally restricted marshes prevent them from responding to sea level rise. Prediction of the tidal range that is expected after restoration relative to the current geomorphology is crucial for successful restoration of salt marsh habitat. Both insufficient (due to restriction) and excessive (due to subsidence and sea level rise) tidal flooding can lead to loss of salt marshes. We developed and applied the Marsh Response to Hydrological Modifications model as a predictive tool to forecast the success of management scenarios for restoring full tides to previously restricted areas. We present an overview of a computer simulation tool that evaluates potential culvert installations with output of expected tidal ranges, water discharges, and flood potentials. For three New England tidal marshes we show species distributions of plants for tidally restricted and nonrestricted areas. Elevation ranges of species are used for short‐term (<5 years) predictions of changes to salt marsh habitat after tidal restoration. In addition, elevation changes of the marsh substrate measured at these sites are extrapolated to predict long‐term (>5 years) changes in marsh geomorphology under restored tidal regimes. The resultant tidal regime should be designed to provide habitat requirements for salt marsh plants. At sites with substantial elevation losses a balance must be struck that stimulates elevation increases by improving sediment fluxes into marshes while establishing flooding regimes appropriate to sustain the desired plants.  相似文献   

14.
We compare two successional models as guides for restoring native riparian understory species along a 160‐km stretch of the Sacramento River in California. In 2001 and 2007, we surveyed cover, frequency, and richness of native and exotic understory species in 15 sites planted (1989–1996) with overstory species to determine whether native understory species colonized naturally (passive relay floristics model). In 2007, we surveyed 20 additional sites (planted 1997–2003) in 14 of which understory species were planted (initial floristics model) to evaluate whether planting accelerated community recovery. We surveyed 10 remnant forests as references for successional trajectories. Mean cover and frequency of natives changed little over time in sites where they were not planted initially; increases in native cover in a few sites were primarily due to a single common species (Galium aparine). Species composition shifted from light‐demanding to shade‐adapted species, both exotic and native, in response to a doubling of overstory cover. Sites with high intensity understory plantings had greater cover and frequency of native understory species than unplanted sites, but were still low relative to reference forests. Light‐demanding natives (e.g., Artemisia douglasiana, Rubus ursinus, and grasses) established in sites where they were planted; however, a shade‐adapted species (Carex barbarae) did not survive well. Our research indicates that the passive relay floristics and the initial floristic composition approaches serve to restore a few common native understory species, but that planting species as site conditions become appropriate (active relay floristics model) will be needed to restore entire native understory communities.  相似文献   

15.
Tidal marshes are among the most threatened habitats on Earth because of their limited natural extent, a long history of human drainage and modification, and anticipated future sea‐level rise. Tidal marshes also provide services to humans and support species of high conservation interest. Consequently, millions of dollars have been spent on tidal marsh restoration throughout North America. Southern New England has a long history of tidal marsh restorations, often focused on removal of the invasive plant Phragmites australis. Working in 18 Connecticut marshes, we examined the bird community in 21 plots in restoration sites and 19 plots in reference sites. Restoration plots were divided into those in marshes where management involved restoring tidal flow and those where direct Phragmites control (e.g. cutting, herbicide) was used. Saltmarsh sparrows Ammodramus caudacutus, which are considered globally vulnerable to extinction, were less common where tidal flow had been restored than at reference sites and nested in only one of 14 tidal‐flow restoration plots. No abundance differences were found for large wading birds, willets Tringa semipalmata, or seaside sparrows Ammodramus maritimus. Vegetation at sites where tidal flow had been restored showed characteristics typical of lower‐elevation marsh, which is unsuitable for nesting saltmarsh sparrows. We conclude that, although tidal‐flow restorations in Connecticut control Phragmites and restore native saltmarsh vegetation, they produce conditions that are largely unsuitable for one of the highest conservation priority species found in eastern U.S. salt marshes.  相似文献   

16.
Tidal channels influence the distribution and composition of salt marsh vegetation in a San Francisco Bay salt marsh. Two channel networks in the Petaluma Marsh, Sonoma County, CA, were mapped and characterized using global positioning and geographic information systems. Plant species abundance was sampled on transects placed perpendicular to and extending away from the channel banks. The vegetation showed significant increases in species richness along channel banks and larger areas of effect which increased approximately linearly with channel size. Composition of species assemblages varies with distance from the channel bank and channel size. These results demonstrate that salt marsh plant assemblages, composed of both major and minor species, are distributed with respect to the channel network in Petaluma Marsh.  相似文献   

17.
The demand for an improved knowledge base for planning and management of tidal marsh restoration worldwide has become more fully recognized. In the Sacramento‐San Joaquin Bay Delta, California, U.S.A., concerns have arisen about the degradation of the Delta and key ecosystem services. One restoration method proposed includes intentionally breaching levees that protect agricultural lands to re‐establish a hydrology that encourages tidal marsh development. Our research investigated relevant constraints on vegetation establishment and expansion of key tidal marsh species. We transplanted three macrophyte species (Schoenoplectus acutus, Schoenoplectus californicus, and Typha latifolia) using two transplant types (rhizomes and adults) in locations that varied in hydrologic and edaphic conditions at Liberty Island, a post‐levee breach tidal marsh restoration site. Two years of monitoring revealed that transplanted adults outperformed rhizomes. In addition, S. californicus exhibited greater survival and vegetation expansion. S. californicus vegetation expansion covered a maximum area of approximately 23 m2, which is two orders of magnitude (OOM) greater than the maximum area covered by S. acutus (approximately 0.108 m2) and three OOM greater than T. latifolia (approximately 0.035 m2). Results suggest that hydrologic regime and degree of soil compaction are influential in controlling vegetation establishment and expansion. Greater vegetation expansion occurred in transplant sites characterized by a deeper surface layer of non‐compacted soil in conjunction with shorter durations of flooding. Information derived from this study is valuable to restoration planning in the Delta and other tidal marshes worldwide where these species occur, especially in terms of setting restoration goals and trajectories based on site‐specific environmental characteristics.  相似文献   

18.
Summary Tidal flooding is widely believed to be an important determinant of marsh plant distributions but has rarely been tested in the field. In New England the marsh elder Iva frutescens often dominates the terrestrial border of salt marshes and we examined its flood tolerance and distribution patterns. Marsh elders only occur at elevations where their roots are not subject to prolonged water table flooding. Consequently they are found on the terrestrial border of marshes and at lower elevations associated with drainage ditches and locally elevated surfaces. Marsh elders transplanted to elevations lower than they normally occur died within a year with or without neighbors and greenhouse tests revealed that I. frutescens is much less tolerant of flooded soil conditions than plants found at lower marsh elevations. We also manipulated the water table level of field plots and found that increasing or decreasing water table drainage led to enhanced and diminished I. frutescens performance, respectively. Our results demonstrate the importance of water table dynamics in generating spatial patterns in marsh plant communities and provide further evidence that supports the hypothesis that the seaward distributional limits of marsh plant populations are generally dictated by physical processes.  相似文献   

19.
Most restoration projects are not designed or assessed in ways that identify cause–effect relationships.When plants die, even detailed postmortem examinations cannot pinpoint causes; e.g., mortalities of 7% vs. 90% in two salt marsh transplantation projects were attributable to differences in hypersalinity and sedimentation, but other effects could not be ruled out. Adaptive restoration (the experimental testing of alternative approaches in restoration sites), however, can clarify cause–effect relationships, while simultaneously restoring plant diversity and informing future restoration efforts. Projects in Tijuana Estuary (California) and Greene Prairie (Wisconsin) demonstrate the approach: (1) A large field experiment at Tijuana Estuary showed that species-rich plantings of halophytes accelerated the development of ecosystem structure and function (over single-species plantings) while simultaneously vegetating an intertidal plain. The six-species assemblages produced more complex canopies and accumulated more biomass and nitrogen than singlespecies and unplanted plots. (2) Also at Tijuana Estuary, an experiment is testing the ability of tidal creek networks to accelerate revegetation and increase food-web support (via increased growth of plants, invertebrates, and fish) in an 8-ha project that simultaneously restored tidal flushing. (3) In Greene Prairie, the ability to establish 33 native species is being tested as replacements for an invasive grass (Phalaris arundinacea). In each case, the adaptive approach informs both the science and practice of restoration. Without experimentation, restorationists are hard-pressed to explain past mortality and to suggest better methods for restoring structure and function. Adaptive restoration can provide the knowledge required, especially when large projects are implemented as sequential modules with experiments that sequentially provide essential information.  相似文献   

20.
Constraints to grassland and open forest restoration (e.g., poor seed sources, yearly variation in establishment, and the persistence of weeds) necessitate the development of innovative methods to restore bunchgrass communities. We assessed the use of two native bunchgrass transplants, Bluebunch wheatgrass (Pseudoroegneria spicata) and Spreading needlegrass (Achnatherum richardsonii), for restoration within thinned montane forest communities of southeastern British Columbia, Canada. Fall and spring plantings were examined, either with or without glyphosate treatments to Pinegrass (Calamagrostis rubescens) neighbors. Calamagrostis rubescens is abundant in grassland affected by tree encroachment and may limit transplant establishment. Bunchgrass survival was positively associated (p < 0.05) with transplant size. Although P. spicata survival was greater (p < 0.01) with fall (81%) than with spring (44%) planting, survival of A. richardsonii was greater (p < 0.01) when planted in the spring (68 vs. 23%). Reduction of C. rubescens led to a relatively small but significant increase (p < 0.05) in bunchgrass survival by 7%. The summer after planting, changes in transplant tiller number varied by bunchgrass species, planting season, and treatment of neighboring C. rubescens. Removal of neighboring C. rubescens generally increased the number of tillers (or reduced tiller loss) but only within fall‐planted A. richardsonii and spring‐planted P. spicata. Both A. richardsonii and P. spicata transplants have potential for understory restoration within thinned montane forests, particularly using larger individuals, although to maximize survival, these species should be planted in the spring and fall, respectively. Reduction of C. rubescens may also enhance transplant survival and in some cases growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号