首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Xenopus staufen2 is required for anterior endodermal organ formation   总被引:1,自引:0,他引:1  
Defining the regulatory molecular networks involved in patterning the developing anterior endoderm is essential to understand how the pancreas, liver, stomach, and duodenum are discretely specified from each other. In this study, we analyzed the expression and function of the double-stranded RNA-binding protein Staufen2 in Xenopus laevis endoderm. We found that staufen2 was broadly expressed within the developing endoderm beginning at gastrulation becoming localized to the anterior endoderm at later stages. Through morpholino-mediated knockdown, we demonstrate that Staufen2 function is required for proper formation of the stomach, liver, and pancreas. We define that its function is required during gastrulation for proper patterning of the dorsal-ventral axis and that it acts to regulate expression of BMP signaling components.  相似文献   

4.
Mouse mutants have allowed us to gain significant insight into axis development. However, much remains to be learned about the cellular and molecular basis of early forebrain patterning. We describe a lethal mutation mouse strain generated using promoter-trap mutagenesis. The mutants exhibit severe forebrain truncation in homozygous mouse embryos and various craniofacial defects in heterozygotes. We show that the defects are caused by disruption of the gene encoding cellular nucleic acid binding protein (CNBP); Cnbp transgenic mice were able to rescue fully the mutant phenotype. Cnbp is first expressed in the anterior visceral endoderm (AVE) and, subsequently, in the anterior definitive endoderm (ADE), anterior neuroectoderm (ANE), anterior mesendoderm (AME), headfolds and forebrain. In Cnbp(-/-) embryos, the visceral endoderm remains in the distal tip of the conceptus and the ADE fails to form, whereas the node and notochord form normally. A substantial reduction in cell proliferation was observed in the anterior regions of Cnbp(-/-) embryos at gastrulation and neural-fold stages. In these regions, Myc expression was absent, indicating CNBP targets Myc in rostral head formation. Our findings demonstrate that Cnbp is essential for the forebrain induction and specification.  相似文献   

5.
During the development of the proventriculus (glandular stomach) of the chicken embryo, the endodermal epithelium invades into the surrounding mesenchyme and forms glands. The glandular epithelial cells produce pepsinogen, while the non-glandular (luminal) epithelial cells secrete mucus. Sonic hedgehog is expressed uniformly in the proventricular epithelium before gland formation, but its expression ceases in gland cells. Here we present evidence that down-regulation of Sonic hedgehog is necessary for gland formation in the epithelium using a specific inhibitor of Sonic hedgehog signaling and virus mediated overexpression of Sonic hedgehog. We also show that gland formation is not induced by down-regulation of Sonic hedgehog alone; a mesenchymal influence is also required.  相似文献   

6.
7.
8.
9.
Progenitor cells in the mouse olfactory epithelium generate over a thousand subpopulations of neurons, each expressing a unique odorant receptor (OR) gene. This event is under the control of spatial cues, since neurons in different epithelial regions are restricted to express region-specific subsets of OR genes. We show that progenitors and neurons express the LIM-homeobox gene Lhx2 and that neurons in Lhx2-null mutant embryos do not diversify into subpopulations expressing different OR genes and other region-restricted genes such as Nqo1 and Ncam2. Lhx2-/- embryos have, however, a normal distribution of Mash1-positive and neurogenin 1-positive neuronal progenitors that leave the cell cycle, acquire pan-neuronal traits and form axon bundles. Increased cell death in combination with increased expression of the early differentiation marker Neurod1, as well as reduced expression of late differentiation markers (Galphaolf and Omp), suggests that neuronal differentiation in the absence of Lhx2 is primarily inhibited at, or immediate prior to, onset of OR expression. Aberrant regional expression of early and late differentiation markers, taken together with unaltered region-restricted expression of the Msx1 homeobox gene in the progenitor cell layer of Lhx2-/- embryos, shows that Lhx2 function is not required for all aspects of regional specification of progenitors and neurons. Thus, these results indicate that a cell-autonomous function of Lhx2 is required for differentiation of progenitors into a heterogeneous population of individually and regionally specified mature olfactory sensory neurons.  相似文献   

10.
Nodal and Nodal-related factors play fundamental roles in a number of developmental processes, including mesoderm and endoderm formation, patterning of the anterior neural plate, and determination of bilateral asymmetry in vertebrates. pitx2, a paired-like homeobox gene, has been proposed to act downstream of Nodal in the gene cascade providing left-right cues to the developing organs. Here, we report that pitx2 is required early in the Nodal signaling pathway for specification of the endodermal and mesodermal germ layers. We found that pitx2 is expressed very early during Xenopus and zebrafish development and in many regions where Nodal signaling is required, including the presumptive mesoderm and endoderm at the blastula and gastrula stages and the prechordal mesoderm at later stages. In Xenopus embryos, overexpression of pitx2 caused ectopic expression of goosecoid and sox-17 and interfered with mesoderm formation. Overexpression of pitx2 in Xenopus animal cap explants partially mimics the effects of Nodal overexpression, suggesting that pitx2 is a mediator of Nodal signaling during specification of the endoderm and prechordal plate, but not during mesoderm induction. We further demonstrate that pitx2 is induced by Nodal signaling in Xenopus animal caps and that the early expression of zebrafish pitx2 is absent when the Nodal signaling pathway is inactive. Inhibition of pitx2 function using a chimeric EnR-pitx2 blocked specification of the mesoderm and endoderm and caused severe embryonic defects resembling those seen when Nodal signaling is inhibited. Following inhibition of pitx2 function, the fate of ventral vegetal blastomeres was shifted from an endodermal to a more mesodermal fate, an effect that was reversed by wild-type pitx2. Finally, we show that inhibition of pitx2 function interferes with the response of cells to Nodal signaling. Our results provide direct evidence that pitx2 function is required for normal specification of the endodermal and mesodermal germ layers.  相似文献   

11.
12.
Grainyhead‐like genes are part of a highly conserved gene family that play a number of roles in ectoderm development and maintenance in mammals. Here we identify a novel allele of Grhl2, cleft‐face 3 (clft3), in a mouse line recovered from an ENU mutagenesis screen for organogenesis defects. Homozygous clft3 mutants have a number of phenotypes in common with other alleles of Grhl2. We note a significant effect of genetic background on the clft3 phenotype. One of these is a reduction in size of the telencephalon where we find abnormal patterns of neural progenitor mitosis and apoptosis in mutant brains. Interestingly, Grhl2 is not expressed in the developing forebrain, suggesting this is a survival factor for neural progenitors exerting a paracrine effect on the neural tissue from the overlying ectoderm where Grhl2 is highly expressed. genesis 53:573–582, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
Little is known about the mechanism by which embryonic liver, lung, and pancreas progenitor cells emerge from the endodermal epithelium to initiate organogenesis. Understanding this process and its genetic control provides insight into ontogeny, developmental abnormalities, and tissue regeneration. We find that shortly after hepatic endoderm cells are specified, they undergo a transition from a columnar, gut morphology to a pseudostratified morphology, with concomitant "interkinetic nuclear migration" (INM) during cell division. INM is a hallmark of pseudostratified epithelia and the process used by neural progenitors to emerge from the neural epithelium. We find that the transition of the hepatic endoderm, but not the neural epithelium, to a pseudostratified epithelium is dependent upon the cell-autonomous activity of the homeobox gene Hex. In the absence of Hex, hepatic endoderm cells survive but maintain a columnar, simple epithelial phenotype and ectopically express Shh and other genes characteristic of the midgut epithelium. Thus, Hex promotes endoderm organogenesis by promoting the transition to a pseudostratified epithelium, which in turn allows hepatoblasts to emerge into the stromal environment and continue differentiating.  相似文献   

14.
We have examined the role of the homeobox gene Gsh2 in retinoid production and signaling within the ventral telencephalon of mouse embryos. Gsh2 mutants exhibit altered ventral telencephalic development, including a smaller striatum with fewer DARPP-32 neurons than wild types. We show that the expression of the retinoic acid (RA) synthesis enzyme, retinaldehyde dehydrogenase 3 (Raldh3, also known as Aldh1a3), is reduced in the lateral ganglionic eminence (LGE) of Gsh2 mutants. Moreover, using a retinoid reporter cell assay, we found that retinoid production in the Gsh2 mutants is markedly reduced. The striatal defects in Gsh2 mutants are thought to result from ectopic expression of Pax6 in the LGE. Previously, we had shown that removal of Pax6 from the Gsh2 mutant background improves the molecular identity of the LGE in these double mutants; however, Raldh3 expression is not improved. The Pax6;Gsh2 double mutants possess a larger striatum than the Gsh2 mutants, but the disproportionate reduction in DARPP-32 neurons is not improved. These findings suggest that reduced retinoid production in the Gsh2 mutant contributes to the striatal differentiation defects. As RA promotes the expression of DARPP-32 in differentiating LGE cells in vitro, we examined whether exogenous RA can improve striatal neuron differentiation in the Gsh2 mutants. Indeed, RA supplementation of Gsh2 mutants, during the period of striatal neurogenesis, results in a significant increase in DARPP-32 expression. Thus, in addition to the previously described role for Gsh2 to maintain correct molecular identity in the LGE, our results demonstrate a novel requirement of this gene for retinoid production within the ventral telencephalon.  相似文献   

15.
16.
17.
18.
Getting your head around Hex and Hesx1: forebrain formation in mouse   总被引:1,自引:0,他引:1  
An increasing amount of evidence suggests that in mouse there are two signalling centres required for the formation of a complete neural axis: the anterior visceral endoderm (AVE), and the node and its derivatives. Embryological and genetic studies suggest that the AVE has a head-inducing activity. In contrast, the node appears to act first as a head inducer in synergy with the AVE initiating anterior neural patterning at early stages of mouse development, and later, node derivatives are necessary for maintenance and embellishment of anterior neural character. Hex and Hesx1 are homeobox genes that are expressed in relevant tissues involved in anterior patterning. The analysis of the Hex and Hesx1 mutant mice has revealed that the lack of these genes has little or no effect on the early steps of anterior neural induction. However, both genes are required subsequently for the proper expansion of the forebrain region. We suggest that disturbance in the specification of an Fgf8 signalling centre in the anterior neural ridge may account for the anterior defects observed in these mutants.  相似文献   

19.
20.
Tian X  Shearer G 《Eukaryotic cell》2002,1(2):249-256
The dimorphic fungus Histoplasma capsulatum is the etiologic agent of one of the most common systemic mycoses of humans, histoplasmosis. In the environment, H. capsulatum grows in a differentiated mold form and shifts to an undifferentiated yeast form after mold fragments or spores are inhaled. This mold-to-yeast shift is required for disease. Little is known about the molecular biology of dimorphism in Histoplasma, and most studies have been directed toward yeast-specific genes. While it is important to examine the role of genes upregulated in the yeast morphotype, genes which are silenced in the yeast (i.e., mold-specific genes) may also play a critical role in dimorphism. To begin to examine this hypothesis, we report here the first misexpression and knockout analysis of a mold-specific gene in Histoplasma. The strongly expressed MS8 gene encodes a predicted 21-kDa protein extremely rich in glycine and glutamine. Forced expression of MS8 driven by the TEF1 promoter in yeast did not alter the yeast morphology at 37°C or mold formation at 25°C. Yeast expressing MS8 did exhibit clumping in liquid medium and formed “sticky” colonies on agar plates. Allelic replacement of MS8 was accomplished by a positive-negative selection procedure. ms8 knockout mutants formed apparently normal yeast at 37°C but gave rise to aberrant mycelia at 25°C. The mold colonies of the knockouts were less than half as large as normal, had a granular surface, produced a dark-red pigment, and formed short hyphae which were 40% wider with a distinctive twisted “zig-zag” shape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号