首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Volumetric studies can yield useful new information on a myriad of intra- and intermolecular interactions that stabilize nucleic acid structures. In particular, appropriately designed volumetric measurements can characterize the conformation-dependent hydration properties of nucleic acids as a function of solution conditions, including temperature, pressure, ionic strength, pH, and cosolvent concentration. We have started to accumulate a substantial database on volumetric properties of DNA and RNA, as well as on related low molecular weight model compounds. This database already has provided unique insights into the molecular origins of various nucleic acid recognition processes, including helix-to-coil and helix-to-helix conformational transitions, as well as drug-DNA interactions. In this article, we review recent progress in volumetric investigations of nucleic acids, emphasizing how these data can be used to gain insight into intra-and intermolecular interactions, including hydration properties. Throughout this review, we underscore the importance of volume and compressibility data for characterizing the hydration properties of nucleic acids and their constituents. We also describe how such volumetric data can be interpreted at the molecular level to yield a better understanding of the role that hydration can play in modulating the stability and recognition of nucleic acids.  相似文献   

2.
Base-pair probability profiles of RNA secondary structures   总被引:7,自引:0,他引:7  
Dynamic programming algorithms are able to predict optimal andsuboptimal secondary structures of RNA. These suboptimal oralternative secondary structures are important for the biologicalfunction of RNA. The distribution of secondary structures presentin solution is governed by the thermodynamic equilibrium betweenthe different structures. An algorithm is presented which approximatesthe total partition function by a Boltzmann–weighted summationof optimal and suboptimal secondary structures at several temperatures.A clear representation of the equilibrium distribution of secondarystructures is derived from a two-dimensional bonding matrixwith base–pairing probability as the third dimension.The temperature dependence of the equilibrium distribution givesthe denaturation behavior of the nucleic acid, which may becompared to experimental optical denaturation curves after correctionfor the hypochromicities of the different base-pairs. Similarly,temperature-induced mobility changes detected in temperature-gradientgel electrophoresis of nucleic acids may be interpreted on thebasis of the temperature dependence of the equilibrium distribution.Results are illustrated for natural circular and synthetic linearpotato spindle tuber viroid RNA respectively, and are comparedto experimental data.  相似文献   

3.
《Biophysical journal》2021,120(21):4682-4697
Phase separation and transitions among different molecular states are ubiquitous in living cells. Such transitions can be governed by local equilibrium thermodynamics or by active processes controlled by biological fuel. It remains largely unexplored how the behavior of phase-separating systems with molecular transitions differs between thermodynamic equilibrium and cases in which the detailed balance of the molecular transition rates is broken because of the presence of fuel. Here, we present a model of a phase-separating ternary mixture in which two components can convert into each other. At thermodynamic equilibrium, we find that molecular transitions can give rise to a lower dissolution temperature and thus reentrant phase behavior. Moreover, we find a discontinuous thermodynamic phase transition in the composition of the droplet phase if both converting molecules attract themselves with similar interaction strength. Breaking the detailed balance of the molecular transition leads to quasi-discontinuous changes in droplet composition by varying the fuel amount for a larger range of intermolecular interactions. Our findings showcase that phase separation with molecular transitions provides a versatile mechanism to control properties of intracellular and synthetic condensates via discontinuous switches in droplet composition.  相似文献   

4.
Many DNA-probe assays utilize oligonucleotide-coated microparticles for capture of complementary nucleic acids from solution. During development of these assays, as well as in other particle-based nucleic acid applications, it is useful to know both the amount of duplex formation expected under various experimental conditions and the coating density of the capture oligonucleotide on the particle surface. We examined the simplest form of a DNA-probe microparticle assay: hybridization of a particle-bound capture oligonucleotide to its solution-phase complement. Fluorescein-labeled solution-phase oligonucleotide was hybridized to varying amounts of particles, and the amount of labeled oligonucleotide remaining in solution at equilibrium was measured. We present a simple two-state, all-or-none model for bimolecular hybridization of non-self-complementary sequences that can be used to calculate the equilibrium dissociation constant ( Kd ) from hybridization data. With experimental conditions where both the Kd value and the concentration of capture probe in the reaction are small relative to the concentration of labeled complementary oligonucleotide in the reaction, density of the capture probe on the particle's surface can also be determined. Kd values for particle-based hybridization were different from those obtained from solution-phase thermodynamic parameters. At higher temperatures, hybridization on particles was more efficient than hybridization in solution.  相似文献   

5.
We show how moments of the denaturant binding distribution function can be extracted from experimental data on the denaturation of a protein as a function of the concentration of denaturant and how in turn these moments can be used to construct the denaturant binding distribution function. This approach is similar to our recent work on using the maximum-entropy method to construct ligand-binding distributions from moments obtained from titration curves for nucleic acids and proteins. As an example we take literature data on the denaturation of ferro- and ferricytochrome c by guanidine hydrochloride and from it construct the denaturant binding polynomial and binding distribution function for the unfolded protein.  相似文献   

6.
Timothy M. Lohman 《Biopolymers》1983,22(7):1697-1713
We present a quantitative model for the irreversible dissociation kinetics of cooperatively bound nonspecific protein–nucleic acid complexes. The model assumes that the major pathway of dissociation is via singly contiguously bound protein that “peels” off the ends of clusters of bound protein. It should therefore be most applicable for proteins that bind nucleic acids with high cooperativity (w > 103). Furthermore, the model assumes that no redistribution of bound protein occurs during the time course of the dissociation. Solutions to the rate equations are presented for the entire time course of the dissociation. Under initial conditions such that the nucleic acid is less than fully saturated with protein, a single-exponential decay is predicted (if w is large). However, when the nucleic acid lattice is initially fully saturated, zero-order kinetics, corresponding to a constant rate of protein dissociation, is predicted. The experimental observation of zero-order dissociation kinetics in a cooperative protein–nucleic acid system is a good qualitative indicator for the dissociation mechanism discussed here. A discussion of the analysis of experimental data that enables one to extract molecular rate constants is presented. Furthermore, comparisons are made between the nonredistributing model presented here and Epstein's model [Epstein, I. R. (1979) Biopolymers 18 , 2037–2050] in which protein can translocate infinitely quickly while bound to the nucleic acid, and hence protein clusters redistribute during dissociation and maintain an equilibrium distribution on the nucleic acid at all times.  相似文献   

7.
The phenomenon of entropy–enthalpy (S‐H) compensation is widely invoked as an explanatory principle in thermodynamic analyses of proteins, ligands, and nucleic acids. It has been suggested that this compensation is an intrinsic property of either complex, fluctuating, or aqueous systems. The questions examined here are whether the observed compensation is extra‐thermodynamic (i.e., reflects anything more than the well‐known laws of statistical thermodynamics) and if so, what does it reveal about the system? Compensation is rather variably defined in the literature and different usages are discussed. The most precise and interesting one, which is considered here, is a linear relationship between ΔH and ΔS for some series of perturbations or changes in experimental variable. Some recent thermodynamic data on proteins purporting to show compensation is analyzed and shown to be better explained by other causes. A general statistical mechanical model of a complex system is analyzed to explore whether and under what conditions extra‐thermodynamic compensation can occur and what it reveals about the system. This model shows that the most likely behavior to be seen is linear S‐H compensation over a rather limited range of perturbations with a compensation temperature Tc = dΔH/dΔS within 20% of the experimental temperature. This behavior is insensitive to the details of the model, thus revealing little extra‐thermodynamic or causal information about the system. In addition, it will likely be difficult to distinguish this from more trivial forms of compensation in real experimental systems.  相似文献   

8.
A new thermodynamic database for normal and modified nucleic acids has been developed. This Thermodynamic Database for Nucleic Acids (NTDB) includes sequence, structure and thermodynamic information as well as experimental methods and conditions. In this release, there are 1851 sequences containing both normal and modified nucleic acids. A user-friendly web-based interface has been developed to allow data searching under different conditions. Useful thermodynamic tools for the study of nucleic acids have been collected and linked for easy usage. NTDB is available at http://ntdb.chem.cuhk.edu.hk.  相似文献   

9.
10.
In the studies of force-induced conformational transitions of biomolecules, the large timescale difference from experiments presents the challenge of obtaining convergent sampling for molecular dynamics simulations. To circumvent this fundamental problem, an approach combining the replica-exchange method and umbrella sampling (REM-US) was developed to simulate mechanical stretching of biomolecules under equilibrium conditions. Equilibrium properties of conformational transitions can be obtained directly from simulations without further assumptions. To test the performance, we carried out REM-US simulations of atomic force microscope (AFM) stretching and relaxing measurements on the polysaccharide pustulan, a (1→6)-β-D-glucan, which undergoes well-characterized rotameric transitions in the backbone bonds. With significantly enhanced sampling convergence and efficiency, the REM-US approach closely reproduced the equilibrium force-extension curves measured in AFM experiments. Consistent with the reversibility in the AFM measurements, the new approach generated identical force-extension curves in both stretching and relaxing simulations—an outcome not reported in previous studies, proving that equilibrium conditions were achieved in the simulations. REM-US may provide a robust approach to modeling of mechanical stretching on polysaccharides and even nucleic acids.  相似文献   

11.
Quadruplex melting   总被引:4,自引:0,他引:4  
Melting curves are commonly used to determine the stability of folded nucleic acid structures and their interaction with ligands. This paper describes how the technique can be applied to study the properties of four-stranded nucleic acid structures that are formed by G-rich oligonucleotides. Changes in the absorbance (at 295nm), circular dichroism (at 260 or 295nm) or fluorescence of appropriately labelled oligonucleotides, can be used to measure the stability and kinetics of folding. This paper focuses on a fluorescence melting technique, and explains how this can be used to determine the T(m) (T((1/2))) of intramolecular quadruplexes and the effects of quadruplex-binding ligands. Quantitative analysis of these melting curves can be used to determine the thermodynamic (DeltaH, DeltaG, and DeltaS) and kinetic (k(1), k(-1)) parameters. The method can also be adapted to investigate the equilibrium between quadruplex and duplex DNA and to explore the selectivity of ligands for one or other structure.  相似文献   

12.
Binding of tripeptide H-Val3-(NH)2-Dns (TVP) to polyribonucleotides was studied by fluorescence methods, circular and flow linear dichroism, equilibrium dialysis and electron microscopy. It was found that TVP binds to poly(U) in monomer, dimer and tetramer forms with binding constants of about 10(3), 40, 18.10(4) M, respectively. The cooperativity parameter for peptide dimer binding is 2000. The peptide forms tetramer complexes with poly(A), poly(C), poly(G) also. The formation of a complex between the peptide tetramer and nucleic acid is accompanied by a significant increase in the fluorescence intensity. The cooperative binding of TVP dimers to poly(U), poly(A), poly(C) is accompanied by a dramatic decrease in the flexibility of polynucleotide chains. However, it has a small effect (if any) on the flexibility of the poly(G) chain. The observed similarity of thermodynamic, optical and hydrodynamic++ properties of TVP complexes with single-stranded and double-stranded nucleic acids may reflect a similarity in the geometries of peptide complexes with nucleic acids. Electron microscopy studies show that peptide binding to poly(U) and dsDNA leads to compactization of the nucleic acids caused by interaction between the peptide tetramers bound to a nucleic acid. At the first stage of the compactization process the well-organized rod-like particles are formed, each consisting of one or more single-stranded polynucleotide fibers. Increasing the peptide concentration stimulates a side-by-side association and folding of the rods with the formation of macromolecular "leech-like" structures with the thickness of 20-50 nm.  相似文献   

13.
At high binding densities acridine orange (AO) forms complexes with ds DNA which are insoluble in aqueous media. These complexes are characterized by high red- and minimal green-luminescence, 1:1 (dye/P) stoichiometry and resemble complexes of AO with ss nucleic acids. Formation of these complexes can be conveniently monitored by light scatter measurements. Light scattering properties of these complexes are believed to result from the condensation of nucleic acids induced by the cationic, intercalating ligands. The spectral and thermodynamic data provide evidence that AO (and other intercalating agents) induces denaturation of ds nucleic acids; the driving force of the denaturation is high affinity and cooperativity of binding of these ligands to ss nucleic acids. The denaturing effects of AO, adriamycin and ellipticine were confirmed by biochemical studies on accessibility of DNA bases (in complexes with these ligands) to the external probes. The denaturing properties of AO vary depending on the primary structure (sugar- and base-composition) of nucleic acids.  相似文献   

14.
Plum GE  Breslauer KJ 《Biopolymers》2001,61(3):214-223
Precise thermodynamic characterization of nucleic acid complex stability is required to understand a variety of biologically significant events as well as to exploit the specific recognition capabilities of nucleic acids in biotechnology, diagnostics, and therapeutics. The development of a database of nucleic acid thermodynamics with sufficient precision to foster further developments in these areas requires new and improved measurement techniques. The combination of a competitive equilibrium titration with fluorescence energy transfer based detection provides a method for precise measurement of differences in free energy values for nucleic acid duplexes that far exceeds in precision those accessible via conventional methods. The method can be applied to detect and to characterize any deviation in a nucleic acid that alters duplex stability. Such deviations include, but are not limited to, mismatches; single nucleotide polymorphisms (SNP); chemically modified nucleotide bases, sugars or phosphates; and conformational anomalies or folding motifs, such as, loops or hairpins.  相似文献   

15.
Helicases are proteins that harness the chemical free energy of ATP hydrolysis to catalyze the unwinding of double-stranded nucleic acids. These enzymes have been much studied in isolation, and here we review what is known about the mechanisms of the unwinding process. We begin by considering the thermally driven 'breathing' of double-stranded nucleic acids by themselves, in order to ask whether helicases might take advantage of some of these breathing modes. We next provide a brief summary of helicase mechanisms that have been elucidated by biochemical, thermodynamic, and kinetic studies, and then review in detail recent structural studies of helicases in isolation, in order to correlate structural findings with biophysical and biochemical results. We conclude that there are certainly common mechanistic themes for helicase function, but that different helicases have devised solutions to the nucleic acid unwinding problem that differ in structural detail. In Part II of this review (to be published in the next issue of this journal) we consider how these mechanisms are further modified to reflect the functional coupling of these proteins into macromolecular machines, and discuss the role of helicases in several central biological processes to illustrate how this coupling actually works in the various processes of gene expression.  相似文献   

16.
Molecular weights (molar masses), molecular weight distributions, dissociation constants and other interaction parameters are fundamental characteristics of proteins, nucleic acids, polysaccharides and glycoconjugates in solution. Sedimentation equilibrium analytical ultracentrifugation provides a powerful method with no supplementary immobilization, columns or membranes required. It is a particularly powerful tool when used in conjunction with its sister technique, namely sedimentation velocity. Here, we describe key approaches now available and their application to the characterization of antibodies, polysaccharides and glycoconjugates. We indicate how major complications, such as thermodynamic non-ideality, can now be routinely dealt with, thanks to a great extent to the extensive contribution of Professor Don Winzor over several decades of research.  相似文献   

17.
A fully automatized apparatus for studying the spectrophotometer-monitored thermal transition of nucleic acids is described.Measurements are made with improved accuracy over standard methods, under thermodynamically well-defined conditions (thermal and phase equilibrium). Examples of highly resolved melting profiles of DNA are presented along with the general procedures for the computer treatment of experimental data.  相似文献   

18.
We have developed an algorithm for simulation and analysis of arbitrary chemical systems in equilibrium, with emphasis on ligand binding reactions. The program EQUIL can treat reactions involving multiple ligands, multiple binding sites, ternary complex models, allosteric effectors, competitive and noncompetitive binding, conformational changes, cooperativity, and generally any scheme that can be represented as a set of chemical equations. EQUIL is based on a general thermodynamic model of chemical equilibria; it does not involve nonlinear transformation of experimental data, but it does require the user to define the model of interaction between ligands and receptors by writing down the appropriate chemical reactions. EQUIL contains features of particular importance to ligand binding experiments: variable binding capacities, nonspecific binding, and the ability to simultaneously analyze data from different types of experiments. Furthermore, the simulation feature of EQUIL allows the user to investigate the feasibility of experiments that could possibly distinguish between different reaction models. We illustrate the use of this program on personal computers to analyze and simulate simple and complicated interactions between ligands and receptors.  相似文献   

19.
Glucosamine-6P-deaminase (EC 3.5.99.6, formerly glucosamine-6-phosphate isomerase, EC 5.3.1.10) from Escherichia coli is an attractive experimental model for the study of allosteric transitions because it is both kinetically and structurally well-known, and follows rapid equilibrium random kinetics, so that the kinetic K(m) values are true thermodynamic equilibrium constants. The enzyme is a typical allosteric K-system activated by N-acetylglucosamine 6-P and displays an allosteric behavior that can be well described by the Monod-Wyman-Changeux model. This thermodynamic study based on the temperature dependence of allosteric parameters derived from this model shows that substrate binding and allosteric transition are both entropy-driven processes in E. coli GlcN6P deaminase. The analysis of this result in the light of the crystallographic structure of the enzyme implicates the active-site lid as the structural motif that could contribute significantly to this entropic component of the allosteric transition because of the remarkable change in its crystallographic B factors.  相似文献   

20.
Three variants of the model for the formation of "bridges" between the nucleic acid molecules fixed in the structure of particles of liquid-crystalline dispersions were considered. What the three variants have in common is that the bridges represent polymeric chelate cross-links consisting of alternating molecules of daunomycin and copper ions. The differences between the three variants are that in the first variant, the bridges begin and end with daunomycin molecules that form a complex by the mechanism of external binding with nucleic acids; in the second variant, the bridges begin and end with copper ions coupled with the pairs of bases of nucleic acids; and in the third variant, the bridges begin with the daunomycin molecule and end with the copper ion. For each variant, a mathematical model was constructed, which describes the formation of bridges, and equations of binding were derived. The results of calculations were compared with the experimental data. Within the framework of each variant, the values of the energy of interaction between the daunomycin molecule and the copper ion in the bridge, the energy of interaction of the daunomycin molecule with the nucleic acid, and the length of the bridge were varied. For all variants, those values of the parameters were chosen that fit best the experimental data. The theoretical curves obtained using the three variants of the model agree rather well with the family of experimental curves. The best agreement between the theoretical and experimental data was obtained when the polymeric chelate bridge includes more than two daunomycin molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号