首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Absorption of nitrate and ammonium was studied in water culture experiments with 4 to 6 weeks old plants of barley (Hordeum vulgare L.), buckwheat (Fagopyrum esculentum L. Moench) and rape (Brassica napus L.). The plants were grown in a complete nutrient solution with nitrate (5.7±0.2 mM) or nitrate (5.6±0.2 mM) + ammonium (0.04±0.02 mM). The pH of the nutrient solution was kept at 5.0 using a pH-stat. It was found that phosphorus deficiency reduced the rate of nitrate uptake by 58±3% when nitrate was the sole N source and by 83±1% when both nitrate and ammonium were present. The reduction occurred even before growth was significantly impeded by P deficiency. The inhibition of the uptake of ammonium was less,i.e. ammonium constituted 10±1% of the total N uptake in the P sufficient plants and 30±5% in the P deficient plants. The reduction of nitrate absorption greatly decreased the difference between the uptake of anions and cations. It is suggested that P deficiency reduced the assimilation of NO 3 into the proteins, which might cause a negative feedback on NO 3 influx and/or stimulate NO 3 efflux.  相似文献   

2.
Summary A method is described for culturing plants at extremely low nutrient concentrations. Using a Braun infusion pump, a fixed amount of nitrate or ammonium was supplied continuously to plants growing in a culture vessel at a rate limiting the uptake of the plants. At a very low nitrogen concentration an equilibrium was established where uptake rate of the plants is equal to the rate of supply by the infusion pump. The nitrogen concentrations reached appeared to be in the order of 1 μM. The method compared the nitrate uptake byHypochaeris radicata L.ssp.radicata, H. radicata ssp.ericetorum Van Soest andUrtica dioica L. and ammonium uptake byH. radicata ssp.radicata andH. radicata ssp.ericetorum. Plants were cultivated in monocultures or in mixed cultures (two species per culture vessel). For the mixed cultures competition for nitrate (or ammonium) between the species was maintained for long periods. The capacities of the uptake systems of two subspecies ofH. radicata from places different in nitrogen supply and pH were adapted equally well to both low nitrate and low ammonium concentrations. Apparently factors other than nitrogen uptake play a part in the distribution of the subspecies. The capacity of the uptake system ofU. dioica, a nitrophilous species, was lower than that ofH. radicata ssp.radicata, a species from places poorer in nitrogen. This difference is related to the different distribution of the two species in the field. The present results are compared with those of previous experiments where Km and Vmax were measured and the significance of both parameters is discussed.  相似文献   

3.
The modelling of ion uptake by plants requires the measurement of kinetic and growth parameters under specific conditions. The objective of this study was to evaluate the effect of nine NH inf4 sup+ :NO inf3 sup− ratios on onions (Allium cepa L.). Twenty-eight to 84 day-old onion plants were treated with NH inf4 sup+ :NOf3/sup− ratios ranging from 0 to 100% of each ionic species in one mM solutions in a growth chamber. Maximum N influx (Imax) was assessed using the N depletion method. Except at an early stage, ionic species did not influence significantly Imax, the Michaelis constant (Km) and the minimum concentration for net uptake (Cmin). Imax for ammonium decreased from 101 to 59 pmole cm-2 s-1 while Imax for nitrate increased from 26 to 54 pmole cm-2 s-1 as the plant matured. On average, Km and Cmin values were 14.29 μM, and 5.06 μM for ammonium, and 11.90 μM and 4.54 μM for nitrate, respectively. In general, the effect of NH4 +:NO3 - ratios on root weight, shoot weight and total weight depended on plant age. At an early stage, maximum plant growth and N uptake were obtained with ammonium as the sole source of N. At later stages, maximum plant growth and N uptake were obtained as the proportion of nitrate increased in the nutrient solution. The was no apparent nutrient deficiency whatever NH4 +:NO3 - ratio was applied, although ammonium reduced the uptake of cations and increased the uptake of phosphorus. The research was supported by the Natural Sciences and Engineering Research Council of Canada.  相似文献   

4.
5.
The effect of amino acids on nitrate transport was studied in Zea mays cell suspension cultures and in Zea mays excised roots. The inclusion of aspartic acid, arginine, glutamine and glycine (15mM total amino acids) in a complete cell-culture media containing 1.0 mM NO3 - strongly inhibited nitrate uptake and the induction of accelerated uptake rates. The nitrate uptake rate increased sharply once solution amino acid levels fell below detection limits. Glutamine alone inhibited induction in the cell suspension culture. Maize seedlings germinated and grown for 7 days in a 15 mM mixture of amino acids also had lower nitrate uptake rates than seedlings grown in 0.5 mM Ca(NO3)2 or 1 mM CaCl2. As amino acids are the end product of nitrate assimilation, the results suggest an end-product feed-back mechanism for the regulation of nitrate uptake.  相似文献   

6.
The mechanism of nitrate uptake for assimilation in procaryotes is not known. We used the radioactive isotope, 13N as NO3 -, to study this process in a prevalent soil bacterium, Pseudomonas fluorescens. Cultures grown on ammonium sulfate or ammonium nitrate failed to take up labeled nitrate, indicating ammonium repressed synthesis of the assimilatory enzymes. Cultures grown on nitrite or under ammonium limitation had measurable nitrate reductase activity, indicating that the assimilatory enzymes need not be induced by nitrate. In cultures with an active nitrate reductase, the form of 13N internally was ammonium and amino acids; the amino acid labeling pattern indicated that 13NO3 - was assimilated via glutamine synthetase and glutamate synthase. Cultures grown on tungstate to inactivate the reductase concentrated NO3 - at least sixfold. Chlorate had no effect on nitrate transport or assimilation, nor on reduction in cell-free extracts. Ammonium inhibited nitrate uptake in cells with and without active nitrate reductases, but had no effect on cell-free nitrate reduction, indicating the site of inhibition was nitrate transport into the cytoplasm. Nitrate assimilation in cells grown on nitrate and nitrate uptake into cells grown with tungstate on nitrite both followed Michaelis-Menten kinetics with similar K mvalues, 7 M. Both azide and cyanide inhibited nitrate assimilation. Our findings suggest that Pseudomonas fluorescens can take up nitrate via active transport and that nitrate assimilation is both inhibited and repressed by ammonium.  相似文献   

7.
Urate was taken up at a negligible rate by Chlamydomonas reinhardtii cells grown on ammonium and transferred to media containing urate plus ammonium or urate plus chloral hydrate or cycloheximide. Addition of ammonium to cells actively consuming urate produced a rapid inhibition of urate uptake whereas the intracellular oxidation of urate was unaffected. Methylammonium but not glutamine or glutamate inhibited urate uptake. Addition of l-methionine-dl-sulfoximine to cells actively consuming urate provoked ammonium excretion, which was accompanied by a rapid inhibition of urate uptake. In cells growing on urate and exhibiting noticeable levels of nitrite-reductase activity, nitrite caused a sudden inhibition of urate uptake whereas nitrate required a time to induce nitrate reductase and to exert its inhibitory effect on uptake. The urate-uptake system did not require urate for induction since the urate-uptake capacity appeared in nitrogen-starved cells. From these results it is concluded that, in Chlamydomonas reinhardtii, ammonium inhibits urate uptake and also acts as co-repressor of the uptake system.  相似文献   

8.
Summary The present study reports that a revised nutrient concentration in the basal medium improved shoot bud induction and subsequent plant regeneration in barley (Hordeum vulgare L. var. BL-2). Cultures were raised from immature embryos on MSB5 medium supplemented with picloram. Concentrations of five nutrients were varied. The effect of these nutrients was investigated on (1) induction, (2) induction and subculture, and (3) induction, subculture and regeneration stages. The basal MSB5 medium was not optimal for each phase of barley culture. Decreased ammonium nitrate, increased potassium dihydrogen phosphate, sodium molybdate, cobalt chloride, and addition of glycine enhanced shoot bud induction and plant regeneration. The different media that were optimal for immature embryo culture were: MSB5 medium supplemented with 20.70 μM picloram, 10.30 mM NH4NO3, 6.25 mM KH2PO4, 2.06 μM Na2MoO4, 0.55 μM CoCl2, and 26.64 μM glycine (for induction); MSB5 medium supplemented with 12.47 μM picloram, 10.30 mM NH4NO3, and 0.55 μM CoCl2 (for subculture); and MSB5 medium supplemented with 0.2 μM picloram and 10.3 mM NH4NO3 (for regeneration). Primary cultures required 6wk (without transfer) for morphogenic callus formation. Callus required 4wk of subculture and another 4wk on regeneration medium for optimal plant regeneration. The revised medium could also promote regeneration of the recalcitrant barley genotype RD-2552. Histological analysis showed that the major pathway of differentiation was through shoot bud formation.  相似文献   

9.
Plant tolerance to Al toxicity has been associated with differential nitrate and ammonium uptake and solution pH changes. Sorghum [Sorghum bicolor (L.) Moench] genotypes with tolerance (SC283) and sensitivity (ICA-Nataima) to Al toxicity were grown with different nitrate/ammonium ratios (39:1, 9:1, and 3:1) at 0 and 300 μM Al to determine genotypic differences in nitrate and ammonium uptake, changes in nutrient solution pH, and relationships of these traits to Al toxicity tolerance in the genotypes. ICA-Nataima had greater reductions in nitrate and ammonium uptake than SC283 when plants were grown with Al, but SC283 had higher nitrate and ICA-Nataima had higher ammonium uptake when plants were grown without Al. Differences in nitrate and ammonium uptake were associated with changes in solution pH; pH decreased as long as ammonium was in solution and increased when ammonium was depleted from solution. Greater changes in solution pH occurred when plants were grown with 39:1 compared to 9:1 and 3:1 nitrate/ammonium ratios. Solution pH values were lower when plants were grown with than without Al. The genotypes maintained their relative differences in Al toxicity tolerance when plants were grown separately or together in the same container with Al and with different nitrate/ammonium ratios.  相似文献   

10.
Kinetic constants were determined for nitrate uptake in three species, Pterocladiella capillacea (S.G. Gmelin) Santelices et Hommersand (Rhodophyceae, Gelidiales), Ulva intestinalis L. (Chlorophyceae, Ulvales) and Xiphophora chondrophylla (Turner) Montagne ex Harvey (Phaeophyceae, Fucales), of New Zealand macroalgae, with K m values ranging from 10 to 17 μM and V max values from 3 to 65 μmole g−1 dry weight h−1. There was no effect of ammonium on nitrate uptake by Pterocladiella capillacea or Xiphophora chondrophylla. Ammonium inhibited nitrate uptake by 40% in Ulva intestinalis from a site with relatively low seawater ammonium concentrations. In contrast, U. intestinalis from an ammonium-enriched site had lower rates of nitrate uptake that were insensitive to inhibition by ammonium. It is suggested that there are (at least) two transport systems for nitrate in U. intestinalis; a constitutive transporter, which is insensitive to ammonium, and a transporter that is sensitive to ammonium inhibition and down-regulation by ammonium; the implications of this for our understanding of macroalgal blooms is discussed. Handling editor: K. Martens  相似文献   

11.
Summary The effects of aluminium (Al3+) at concentrations of 0, 25, 50 and 100 μM on the growth of white clover, dependent upon N supplied as NO 3 , were examined in flowing solution culture. Plants were established with a normal nutrient supply for 7 weeks and then grown with carefully controlled pH (at 4.5) and P concentrations, and with 0, 25, 50 or 100 μM Al3+ for a further three weeks. There were rapid visual effects (i.e. symptoms of P deficiency and reduction in root extension) and the dry weights of shoots and roots were reduced at 50 and 100 μM. Less than 10% of Al absorbed from solution was transported to the shoots. The uptake of P, and its transport between roots and shoots, were reduced in plants grown with Al. The uptake of NO 3 stopped immediately after the introduction of 50 or 100 μM Al, and was significantly reduced at 25 μM after three weeks. During a second phase of the experiment, plants previously grown at 0, 25, 50 and 100 μM Al, were grown for a further 2 weeks either with NO 3 (with and without 50 μM Al3+) or without NO 3 but with inoculation by Rhizobia (and with or without 50 μM Al3+). The effects of the previous treatments with Al on N uptake were small during the second phase, but uptake by all plants was restricted when Al was present. Inoculation did not result in nodulation in the second phase when Al3+ was present in the solution, but Al already in the plant from the first phase did not prevent nodulation in the absence of Al during the second phase.  相似文献   

12.
Summary Chile pepper (Capsicum annuum L.) plants were regenerated from cotyledon explantsin vitro in four major stages: bud induction, bud enlargement, shoot elongation, and root development. Bud induction medium contained 0.5 mg/L (2.9μM) indole-3-acetic acid and 2 mg/L (8.9 μM) N6-benzyladenine. Bud enlargement occurred, and an occasional shoot appeared when medium with 2 mg/L (6μM) gibberellic acid, 2 mg/L (8.9 μM) N6-benzyladenine, and 5 mg/L (29.4 μM) silver nitrate was used. Most shoots elongated after placement on a third medium without plant growth regulators or on fresh plates of bud enlargement medium. Incubations were for 2, 2, and 4 weeks, respectively, at 28.5°C and continuous light. Treatment with silver nitrate was necessary for multiple shoot production and elongation to occur in the third culture stage and was most effective when present in the second-stage medium but not in the bud induction medium. Sixteen to 26% of the shoots rooted in medium with 1 mg/L (5.4 μM) 1-naphthaleneacetic acid after 1 month. Additional shoots transferred to a second rooting medium with 0.1 or 1.0 mg/L (0.54 or 5.4 μM) 1-naphthaleneacetic acid developed roots, increasing the overall rooting efficiency to 70–72%. Most rooted shoots grew well and produced viable seeds when grown in the greenhouse. Other cytokinins tested for plant regeneration were zeatin and thidiazuron. Zeatin induced few shoots and fewer well-developed plants. Thidiazuron induced multiple shoots 4 months after culture began, but many were small and did not elongate further. Phytagar tissue culture grade proved superior to other agars tested, increasing bud induction frequency from 0-33% to 80–93% and eliminating explant hyperhydricity.  相似文献   

13.
We investigated whether Acetobacter diazotrophicus (syn.Gluconacetobacter diazotrophicus) could be recovered only from sugarcane plants either with low or no application of fertiliser N. We report here the enrichment and enumeration of A. diazotrophicus from high N-fertilised samples where high heterotrophic populations reduce the numbers of A. diazotrophicus ultimately diminshing its isolation frequency as reported earlier. The growth medium of micropropagated sugarcane seedlings of the varieties Co 8021, Co 86249, Co 86010, Co 86032, and Co 87025 was amended with potassium nitrate, ammonium nitrate, ammonium chloride and urea. The colonisation and AR activity of A. diazotrophicus were affected in the presence of high levels (25 mM) of ammonium chloride and ammonium nitrate but remained unaffected in low levels of N (i.e 1/10th of MS liquid medium) and with high levels of potassium nitrate (25 mM) and urea (500 ppm). A. diazotrophicus was detected in the inoculated plants both at low and high levels of N based on the amplification of a specific 16S rRNA gene fragment using PCR based method targeting a stretch of 445 bp with primers AC and DI. High levels of N in the growth medium induced morphological changes on A. diazotrophicus cells resulting in long pleomorphic cells. The percentage of pleomorphic cells was in the decending order from NH4NO3, NH4Cl, KNO3, and urea. These changes were more prominent in ammonium chloride and ammonium nitrate than potassium nitrate, urea and N free medium. The morphological changes and the increased heterotrophic populations may play a role on the survival ofA. diazotrophicus in high N-fertilised samples/environments.  相似文献   

14.
Malagoli  M.  Dal Canal  A.  Quaggiotti  S.  Pegoraro  P.  Bottacin  A. 《Plant and Soil》2000,221(1):1-3
In forest soils, ammonium is usually the predominant form of inorganic nitrogen. However, the capacity of trees to utilize both NO3 - and NH3 + may provide greater flexibility in responding to changes of nitrogen supply from the environment. Such capacity has been studied in seedlings of Scots pine (Pinus sylvestris L.) and European larch (Larix decidua Mill.) grown in the presence or absence of either nitrate or ammonium. Nitrate-induced plants showed a higher nitrate uptake rate than non-induced plants; this difference was almost negligible after 24 h of exposure to NO3 -. Ammonium uptake in both species was consistently higher than that of nitrate, regardless of prior nitrogen provision. In both nutrient conditions, larch showed a more efficient transport system in comparison with Scots pine, with higher ammonium and nitrate uptake rates in both induced and non-induced plants. This was consistent also with the activity of nitrate reductase, measured in vivo in roots and leaves. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
Deprivation of nitrogen (N) increases assimilate partitioning towards roots at the expense of that to shoots. This study was done to determine the physiological basis of increased root growth of tea (sCammellia sinensis L.) under N shortage. Nine-month-old clonal tea (clone TRI2025) was grown in quartz sand under naturally lit glasshouse conditions. Three levels of N (0, 3.75 and 7.5 mM N) were incorporated in to the nutrient solution and applied daily. Plant growth, photosynthesis, root respiration and plant N contents were measured at 10-day intervals over a 45-day period. Root dry weight showed a sharp increase during the first 15 days after the plants were transferred to 0 mM N, whereas no such increase was shown in plants transferred to 7.5 mM N. In contrast, shoot dry weight increased at 7.5 mM N and was significantly greater than at 0 mM N, where no increase was observed. Due to the above changes, root weight ratio increased and leaf weight ratio decreased during the first 15 days of N deprivation. Leaf photosynthetic rates did not vary between N levels during the initial 15-day period. Thereafter, photosynthetic rates were greater at 7.5 mM and 3.75 mM N than at 0 mM N. Root respiration rate decreased at 0 mM N, whereas it increased at 3.75 and 7.5 mM N, probably because of the greater respiratory cost for nitrate uptake. Root respiratory costs associated with maintenance (R m) and nitrate uptake (R u) were calculated to investigate whether the sharp increase of root growth observed upon nitrogen deprivation was solely due to the reduced respiratory costs for nitrate uptake. The estimated values for R m and R u were 3.241 × 10–4 mol CO2 g–1 (root dry matter) s–1 and 0.64 mol CO2 (mol N)–1, respectively. Calculations showed that decreased respiratory costs for nitrate uptake could not solely account for the significant increase of root biomass upon N deprivation. Therefore, it is concluded that a significant shift in assimilate partitioning towards roots occurs immediately following N deprivation in tea.  相似文献   

16.
Nitrite and nitrate uptake by wheat (Triticum vulgare) from 0.5 mM potassium solutions both showed an apparent induction pattern characterized by a slow initial rate followed by an accelerated rate. The accelerated phase was more rapid for nitrate uptake, was initiated earlier, and was seriously restricted by the presence of equimolar nitrite. The accelerated phase of nitrite uptake was restricted by nitrate to a lesser extent. The two anions seem not to be absorbed by identical mechanisms. Ammonium pretreatments or prior growth with ammonium had relatively little influence on the pattern of nitrite uptake. However, prior growth with nitrate eliminated the slow initial phase and induced development of the accelerated phase of nitrite uptake. A beneficial effect was noted after 3 h nitrate pretreatment and full development had occurred by 12 h nitrate pretreatment. The evidence suggests that a small amount of tissue nitrite, which could be supplied either by absorption or by nitrate reduction, was specifically required for induction of the accelerated phase of nitrite uptake. Cycloheximide (2 μg ml?1) seriously restricted development of the accelerated phase of nitrite uptake, but its effect was not as severe when it was added after the accelerated phase had been induced by prior exposure to nitrite or nitrate. However, translocation of 15N from the absorbed nitrite was sharply decreased under the latter conditions, indicating a difference in sensitivity of the uptake and translocation processes to cycloheximide. Potassium uptake was greater from KNO3 than from KNO2 and in both instances it was enhanced during the early stages of the accelerated phase of anion uptake. Moreover, addition of NaNO3 to KNO2 substantially increased potassium uptake. A coupling between anion and potassium uptake was therefore evident, but the coupling was not obligatory because the accelerated phase of nitrite uptake could occur in absence of rapid potassium uptake.  相似文献   

17.
The effect of pH on nitrate and ammonium uptake in the high‐affinity transport system and low‐affinity transport system ranges was compared in two conifers and one crop species. Many conifers grow on acidic soils, thus their preference for ammonium vs nitrate uptake can differ from that of crop plants, and the effect of pH on nitrogen (N) uptake may differ. Proton, ammonium and nitrate net fluxes were measured at seedling root tips and 5, 10, 20 and 30 mm from the tips using a non‐invasive microelectrode ion flux measurement system in solutions of 50 or 1500 µM NH4NO3 at pH 4 and 7. In Glycine max and Pinus contorta, efflux of protons was observed at pH 7 while pH 4 resulted in net proton uptake in some root regions. Pseudotsuga menziesii roots consistently showed proton efflux behind the root tip, and thus appear better adapted to maintain proton efflux in acid soils. P. menziesii's ability to maintain ammonium uptake at low pH may relate to its ability to maintain proton efflux. In all three species, net nitrate uptake was greatest at neutral pH. Net ammonium uptake in G. max and net nitrate uptake in P. menziesii were greatly reduced at pH 4, particularly at high N concentration, thus N concentration should be considered when determining optimum pH for N uptake. In P. menziesii and G. max, net N uptake was greater in 1500 than 50 µM NH4NO3 solution, but flux profiles of all ions varied among species.  相似文献   

18.
The effects of temperature (20, 24 and 28 °C) and irradiance (15 and 40 μmol photon m−2 s−1) on the nitrate and ammonium uptake rates of the subtropical red alga, Laurencia brongniartii, were investigated to prepare for tank cultivation. Nitrate uptake followed saturation kinetics and was faster at higher irradiances and temperatures. In contrast, ammonium uptake was linear over the experimental range and was not affected by an increase in temperature. A parameter, β, was calculated to compare substrate uptake rates of nitrate along the linear portion of the uptake curve with that of ammonium. For nitrate, β was lower at low irradiance and higher at high irradiance (β = 0.007 ± 0.003 and 0.030 ± 0.002 [μmol N L−1 (μmol N gww−1 d)−1], respectively). However, β was 0.023 ± 0.002 and 0.034 ± 0.002 [μmol N L−1 (μmol N gww−1 d−1)−1] for ammonium, suggesting a preference for ammonium over nitrate.  相似文献   

19.
A full-length cDNA, GmNRT2, encoding a putative high-affinity nitrate transporter was isolated from a Glycine max (L.) root cDNA library and sequenced. The deduced GmNRT2 protein is 530 amino acids in length and contains 12 putative membrane-spanning domains and a long, hydrophilic C-terminal domain. GmNRT2 is related to high-affinity nitrate transporters in the eukaryotes Chlamydomonas reinhardtii and Aspergillus nidulans, and to putative high-affinity nitrate transporters in barley and tobacco. Southern blot analysis indicated that GmNRT2 is part of a small, multigene family in soybean. Expression of GmNRT2 in roots was regulated by the type of nitrogen source provided to plants: GmNRT2 mRNA levels were barely detectable in ammonium-grown plants, higher in nitrogen-deprived plants, and highest in nitrate-grown plants. Induction of GmNRT2 mRNA levels in roots occurred within 1 h after exposure of plants to nitrate. Nitrate induction of GmNRT2 mRNA levels was accompanied by a fourfold increase in net nitrate uptake by soybean roots at 100 μM external nitrate. The molecular and physiological evidence indicates that GmNRT2 is probably a high-affinity nitrate transporter involved in nitrate uptake by soybean roots. Received: 22 November 1997 / Accepted: 26 January 1998  相似文献   

20.
We have compared the biochemical properties of two different Arabidopsis ammonium transporters, AtAMT1;1 and AtAMT1;2, expressed in yeast, with the biophysical properties of ammonium transport in planta. Expression of the AtAMT1;1 gene in Arabidopsis roots increased approximately four-fold in response to nitrogen deprivation. This coincided with a similar increase in high-affinity ammonium uptake by these plants. The biophysical characteristics of this high-affinity system (Km for ammonium and methylammonium of 8 M and 31 M, respectively) matched those of AtAMT1;1 expressed in yeast (Km for methylammonium of 32 M and Ki for ammonium of 1–10 M). The same transport system was present, although less active, in nitrate-fed roots. Ammonium-fed plants exhibited the lowest rates of ammonium uptake and appeared to deploy a different transporter (Km for ammonium of 46 M). Expression of AtAMT1;2 in roots was insensitive to changes in nitrogen nutrition. In contrast to AtAMT1;1, AtAMT1;2 expressed in yeast exhibited biphasic kinetics for methylammonium uptake: in addition to a high-affinity phase with a Km of 36 M, a low-affinity phase with a Km for methylammonium of 3.0 mM was measured. Despite the presence of a putative chloroplast transit peptide in AtAMT1;2, the protein was not imported into chloroplasts in vitro. The electrophysiological data for roots, together with the biochemical properties of AtAMT1;1 and Northern blot analysis indicate a pre-eminent role for AtAMT1;1 in ammonium uptake across the plasma membrane of nitrate-fed and nitrogen-deprived root cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号