首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The available data concerning the ability of ceramide and other simple sphingolipids to segregate laterally into rigid, gel-like domains in a fluid bilayer has been reviewed. Ceramides give rise to rigid ceramide-enriched domains when their N-acyl chain is longer than C12. The high melting temperature of hydrated ceramides, revealing a tight intermolecular interaction, is probably responsible for their lateral segregation. Ceramides compete with cholesterol for the formation of domains with lipids such as sphingomyelin or saturated phosphatidylcholines; under these conditions displacement of cholesterol by ceramide involves a transition from a liquid-ordered to a gel-like phase in the domains involved. When ceramide is generated in situ by a sphingomyelinase, instead of being premixed with the other lipids, gel-like domain formation occurs as well, although the topology of the domains may not be the same, the enzyme causing clustering of domains that is not detected with premixed ceramide. Ceramide-1-phosphate is not likely to form domains in fluid bilayers, and the same is true of sphingosine and of sphingosine-1-phosphate. However, sphingosine does rigidify pre-existing gel domains in mixed bilayers.  相似文献   

2.
A Mg 2+-independent and N-ethylmaleimide-insensitive phosphatidate phosphohydrolase (PAP-2) has been identified in the plasma membrane of cells and it has been purified. The enzyme is a multi-functional phosphohydrolase that can dephosphorylate phosphatidate, lysophosphatidate, sphingosine 1-phosphate and ceramide 1-phosphate and these substrates are competitive inhibitors of the reaction. The action of PAP-2 could terminate signalling by these bioactive lipids and at the same time generates compounds such as diacylglycerol, sphingosine and ceramide which are also potent signalling molecules. In relation to phosphatidate metabolism, sphingosine (or sphingosine l-phosphate) stimulates phospholipase D and thus the formation of phosphatidate. At the same time sphingosine inhibits PAP-2 activity thus further increasing phosphatidate concentrations. By contrast, ceramides inhibit the activation of phospholipase D by a wide variety of agonists and increase the dephosphorylation of phosphatidate,lysophosphatidate, sphingosine 1-phosphate and ceramide 1-phosphate. These actions demonstrate ‘cross-talk’ between the glycerolipid and sphingolipid signalling pathways and the involvement of PAP-2 in modifying the balance of the bioactive lipids generated by these pathways during cell activation,  相似文献   

3.
This article describes the regulation of cell signaling by lipid phosphate phosphatases (LPPs) that control the conversion of bioactive lipid phosphates to their dephosphorylated counterparts. A structural model of the LPPs, that were previously called Type 2 phosphatidate phosphatases, is described. LPPs are characterized by having no Mg2+ requirement and their insensitivity to inhibition by N-ethylmaleimide. The LPPs have six putative transmembrane domains and three highly conserved domains that define a phosphatase superfamily. The conserved domains are juxtaposed to the proposed membrane spanning domains such that they probably form the active sites of the phosphatases. It is predicted that the active sites of the LPPs are exposed at the cell surface or on the luminal surface of intracellular organelles, such as Golgi or the endoplasmic reticulum, depending where various LPPs are expressed. LPPs could attenuate cell activation by dephosphorylating bioactive lipid phosphate esters such as phosphatidate, lysophosphatidate, sphingosine 1-phosphate and ceramide 1-phosphate. In so doing, the LPPs could generate alternative signals from diacylglycerol, sphingosine and ceramide. The LPPs might help to modulate cell signaling by the phospholipase D pathway. For example, phosphatidate generated within the cell by phospholipase D could be converted by an LPP to diacylglycerol. This should change the relative balance of signaling by these two lipids. Another possible function of the LPPs relates to the secretion of lysophosphatidate and sphingosine 1-phosphate by activated platelets and other cells. These exogenous lipids activate phospholipid growth factor receptors on the surface of cells. LPP activities could attenuate cell activation by lysophosphatidate and sphingosine 1-phosphate through their respective receptors.  相似文献   

4.
This article describes the regulation of cell signaling by lipid phosphate phosphatases (LPPs) that control the conversion of bioactive lipid phosphates to their dephosphorylated counterparts. A structural model of the LPPs, that were previously called Type 2 phosphatidate phosphatases, is described. LPPs are characterized by having no Mg(2+) requirement and their insensitivity to inhibition by N-ethylmaleimide. The LPPs have six putative transmembrane domains and three highly conserved domains that define a phosphatase superfamily. The conserved domains are juxtaposed to the proposed membrane spanning domains such that they probably form the active sites of the phosphatases. It is predicted that the active sites of the LPPs are exposed at the cell surface or on the luminal surface of intracellular organelles, such as Golgi or the endoplasmic reticulum, depending where various LPPs are expressed. LPPs could attenuate cell activation by dephosphorylating bioactive lipid phosphate esters such as phosphatidate, lysophosphatidate, sphingosine 1-phosphate and ceramide 1-phosphate. In so doing, the LPPs could generate alternative signals from diacylglycerol, sphingosine and ceramide. The LPPs might help to modulate cell signaling by the phospholipase D pathway. For example, phosphatidate generated within the cell by phospholipase D could be converted by an LPP to diacylglycerol. This should change the relative balance of signaling by these two lipids. Another possible function of the LPPs relates to the secretion of lysophosphatidate and sphingosine 1-phosphate by activated platelets and other cells. These exogenous lipids activate phospholipid growth factor receptors on the surface of cells. LPP activities could attenuate cell activation by lysophosphatidate and sphingosine 1-phosphate through their respective receptors.  相似文献   

5.
Ceramides are known to have a regulatory function in apoptosis, including the release of cytochrome c and other proapoptotic factors from the mitochondrial intermembrane space. Ceramides can form large, stable channels in the outer mitochondrial membrane, leading to the proposal that ceramide channels are the pathway through which these proteins are released. Here, we report that sphingosine, a product of ceramide hydrolysis by ceramidase, is capable of destabilizing ceramide channels, leading to their disassembly. Sphingosine is directly responsible for the disassembly of ceramide channels in planar membrane experiments and markedly reduces the ability of ceramide to induce the release of intermembrane space proteins from mitochondria in vitro. Low concentrations of both L and D sphingosine potentiate the release of intermembrane space proteins by long-chain ceramide and channel formation in liposomes. These results provide evidence for a mechanism by which the disassembly of ceramide channels, as initiated by ceramidase, could be accelerated by the direct interaction of the hydrolysis product with the ceramide channels themselves. This mechanism therefore could form a positive feedback loop for rapid shut-down of ceramide channels. However, potentiation of ceramide channel formation is also possible and thus both effects could influence the propensity for mitochondria-mediated apoptosis.  相似文献   

6.
Sphingolipids are an important class of lipids due to their role as biologically active molecules and as intracellular second messengers. Sphingolipid metabolites are involved in a wide variety of important biological processes including signal transduction and growth regulation. Simple, quantitative analytical methods are needed to assay these complex lipids, in order to study their biological functions. The current methods used to quantify ceramides and long-chain sphingoid bases are primarily based on derivatization with uv or fluorescent tags and with radioactive-based enzymatic assays. A method was developed to separate ceramides and sphingoid bases by normal-phase high-performance liquid chromatography and detect them directly with evaporative light-scattering detection. Ceramides and the sphingoid bases phytosphingosine, dihydrosphingosine, sphingosine, and sphingosine 1-phosphate were resolved with a rapid and quantitative assay in the nanomole range. Yeast extracts grown to various time points were assayed for ceramide and sphingoid bases using a simple, isocratic HPLC system. Both ceramide and phytosphingosine, the primary sphingoid base present in yeast cell extracts, were detected in yeast cell extracts. Phytosphingosine was resolved as a sharp peak with the addition of triethylamine and formic acid modifiers to a chloroform/ethanol mobile phase. This method demonstrates the first direct assay of both ceramides and sphingoid bases.  相似文献   

7.
This review is focused on the formation of lateral domains in model bilayer membranes, with an emphasis on sphingolipids and their interaction with cholesterol. Sphingolipids in general show a preference for partitioning into ordered domains. One of the roles of cholesterol is apparently to modulate the fluidity of the sphingolipid domains and also to help segregate the domains for functional purposes. Cholesterol shows a preference for sphingomyelin over phosphatidylcholine with corresponding acyl chains. The interaction of cholesterol with different sphingolipids is largely dependent on the molecular properties of the particular sphingolipid in question. Small head group size clearly has a destabilizing effect on sphingolipid/cholesterol interaction, as exemplified by studies with ceramide and ceramide phosphoethanolamine. Ceramides actually displace sterol from ordered domains formed with saturated phosphatidylcholine or sphingomyelin. The N-linked acyl chain is known to be an important stabilizer of the sphingolipid/cholesterol interaction. However, N-acyl phosphatidylethanolamines failed to interact favorably with cholesterol and to form cholesterol-enriched lateral domains in bilayer membranes. Glycosphingolipids also form ordered domains in membranes but do not show a strong preference for interacting with cholesterol. It is clear from the studies reviewed here that small changes in the structure of sphingolipids alter their partitioning between lateral domains substantially.  相似文献   

8.
This review is focused on the formation of lateral domains in model bilayer membranes, with an emphasis on sphingolipids and their interaction with cholesterol. Sphingolipids in general show a preference for partitioning into ordered domains. One of the roles of cholesterol is apparently to modulate the fluidity of the sphingolipid domains and also to help segregate the domains for functional purposes. Cholesterol shows a preference for sphingomyelin over phosphatidylcholine with corresponding acyl chains. The interaction of cholesterol with different sphingolipids is largely dependent on the molecular properties of the particular sphingolipid in question. Small head group size clearly has a destabilizing effect on sphingolipid/cholesterol interaction, as exemplified by studies with ceramide and ceramide phosphoethanolamine. Ceramides actually displace sterol from ordered domains formed with saturated phosphatidylcholine or sphingomyelin. The N-linked acyl chain is known to be an important stabilizer of the sphingolipid/cholesterol interaction. However, N-acyl phosphatidylethanolamines failed to interact favorably with cholesterol and to form cholesterol-enriched lateral domains in bilayer membranes. Glycosphingolipids also form ordered domains in membranes but do not show a strong preference for interacting with cholesterol. It is clear from the studies reviewed here that small changes in the structure of sphingolipids alter their partitioning between lateral domains substantially.  相似文献   

9.
Glycosphingolipids, sphingomyelin and cholesterol are often all found in the detergent resistant fraction of biological membranes and are therefore recognized as raft components, but they do not necessarily co-localize in the same lateral domains. From cell biological studies it is evident that different sphingolipid species can be found in different lateral regions within the same cellular membrane. Biophysical studies have shown that their tendency to co-localize with each other and with other membrane components is largely governed by structural features of all lipids present. Glycosphingolipids form gel-phase like domains in fluid lipid bilayers. Sphingomyelin readily associates with cholesterol, forming liquid-ordered phase domains, but glycosphingolipids do not readily form cholesterol-enriched domains by themselves. However, mixed sphingomyelin- and glycosphingolipid-rich domains appear to incorporate cholesterol. Recent studies indicate that the ceramide backbone structure as well as the number of sugar units and presence of charge in the glycosphingolipid head group will influence the partitioning of these lipids between lateral membrane domains. The properties of the domains will be largely influenced by the presence of glycosphingolipids, which have very high melting temperatures. The lateral partitioning of glycosphingolipid molecular species has only recently been studied more intensively, and a lot remains to be done in this field of research.  相似文献   

10.
ERM proteins are regulated by phosphorylation of the most C-terminal threonine residue, switching them from an activated to an inactivated form. However, little is known about the control of this regulation. Previous work in our group demonstrated that secretion of acid sphingomyelinase acts upstream of ERM dephosphorylation, suggesting the involvement of sphingomyelin (SM) hydrolysis in ERM regulation. To define the role of specific lipids, we employed recombinant bacterial sphingomyelinase (bSMase) as a direct probe of SM metabolism at the plasma membrane. bSMase induced a rapid dose- and time-dependent decrease in ERM dephosphorylation. ERM dephosphorylation was driven by ceramide generation and not by sphingomyelin depletion, as shown using recombinant sphingomyelinase D. The generation of ceramide at the plasma membrane was sufficient for ERM regulation, and no intracellular SM hydrolysis was required, as was visualized using Venus-tagged lysenin probe, which specifically binds SM. Interestingly, hydrolysis of plasma membrane bSMase-induced ceramide using bacterial ceramidase caused ERM hyperphosphorylation and formation of cell surface protrusions. The effects of plasma membrane ceramide hydrolysis were due to sphingosine 1-phosphate formation, as ERM phosphorylation was blocked by an inhibitor of sphingosine kinase and induced by sphingosine 1-phosphate. Taken together, these results demonstrate a new regulatory mechanism of ERM phosphorylation by sphingolipids with opposing actions of ceramide and sphingosine 1-phosphate. The approach also defines a tool kit to probe sphingolipid signaling at the plasma membrane.  相似文献   

11.
Inflammation is a network of complex processes involving a variety of metabolic and signaling pathways aiming at healing and repairing damage tissue, or fighting infection. However, inflammation can be detrimental when it becomes out of control. Inflammatory mediators involve cytokines, bioactive lipids and lipid-derived metabolites. In particular, the simple sphingolipids ceramides, sphingosine 1-phosphate, and ceramide 1-phosphate have been widely implicated in inflammation. However, although ceramide 1-phosphate was first described as pro-inflammatory, recent studies show that it has anti-inflammatory properties when produced in specific cell types or tissues. The biological functions of ceramides and sphingosine 1-phosphate have been extensively studied. These sphingolipids have opposing effects with ceramides being potent inducers of cell cycle arrest and apoptosis, and sphingosine 1-phosphate promoting cell growth and survival. However, the biological actions of ceramide 1-phosphate have only been partially described. Ceramide 1-phosphate is mitogenic and anti-apoptotic, and more recently, it has been demonstrated to be key regulator of cell migration. Both sphingosine 1-phosphate and ceramide 1-phosphate are also implicated in tumor growth and dissemination. The present review highlights new aspects on the control of inflammation and cell migration by simple sphingolipids, with special emphasis to the role played by ceramide 1-phosphate in controlling these actions.  相似文献   

12.
The biological actions of the lysolipid agonists sphingosine 1-phosphate and lysophosphatidic acid, in addition to other bioactive lipid phosphates such as phosphatidic acid and ceramide 1-phosphate, can be influenced by a family of lipid phosphate phosphatases (LPP), including LPP1, LPP2, LPP3, the Drosophila homologues Wunen (Wun) and Wunen2 (Wun2) and sphingosine 1-phosphate phosphatases 1 and 2 (SPP1, SPP2). This review describes the characteristic of these enzymes and their potential physiological roles in regulating intracellular and extracellular actions and amounts of these lipids in addition to the involvement of these phosphatases in development.  相似文献   

13.
Sphingosine kinase: biochemical and cellular regulation and role in disease   总被引:7,自引:0,他引:7  
Sphingolipids have emerged as molecules whose metabolism is regulated leading to generation of bioactive products including ceramide, sphingosine, and sphingosine-1-phosphate. The balance between cellular levels of these bioactive products is increasingly recognized to be critical to cell regulation; whereby, ceramide and sphingosine cause apoptosis and growth arrest phenotypes, and sphingosine-1-phosphate mediates proliferative and angiogenic responses. Sphingosine kinase is a key enzyme in modulating the levels of these lipids and is emerging as an important and regulated enzyme. This review is geared at mechanisms of regulation of sphingosine kinase and the coming to light of its role in disease.  相似文献   

14.
Free-standing giant unilamellar vesicles were used to visualize the complex lateral heterogeneity, induced by ceramide in the membrane bilayer at micron scale using C12-NBD-PC probe partitioning under the fluorescence microscope. Ceramide gel domains exist as leaf-like structures in glycerophospholipid/ceramide mixtures. Cholesterol readily increases ceramide miscibility with glycerophospholipids but cholesterol-ceramide interactions are not involved in the organization of the liquid-ordered phase as exemplified by sphingomyelin/cholesterol mixtures. Sphingomyelin stabilizes the gel phase and thus decreases ceramide miscibility in the presence of cholesterol. Gel/liquid-ordered/liquid-disordered phase coexistence was visualized in quaternary phosphatidylcholine/sphingomyelin/ceramide/cholesterol mixtures as occurrence of dark leaf-like and circular domains within a bright liquid phase. Sphingomyelin initiates specific ceramide-sphingomyelin interactions to form a highly ordered gel phase appearing at temperatures higher than pure ceramide gel phase in phosphatidylcholine/ceramide mixtures. Less sphingomyelin is engaged in formation of liquid-ordered phase leading to a shift in its formation to lower temperatures. Sphingomyelinase activity on substrate vesicles destroys micron Lo domains but induces the formation of a gel-like phase. The activation of phospholipase A2 by ceramide on heterogeneous membranes was visualized. Changes in the phase state of the membrane bilayer initiates such morphological processes as membrane fragmentation, budding in and budding out was demonstrated.  相似文献   

15.
16.
The influence of cholesterol sulfate (CS) and calcium on the phase behavior of lipid mixtures mimicking the stratum corneum (SC) lipids was examined using vibrational spectroscopy. Raman microspectrocopy showed that equimolar mixtures of ceramide, palmitic acid, and cholesterol underwent a phase transition in which, at low temperatures, lipids formed mainly a mosaic of microcrystalline phase-separated domains, and above 45 degrees C, a more fluid and disordered phase in which the three lipid species were more miscible. In the presence of Ca(2+), there was the formation of fatty acid-Ca(2+) complexes that led to domains stable on heating. Consequently, these lipid mixtures remained heterogeneous, and the fatty acid molecules were not extensively involved in the formation of the fluid lipid phase, which included mainly ceramide and cholesterol. However, the presence of CS displaced the association site of Ca(2+) ions and inhibited the formation of domains formed by the fatty acid molecules complexed with Ca(2+) ions. This work reveals that CS and Ca(2+) modulate the lipid mixing properties and the lipid order in SC lipid models. The balance in the equilibria involving Ca(2+), CS, and fatty acids is proposed to have an impact on the organization and the function of the epidermis.  相似文献   

17.
Ceramide is a membrane lipid involved in a number of crucial biological processes. Recent evidence suggests that ceramide is likely to reside and function within lipid rafts; ordered sphingolipid and cholesterol-rich lipid domains believed to exist within many eukaryotic cell membranes. Using lipid vesicles containing co-existing raft domains and disordered fluid domains, we find that natural and saturated synthetic ceramides displace sterols from rafts. Other raft lipids remain raft-associated in the presence of ceramide, showing displacement is relatively specific for sterols. Like cholesterol-containing rafts, ceramide-rich "rafts" remain in a highly ordered state. Comparison of the sterol-displacing abilities of natural ceramides with those of saturated diglycerides and an unsaturated ceramide demonstrates that tight lipid packing is critical for sterol displacement by ceramide. Based on these results, and the fact that cholesterol and ceramides both have small polar headgroups, we propose that ceramides and cholesterol compete for association with rafts because of a limited capacity of raft lipids with large headgroups to accommodate small headgroup lipids in a manner that prevents unfavorable contact between the hydrocarbon groups of the small headgroup lipids and the surrounding aqueous environment. Minimizing the exposure of cholesterol and ceramide to water may be a strong driving force for the association of other molecules with rafts. Furthermore, displacement of sterol from rafts by ceramide is very likely to have marked effects upon raft structure and function, altering liquid ordered properties as well as molecular composition. In this regard, certain previously observed physiological processes may be a result of displacement. In particular, a direct connection to the previously observed sphingomyelinase-induced displacement of cholesterol from plasma membranes in cells is proposed.  相似文献   

18.
Neutral ceramidase is a type II integral membrane protein, which is occasionally secreted into the extracellular milieu after the processing of its N-terminal anchor. We found that when overexpressed in CHOP cells, neutral ceramidase hydrolyzed cell surface ceramide, which increased in amount after the treatment of cells with bacterial sphingomyelinase, leading to an increase in the cellular level of sphingosine and sphingosine 1-phosphate. On the other hand, knockdown of the endogenous enzyme by siRNA decreased the cellular level of both sphingolipid metabolites. The treatment of cells with bovine serum albumin significantly reduced the cellular level of sphingosine, but not sphingosine 1-phosphate, generated by overexpression of the enzyme. The cellular level of sphingosine 1-phosphate increased with overexpression of the cytosolic sphingosine kinase. These results suggest that sphingosine 1-phosphate is mainly produced inside of the cell after the incorporation of sphingosine generated on the plasma membranes. The enzyme also seems to participate in the hydrolysis of serum-derived ceramide in the vascular system. Significant amounts of sphingosine as well as sphingosine 1-phosphate were generated in the cell-free conditioned medium of ceramidase transfectants, compared with mock transfectants. No increase in these metabolites was observed if serum or bacterial sphingomyelinase was omitted from the conditioned medium, suggesting that the major source of ceramide is the serum-derived sphingomyelin. A sphingosine 1-phosphate receptor, S1P(1), was internalized much faster by the treatment of S1P(1)-overexpressing cells with conditioned medium of ceramidase transfectants than that of mock transfectants. Collectively, these results clearly indicate that the enzyme is involved in the metabolism of ceramide at the plasma membrane and in the extracellular milieu, which could regulate sphingosine 1-phosphate-mediated signaling through the generation of sphingosine.  相似文献   

19.
This review considers various functional aspects of cell sphingolipids (sphingomyelin, ceramides) and lysosphingolipids (sphingosine-1-phosphate (S1P) and sphingosine phosphorylcholine). Good evidence now exists that they are actively involved in numerous cell-signaling processes. The enzymes responsible for formation and interconversion of cell sphingolipids (sphingomyelinases, ceramidase, sphingosine kinase, S1P-lyase) exhibit high sensitivity to various stimulating factors. This determines the content of individual cell sphingolipids and therefore the mode of cell response. Special attention is paid to preferential localization of sphingolipids in the rigid plasma membrane domains (rafts) coupled to many signal proteins. The suggestion is discussed that ceramide signaling may be based on the modification of fine molecular interactions in lipid rafts, resulting in its clusterization inducing the signal transduction. The review also highlights involvement of sphingolipids in cell proliferation, apoptosis, and in processes implicated to atherosclerosis.  相似文献   

20.
Some of the simplest sphingolipids, namely sphingosine, ceramide, some closely related molecules (eicosasphingosine, phytosphingosine), and their phosphorylated compounds (sphingosine-1-phosphate, ceramide-1-phosphate), are potent metabolic regulators. Each of these lipids modifies in marked and specific ways the physical properties of the cell membranes, in what can be the basis for some of their physiological actions. This paper reviews the mechanisms by which these sphingolipid signals, sphingosine and ceramide in particular, are able to modify the properties of cell membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号