首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Aim: The study aimed to evaluate the effect of the bacteriocins produced by Lactobacillus sakei CWBI‐B1365 and Lactobacillus curvatus CWBI‐B28 on the growth and survival of Listeria monocytogenes in raw beef and poultry meat. Methods and Results: The sakacin P and sakacin G structural genes were identified in Lact. curvatus CWBI‐B28 and Lact. sakei CWBI‐B1365 using PCR amplification, respectively. The effect of the two bacteriocinogenic strains either alone or together, and that of the nonbacteriocin‐producing strain Lact. sakei LMG17302, on the growth of L. monocytogenes was evaluated in beef and poultry meat. In raw beef, the pathogenic bacteria were inhibited by the bacteriocinogenic strains. The bacteriocinogenic strains had no activity in raw chicken meat when inoculated separately, while they showed a clear anti‐Listeria effect when applied together. Conclusion: Sakacin G producing Lact. sakei and sakacin P producing Lact. curvatus may be applied in raw beef to inhibit L. monocytogenes. In poultry meat, the inhibition of L. monocytogenes could only be achieved by a combined application of these bacteriocin‐producing strains. Significance and Impact of the Study: In some meat products, the combined application of different class IIa bacteriocin producing lactic acid bacterium can enhance the anti‐listerial activity.  相似文献   

3.
4.
Aims: To develop a general method for site‐directed mutagenesis in the dairy starter strain Streptococcus thermophilus LMG 18311 which does not depend on antibiotic‐resistance genes or other selection markers for the identification of transformants. Methods and Results: In a previous study, we demonstrated that Strep. thermophilus LMG 18311 can be made competent for natural genetic transformation by overexpression of the alternative sigma factor ComX. In the present study, we wanted to investigate whether the natural transformation mechanism of Strep. thermophilus LMG 18311 is efficient enough to make it feasible to perform site‐directed mutagenesis in this strain without the use of a selection marker. Competent bacteria were mixed with a DNA fragment engineered to contain a nonsense and a frameshift mutation in the middle of the target gene (lacZ) and subsequently seeded on agar plates. By performing colony‐lift hybridization using a digoxigenin‐labelled oligonucleotide probe, we succeeded in identifying transformants containing the sought after mutation. Conclusions: By exploiting the natural transformability of Strep. thermophilus LMG 18311 and standard molecular methods, we have demonstrated that the genome of this bacterium can be altered at preselected sites without introduction of any foreign DNA. Significance and Impact of the Study: A food‐grade site‐directed mutagenesis system has been developed for Strep. thermophilus LMG 18311 that can be used by the dairy industry to construct starter strains with novel and/or improved properties.  相似文献   

5.
6.
7.
Aims: To test the effect of auxin‐treatment on plant pathogenic phytoplasmas and phytoplasma‐infected host. Methods and Results: In vitro grown periwinkle shoots infected with different ‘Candidatus Phytoplasma’ species were treated with indole‐3‐acetic acid (IAA) or indole‐3‐butyric acid (IBA). Both auxins induced recovery of phytoplasma‐infected periwinkle shoots, but IBA was more effective. The time period and concentration of the auxin needed to induce recovery was dependent on the ‘Candidatus Phytoplasma’ species and the type of auxin. Two ‘Candidatus Phytoplasma’ species, ‘Ca. P. pruni’ (strain KVI, clover phyllody from Italy) and ‘Ca. P. asteris’ (strain HYDB, hydrangea phyllody), were susceptible to auxin‐treatment and undetected by nested PCR or detected only in the second nested PCR in the host tissue. ‘Ca. P. solani’ (strain SA‐I, grapevine yellows) persisted in the host tissue despite the obvious recovery of the host plant and was always detected in the direct PCR. Conclusions: Both auxins induced recovery of phytoplasma‐infected plants and affected tested ‘Candidatus Phytoplasma’ species in the same manner, implying that the mechanism involved in phytoplasma elimination/survival is common to both, IAA and IBA. Significance and Impact of the Study: The results imply that in the case of some ‘Candidatus Phytoplasma’ species, IBA‐treatment could be used to eliminate phytoplasmas from in vitro grown Catharanthus roseus shoots.  相似文献   

8.
Aims: To test whether a single vector, nisin‐controlled expression (NICE) system could be used to regulate expression of the pediocin operon in Streptococcus thermophilus, Lactococcus lactis subsp. lactis and Lactobacillus casei. Methods and Results: The intact pediocin operon was cloned immediately into pMSP3535 downstream of the nisA promoter (PnisA). The resulting vector, pRSNPed, was electrotransformed into Strep. thermophilus ST128, L. lactis subsp. lactis ML3 and Lact. casei C2. Presence of the intact vector was confirmed by PCR, resulting in the amplification of a 0·8‐kb DNA fragment, and inhibition zones were observed for all lactic acid bacteria (LAB) transformants following induction with 50 ng ml?1 nisin, when Listeria monocytogenes Scott A was used as the target bacterium. Using L. monocytogenes NR30 as target, the L. lactis transformants produced hazy zones of inhibition, while the Lact. casei transformants produced clear zones of inhibition. Zones of inhibition were not observed when the Strep. thermophilus transformants were tested against NR30. Conclusions: The LAB hosts were able to produce enough pediocin to inhibit the growth of L. monocytogenes Scott A; the growth of L. monocytogenes NR30 was effectively inhibited only by the Lact. casei transformants. Significance and Impact of the Study: This is the first time that the NICE system has been used to express the intact pediocin operon in these LAB hosts. This system could allow for the in situ production of pediocin in fermented dairy foods supplemented with nisin to prevent listeria contamination.  相似文献   

9.
10.
11.
12.
To determine and compare the extent of contamination caused by antimicrobial‐resistant lactic acid bacteria (LAB) in imported and domestic natural cheeses on the Japanese market, LAB were isolated using deMan, Rogosa and Sharpe (MRS) agar and MRS agar supplemented with six antimicrobials. From 38 imported and 24 Japanese cheeses, 409 LAB isolates were obtained and their antimicrobial resistance was tested. The percentage of LAB resistant to dihydrostreptomycin, erythromycin, and/or oxytetracycline isolated from imported cheeses (42.1%) was significantly higher than that of LAB resistant to dihydrostreptomycin or oxytetracycline from cheeses produced in Japan (16.7%; P = 0.04). Antimicrobial resistance genes were detected in Enterococcus faecalis (tetL, tetM, and ermB; tetL and ermB; tetM) E. faecium (tetM), Lactococcus lactis (tetS), Lactobacillus (Lb.), casei/paracasei (tetM or tetW), and Lb. rhamnosus (ermB) isolated from seven imported cheeses. Moreover, these E. faecalis isolates were able to transfer antimicrobial resistance gene(s). Although antimicrobial resistance genes were not detected in any LAB isolates from Japanese cheeses, Lb. casei/paracasei and Lb. coryniformis isolates from a Japanese farm‐made cheese were resistant to oxytetracycline (minimal inhibitory concentration [MIC], 32 µg/mL). Leuconostoc isolates from three Japanese farm‐made cheeses were also resistant to dihydrostreptomycin (MIC, 32 to > 512 µg/mL). In conclusion, the present study demonstrated contamination with antimicrobial‐resistant LAB in imported and Japanese farm‐made cheeses on the Japanese market, but not in Japanese commercial cheeses.  相似文献   

13.
The purpose of this study was to investigate the influence of four kinds of Lactic acid bacteria (LAB) on stereoselective degradation of theta‐cypermethrin (CYP), including Lactobacillus plantarum, Lactobacillus casei, Lactobacillus delbrueckii, and Streptococcus thermophilus. An effective analytical method for (±)‐theta‐CYP in medium was developed by high‐performance liquid chromatography with cellulose tris‐(3,5‐dimethylphenylcarbamate) chiral stationary phase. theta‐Cypermethrin was spiked to LAB medium with different inoculation rates and sampled at 0, 2, 8, 24, 36, 48, 72, 120, 168, and 240 hours. The results showed that LAB influenced the half‐lives and enantiomer fractions of theta‐CYP enantiomers, which lead a closer degradation rate between the 2 stereoisomers, and no obvious difference was found among 4 LABs. Besides, the stereoselective degradation of theta‐CYP was closely related to pH. The lower the pH (pH of 3, 5, 7, and 9), the lower the enantiomer fraction (from 4.88 to 6.69). At pH of 3, 7, and 9, significant differences of half‐lives between enantiomers were observed. (?)‐theta‐Cypermethrin decreased faster than (+)‐theta‐CYP under pH of 3, while opposite results were indicated under pH of 7 and 9. Moreover, the acidic condition contributed to the higher chiral configuration stability of (±)‐theta‐CYP. (+)‐Enantiomer was influenced by pH in a greater degree than (?)‐enantiomer.  相似文献   

14.
Aims: To screen the glutamate dehydrogenase (GDH) activity of nonstarter lactic acid bacteria (NSLAB) and to determine the effects of temperature, pH and NaCl values used for cheese ripening on enzyme activity and expression of GDH gene. Methods and Results: A subcellular fractionation protocol and specific enzyme assays were used. The effect of temperature, pH and NaCl on enzyme activity was evaluated. The expression of GDH gene was monitored by real‐time PCR. One selected strain was also used as adjunct starter for cheese making to evaluate the catabolism of free amino acids and the production of volatile organic compounds (VOC) during cheese ripening. The cytoplasm fraction of all strains showed in vitro NADP‐dependent GDH activity. NADP‐GDH activity was markedly strain dependent and varied according to the interactions between temperature, pH and NaCl. Lactobacillus plantarum DPPMA49 showed the highest NADP‐GDH activity under temperature, pH and NaCl values found during cheese ripening. RT‐PCR analysis revealed that GDH expression of Lact. plantarum DPPMA49 was down‐expressed by low temperature (<13°C) and over‐expressed by NaCl (1·87–5·62%). According to NADP‐GDH activity, the highest level of VOC (alcohols, aldehydes, miscellaneous and carboxylic acids) was found in cheeses made with DPPMA49. Conclusions: The results of this study may be considered as an example of the influence of temperature, pH and NaCl on enzyme activity and expression of functional genes, such as GDH, in cheese‐related bacteria. Significance and Impact of the Study: It focuses on the phenotypic and molecular characterization of the NADP‐GDH in lactobacilli under cheese‐ripening conditions. The findings of this study contribute to the knowledge about enzymes involved in the catabolism of amino acids, to be used as an important selection trait for cheese strains.  相似文献   

15.
16.
17.
Aims: Optimal production conditions of conjugated γ‐linolenic acid (CGLA) from γ‐linolenic acid using washed cells of Lactobacillus plantarum AKU 1009a as catalysts were investigated. Methods and Results: Washed cells of Lact. plantarum AKU 1009a exhibiting a high level of CGLA productivity were obtained by cultivation in a nutrient medium supplemented with 0·03% (w/v) α‐linolenic acid as an inducer. Under the optimal reaction conditions with 13 mg ml?1γ‐linolenic acid as a substrate in 5 ‐ml reaction volume, the washed cells [32% (wet cells, w/v) corresponding to 46 mg ml?1 dry cells] as the catalysts produced 8·8 mg CGLA per millilitre reaction mixture (68% molar yield) in 27 h. The produced CGLA was a mixture of two isomers, i.e., cis‐6,cis‐9,trans‐11‐octadecatrienoic acid (CGLA1, 40% of total CGLA) and cis‐6,trans‐9,trans‐11‐octadecatrienoic acid (CGLA2, 60% of total CGLA), and accounted for 66% of total fatty acid obtained. The CGLA produced was obtained as free fatty acids adsorbed mostly on the surface of the cells of Lact. plantarum AKU1009a. Conclusion: The practical process of CGLA production from γ‐linolenic acid using washed cells of Lact. plantarum AKU 1009a was successfully established. Significance and Impact of the Study: We presented the first example of microbial production of CGLA. CGLA produced by the process is valuable for evaluating their physiological and nutritional effects, and chemical characteristics.  相似文献   

18.

Aim

To assess the anti‐inflammatory effect associated with individual probiotic suspensions of riboflavin‐producing lactic acid bacteria (LAB) in a colitis murine model.

Methods and Results

Mice intrarectally inoculated with trinitrobenzene sulfonic acid (TNBS) were orally administered with individual suspensions of riboflavin‐producing strains: Lactobacillus (Lact.) plantarum CRL2130, Lact. paracasei CRL76, Lact. bulgaricus CRL871 and Streptococcus thermophilus CRL803; and a nonriboflavin‐producing strain or commercial riboflavin. The extent of colonic damage and inflammation and microbial translocation to liver were evaluated. iNOs enzyme was analysed in the intestinal tissues and cytokine concentrations in the intestinal fluids. Animals given either one of the four riboflavin‐producing strains showed lower macroscopic and histologic damage scores, lower microbial translocation to liver, significant decreases of iNOs+ cells in their large intestines and decreased proinflammatory cytokines, compared with mice without treatment. The administration of pure riboflavin showed similar benefits. Lact. paracasei CRL76 accompanied its anti‐inflammatory effect with increased IL‐10 levels demonstrating other beneficial properties in addition to the vitamin production.

Conclusion

Administration of riboflavin‐producing strains prevented the intestinal damage induced by TNBS in mice.

Significance and Impact of the Study

Riboflavin‐producing phenotype in LAB represents a potent tool to select them for preventing/treating IBD.  相似文献   

19.
20.
The effects of silver nanoparticles on the photophysical properties of 1,7‐bis(4‐hydroxy‐3‐methoxyphenyl)‐1,6‐heptadiene‐3,5‐dione, popularly known as curcumin, have been investigated using optical absorption and fluorescence techniques. Although absorption spectroscopy suggests a ground‐state complex formation, fluorescence quenching data confirms a simultaneous static and dynamic quenching, inferring ground as well as excited‐state complex formation. The recovery of fluorescence quenching of the curcumin–silver nanoparticle complex in the presence of ascorbic acid or uric acid emphasizes a strong interaction between the silver nanoparticles and ascorbic acid/uric acid, suggesting that fluorescence recovery after the quenching of curcumin–silver nanoparticle complexes has potential for ascorbic acid or uric acid assay development. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号