首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Aims: Development and optimization of an efficient and inexpensive biotransformation process for ginsenoside compound K production by Paecilomyces bainier sp. 229. Methods and Results: We have determined the optimum culture conditions required for the efficient production of ginsenoside compound K by P. bainier sp. 229 via biotransformation of ginseng saponin substrate. The optimal medium constituents were determined to be: 30 g sucrose, 30 g soybean steep powder, 1 g wheat bran powder, 1 g (NH4)2SO4, 2 g MgSO4·7H2O and 1 g CaCl2 in 1 l of distilled water. An inoculum size of 5–7·5% with an optimal pH range of 4·5–5·5 was essential for high yield. Conclusions: The Mol conversion quotient of ginseng saponins increased from 21·2% to 72·7% by optimization of the cultural conditions. Scale‐up in a 10 l fermentor, under conditions of controlled pH and continuous air supply in the optimal medium, resulted in an 82·6% yield of ginsenoside compound K. Significant and Impact of the Study: This is the first report on the optimization of culture conditions for the production of ginsenoside compound K by fungal biotransformation. The degree of conversion is significantly higher than previous reports. Our method describes an inexpensive, rapid and efficient biotransformation system for the production of ginsenoside compound K.  相似文献   

4.
The effects of external calcium concentrations on biosynthesis of ginsenoside Rb1 and several calcium signal sensors were quantitatively investigated in suspension cultures of Panax notoginseng cells. It was observed that the synthesis of intracellular ginsenoside Rb1 in 3-day incubation was dependent on the medium Ca2+ concentration (0-13 mM). At an optimal Ca2+ concentration of 8 mM, a maximal ginsenoside Rb1 content of 1.88 +/- 0.03 mg g(-1) dry weight was reached, which was about 60% and 25% higher than that at Ca2+ concentrations of 0 and 3 mM, respectively. Ca2+ feeding experiments confirmed the Ca2+ concentration-dependent Rb1 biosynthesis. In order to understand the mechanism of the signal transduction from external Ca2+ to ginsenoside biosynthesis, the intracellular content of calcium and calmodulin (CaM), activities of calcium/calmodulin-dependent NAD kinase (CCDNK) and calcium-dependent protein kinase (CDPK), and activity of a new biosynthetic enzyme of ginsenoside Rb1, i.e., UDPG:ginsenoside Rd glucosyltransferase (UGRdGT), in the cultured cells were all analyzed. The intracellular calcium content and CCDNK activity were increased with an increase of external Ca2+ concentration within 0-13 mM. In contrast, the CaM content and activities of CDPK and UGRdGT reached their highest levels at 8 mM of initial Ca2+ concentration, which was also optimal to the ginsenoside Rb1 synthesis. A similar Ca2+ concentration-dependency of the intracellular contents of calcium and CaM and activities of CCDNK, CDPK, and UGRdGT was confirmed in Ca2+ feeding experiments. Finally, a possible model on the effect of external calcium on ginsenoside Rb1 biosynthesis via the signal transduction pathway of CaM, CDPK, and UGRdGT is proposed. Regulation of external Ca2+ concentration is considered a useful strategy for manipulating ginsenoside Rb1 biosynthesis by P. notoginseng cells.  相似文献   

5.
6.
7.
Vascular calcification (VC) is a pathological process underpinning major cardiovascular conditions and has attracted public attention due to its high morbidity and mortality. Chronic kidney disease (CKD) is a common disease related to VC. Ginsenoside Rb1 (Rb1) has been reported to protect the cardiovascular system against vascular diseases, yet its role in VC and the underlying mechanisms remain unclear. In this study, we established a CKD‐associated VC rat model and a β‐glycerophosphate (β‐GP)‐induced vascular smooth muscle cell (VSMC) calcification model to investigate the effects of Rb1 on VC. Our results demonstrated that Rb1 ameliorated calcium deposition and VSMC osteogenic transdifferentiation both in vivo and in vitro. Rb1 treatment inhibited the Wnt/β‐catenin pathway by activating peroxisome proliferator‐activated receptor‐γ (PPAR‐γ), and confocal microscopy was used to show that Rb1 inhibited β‐catenin nuclear translocation in VSMCs. Furthermore, SKL2001, an agonist of the Wnt/β‐catenin pathway, compromised the vascular protective effect of Rb1. GW9662, a PPAR‐γ antagonist, reversed Rb1's inhibitory effect on β‐catenin. These results indicate that Rb1 exerted anticalcific properties through PPAR‐γ/Wnt/β‐catenin axis, which provides new insights into the potential theraputics of VC.  相似文献   

8.
9.

Aims

This study examined the biotransformation pathway of ginsenoside Rb1 by the fungus Esteya vermicola CNU 120806.

Methods and Results

Ginsenosides Rb1 and Rd were extracted from the root of Panax ginseng. Liquid fermentation and purified enzyme hydrolysis were employed to investigate the biotransformation of ginsenoside Rb1. The metabolites were identified and confirmed using NMR analysis as gypenoside XVII and gypenoside LXXV. A mole yield of 95·4% gypenoside LXXV was obtained by enzymatic conversion (pH 5·0, temperature 50°C). Ginsenoside Rd was used to verify the transformation pathway under the same reaction condition. The product Compound K (mole yield 49·6%) proved a consecutive hydrolyses occurred at the C‐3 position of ginsenoside Rb1.

Conclusions

Strain CNU 120806 showed a high degree of specific β‐glucosidase activity to convert ginsenosides Rb1 and Rd to gypenoside LXXV and Compound K, respectively. The maximal activity of the purified glucosidase for ginsenosides transformation occurred at 50°C and pH 5·0. Compared with its activity against pNPG (100%), the β‐glucosidase exhibited quite lower level of activity against other aryl‐glycosides. Enzymatic hydrolysate, gypenoside LXXV and Compound K were produced by consecutive hydrolyses of the terminal and inner glucopyranosyl moieties at the C‐3 carbon of ginsenoside Rb1 and Rd, giving the pathway: ginsenoside Rb1→ gypenoside XVII → gypenoside LXXV; ginsenoside Rd→F2→Compound K, but did not hydrolyse the 20‐C, β‐(1‐6)‐glucoside of ginsenoside Rb1 and Rd.

Significance and Impact of the Study

The results showed an important practical application on the preparation of gypenoside LXXV. Additionally, this study for the first time provided a high efficient preparation method for gypenoside LXXV without further conversion, which also gives rise to a potential commercial enzyme application.  相似文献   

10.
11.
Bacteria‐derived enzymes that can modify specific lignin substructures are potential targets to engineer plants for better biomass processability. The Gram‐negative bacterium Sphingobium sp. SYK‐6 possesses a Cα‐dehydrogenase (LigD) enzyme that has been shown to oxidize the α‐hydroxy functionalities in β–O–4‐linked dimers into α‐keto analogues that are more chemically labile. Here, we show that recombinant LigD can oxidize an even wider range of β–O–4‐linked dimers and oligomers, including the genuine dilignols, guaiacylglycerol‐β‐coniferyl alcohol ether and syringylglycerol‐β‐sinapyl alcohol ether. We explored the possibility of using LigD for biosynthetically engineering lignin by expressing the codon‐optimized ligD gene in Arabidopsis thaliana. The ligD cDNA, with or without a signal peptide for apoplast targeting, has been successfully expressed, and LigD activity could be detected in the extracts of the transgenic plants. UPLC‐MS/MS‐based metabolite profiling indicated that levels of oxidized guaiacyl (G) β–O–4‐coupled dilignols and analogues were significantly elevated in the LigD transgenic plants regardless of the signal peptide attachment to LigD. In parallel, 2D NMR analysis revealed a 2.1‐ to 2.8‐fold increased level of G‐type α‐keto‐β–O–4 linkages in cellulolytic enzyme lignins isolated from the stem cell walls of the LigD transgenic plants, indicating that the transformation was capable of altering lignin structure in the desired manner.  相似文献   

12.
13.
14.
15.
16.
Tyrosine kinases are important regulators of synaptic strength. Here, we describe a key component of the synaptic vesicle release machinery, Munc18‐1, as a phosphorylation target for neuronal Src family kinases (SFKs). Phosphomimetic Y473D mutation of a SFK phosphorylation site previously identified by brain phospho‐proteomics abolished the stimulatory effect of Munc18‐1 on SNARE complex formation (“SNARE‐templating”) and membrane fusion in vitro. Furthermore, priming but not docking of synaptic vesicles was disrupted in hippocampal munc18‐1‐null neurons expressing Munc18‐1Y473D. Synaptic transmission was temporarily restored by high‐frequency stimulation, as well as by a Munc18‐1 mutation that results in helix 12 extension, a critical conformational step in vesicle priming. On the other hand, expression of non‐phosphorylatable Munc18‐1 supported normal synaptic transmission. We propose that SFK‐dependent Munc18‐1 phosphorylation may constitute a potent, previously unknown mechanism to shut down synaptic transmission, via direct occlusion of a Synaptobrevin/VAMP2 binding groove and subsequent hindrance of conformational changes in domain 3a responsible for vesicle priming. This would strongly interfere with the essential post‐docking SNARE‐templating role of Munc18‐1, resulting in a largely abolished pool of releasable synaptic vesicles.  相似文献   

17.
Two new compounds, fuscaxanthones J ( 1 ) and K ( 2 ), together with eight known xanthones ( 3 – 10 ) were isolated from an ethyl acetate extract of the roots of Garcinia fusca. Their structures were determined using spectroscopic methods, mainly 1D‐ and 2D‐NMR. α‐Glucosidase inhibitory activity of the isolated compounds was evaluated and fuscaxanthone J ( 1 ) showed the most significant effect with an IC50 value of 8.3 ± 1.8 μm (compared with acarbose, IC50 = 214.5 ± 2.3 μm ).  相似文献   

18.
Bacteria degrading α‐(1→3)‐glucan were sought in the gut of fungivorous insects feeding on fruiting bodies of a polypore fungus Laetiporus sulphureus, which are rich in this polymer. One isolate, from Diaperis boleti, was selected in an enrichment culture in the glucan‐containing medium. The bacterium was identified as Paenibacillus sp. based on the results of the ribosomal DNA analysis. The Paenibacillus showed enzyme activity of 4.97 mU/cm3 and effectively degraded fungal α‐(1→3)‐glucan, releasing nigerooligosaccharides and a trace amount of glucose. This strain is the first reported α‐(1→3)‐glucan‐degrading microorganism in the gut microbiome of insects inhabiting fruiting bodies of polypore fungi.  相似文献   

19.
20.
Phosphorylation of phospholipase C‐δ1 (PLC‐δ1) in vitro and in vivo was investigated. Of the serine/threonine kinases tested, protein kinase C (PKC) phosphorylated the serine residue(s) of bacterially expressed PLC‐δ1 most potently. It was also demonstrated that PLC‐δ1 directly bound PKC‐α via its pleckstrin homology (PH) domain. Using deletion mutants of PLC‐δ1 and synthetic peptides, Ser35 in the PH domain was defined as the PKC mediated in vitro phosphorylation site of PLC‐δ1. In vitro phosphorylation of PLC‐δ1 by PKC stimulated [3H]PtdIns(4,5)P2 hydrolyzing activity and [3H]Ins(1,4,5)P3‐binding of the PLC‐δ1. On the other hand, endogenous PLC‐δ1 was constitutively phosphorylated and phosphoamino acid analysis revealed that major phosphorylation sites were threonine residues in quiescent cells. The phosphorylation level and the species of phosphoamino acid were not changed by various stimuli such as PMA, EGF, NGF, and forskolin. Using matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) mass spectrometry, we determined that Thr209 of PLC‐δ1 is one of the constitutively phosphorylated sites in quiescent cells. The PLC activity was potentiated when constitutively phosphorylated PLC‐δ1 was dephosphorylated by endogenous phosphatase(s) in vitro. Additionally, coexpression with PKC‐α reduced serine phosphorylation of PLC‐δ1 detected by an anti‐phosphoserine antibody and PLC‐δ1‐dependent basal production of inositol phosphates in NIH‐3T3 cells, suggesting PKC‐α activates phosphatase or inactivates another kinase involved in PLC‐δ1 serine phosphorylation to modulate the PLC‐δ1 activity in vivo. Taken together, these results suggest that PLC‐δ1 has multiple phosphorylation sites and phosphorylation status of PLC‐δ1 regulates its activity positively or negatively depends on the phosphorylation sites. J. Cell. Biochem. 108: 638–650, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号