首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Duchenne muscular dystrophy is a degenerative disorder that leads to death by the third decade of life. Previous investigations have shown that macrophages that invade dystrophic muscle are a heterogeneous population consisting of M1 and M2 macrophages that promote injury and repair, respectively. In the present investigation, we tested whether IFN-γ worsens the severity of mdx dystrophy by activating macrophages to a cytolytic M1 phenotype and by suppressing the activation of proregenerative macrophages to an M2 phenotype. IFN-γ is a strong inducer of the M1 phenotype and is elevated in mdx dystrophy. Contrary to our expectations, null mutation of IFN-γ caused no reduction of cytotoxicity of macrophages isolated from mdx muscle and did not reduce muscle fiber damage in vivo or improve gross motor function of mdx mice at the early, acute peak of pathology. In contrast, ablation of IFN-γ reduced muscle damage in vivo during the regenerative stage of the disease and increased activation of the M2 phenotype and improved motor function of mdx mice at that later stage of the disease. IFN-γ also inhibited muscle cell proliferation and differentiation in vitro, and IFN-γ mutation increased MyoD expression in mdx muscle in vivo, showing that IFN-γ can have direct effects on muscle cells that could impair repair. Taken together, the findings show that suppression of IFN-γ signaling in muscular dystrophy reduces muscle damage and improves motor performance by promoting the M2 macrophage phenotype and by direct actions on muscle cells.  相似文献   

2.
Duchenne muscular dystrophy (DMD) is a fatal and crippling disease of skeletal muscle which displays increased fibre turnover and elevated levels of programmed cell death (PCD) in muscle stem cells. Previously we showed that this cell death is inhibited by the growth factor IGF-II. To determine the functional significance of PCD to the dystrophic phenotype, we used a transgene to over-express IGF-II in the mdx mouse. We found that ectopic expression of IGF-II inhibited the elevated PCD observed in skeletal muscles in the absence of functional dystrophin and significantly ameliorates the early gross histopathological changes in skeletal muscles characteristic of the dystrophic phenotype. Replacement of the dystrophin gene abolished abnormal skeletal muscle cell PCD levels in vivo in a dose-dependent manner and in dystrophic SMS cell lines cultured in vitro. Thus elevation of stem cell PCD in dystrophic skeletal muscle is a direct consequence of the loss of functional dystrophin. Together these data demonstrate that elevated skeletal muscle cell PCD is a critical component of dystrophic pathology and is inversely correlated with both dystrophin gene dosage and with muscle fibre pathology. Targeting PCD in dystrophic muscles reduces both PCD and the classical features of dystrophic pathology in the mdx mouse suggesting that IGF-II is a strong candidate for therapeutic intervention in the dystrophinopathies.  相似文献   

3.
Overturning M2 phenotype macrophage polarization is a promising therapeutic strategy for gastric cancer (GC). Diosmetin (DIO) is a natural flavonoid with antitumor effect. The aim of this study was to investigate the effect of DIO on polarization of M2 phenotype macrophages in GC. THP-1 cells were induced to M2 phenotype macrophages and co-cultured with AGS cells. The effects of DIO were determined by flow cytometry, qRT-PCR, CCK-8, Transwell, and western blot. To explore the mechanisms, THP-1 cells were transfected with adenoviral vectors containing tumor necrosis factor receptor-associated factor 2 (TRAF2) or si-TRAF2. DIO (0, 5, 10, and 20 μM) restrained the M2 phenotype macrophage polarization. In addition, DIO (20 μM) reversed the increased viability and invasion of AGS cells induced by the co-culture of M2 macrophages. Mechanistically, TRAF2 knockdown inhibited the effect of M2 phenotype macrophages on AGS cells' growth and invasion. Furthermore, DIO (20 μM) was found to decrease TRAF2/NF-κB activity in GC cells. However, TRAF2 overexpressed reversed the inhibitory effect of DIO on the co-culture system. The in vivo study confirmed that DIO treatment (50 mg/kg) could repress the growth of GC. DIO treatment markedly reduced the expressions of Ki-67 and N-cadherin, and decreased the protein levels of TRAF2 and p-NF-κB/NF-κB. In conclusion, DIO inhibited the growth and invasion of GC cells by interfering with M2 phenotype macrophage polarization through repression of the TRAF2/NF-κB signaling pathway.  相似文献   

4.
Ji Y  Sun S  Xia S  Yang L  Li X  Qi L 《The Journal of biological chemistry》2012,287(29):24378-24386
Inflammation in adipose tissue plays an important role in the pathogenesis of obesity-associated complications. However, the detailed cellular events underlying the inflammatory changes at the onset of obesity have not been characterized. Here we show that an acute HFD challenge is unexpectedly associated with elevated alternative (M2) macrophage polarization in adipose tissue mediated by Natural Killer T (NKT) cells. Upon 4d HFD feeding, NKT cells are activated, promote M2 macrophage polarization and induce arginase 1 expression via interleukin (IL)-4 in adipose tissue, not in the liver. In NKT-deficient CD1d(-/-) mice, M2 macrophage polarization in adipose tissue is reduced while systemic glucose homeostasis and insulin tolerance are impaired upon 4d HFD challenge. Thus, our study demonstrate, for the first time to our knowledge, that acute HFD feeding is associated with remarkably pronounced and dynamic immune responses in adipose tissue, and adipose-resident NKT cells may link acute HFD feeding with inflammation.  相似文献   

5.
Volumetric muscle loss (VML) is a traumatic and functionally debilitating muscle injury with limited treatment options. Developmental regenerative therapies for the repair of VML typically comprise an ECM scaffold. In this study, we tested if the complete reliance on host cell migration to a devitalized muscle scaffold without myogenic cells is sufficient for de novo muscle fiber regeneration. Devitalized (muscle ECM with no living cells) and, as a positive control, vital minced muscle grafts were transplanted to a VML defect in the tibialis anterior muscle of Lewis rats. Eight weeks post-injury, devitalized grafts did not appreciably promote de novo muscle fiber regeneration within the defect area, and instead remodeled into a fibrotic tissue mass. In contrast, transplantation of vital minced muscle grafts promoted de novo muscle fiber regeneration. Notably, pax7+ cells were absent in remote regions of the defect site repaired with devitalized scaffolds. At 2 weeks post-injury, the devitalized grafts were unable to promote an anti-inflammatory phenotype, while vital grafts appeared to progress to a pro-regenerative inflammatory response. The putative macrophage phenotypes observed in vivo were supported in vitro, in which soluble factors released from vital grafts promoted an M2-like macrophage polarization, whereas devitalized grafts failed to do so. These observations indicate that although the remaining muscle mass serves as a source of myogenic cells in close proximity to the defect site, a devitalized scaffold without myogenic cells is inadequate to appreciably promote de novo muscle fiber regeneration throughout the VML defect.  相似文献   

6.
Adult skeletal muscle possesses remarkable potential for growth in response to mechanical loading; however, many of the cellular and molecular mechanisms involved remain undefined. The hypothesis of this study was that the extracellular serine protease, urokinase-type plasminogen activator (uPA), is required for muscle hypertrophy, in part by promoting macrophage accumulation in muscle subjected to increased mechanical loading. Compensatory muscle hypertrophy was induced in mouse plantaris (PLT) muscles by surgical ablation of synergist muscles. Following synergist ablation, PLT muscles in wild-type mice demonstrated edema and infiltration of neutrophils and macrophages but an absence of overt muscle fiber damage. Sham procedures resulted in no edema or accumulation of inflammatory cells. In addition, synergist ablation was associated with a large increase in activity of uPA in the PLT muscle. uPA-null mice demonstrated complete abrogation of compensatory hypertrophy associated with reduced macrophage accumulation, indicating that uPA is required for hypertrophy. Macrophages isolated from wild-type PLT muscle during compensatory hypertrophy expressed uPA and IGF-I, both of which may contribute to hypertrophy. To determine whether macrophages are required for muscle hypertrophy, clodronate liposomes were administered to deplete macrophages in wild-type mice; this resulted in reduced muscle hypertrophy. Decreased macrophage accumulation was associated with reduced cell proliferation but did not alter signaling through the mammalian target of rapamycin pathway. These data indicate that uPA and macrophages are required for muscle hypertrophy following synergist ablation.  相似文献   

7.
The absence of dystrophin and resultant disruption of the dystrophin glycoprotein complex renders skeletal muscles of dystrophic patients and dystrophic mdx mice susceptible to contraction-induced injury. Strategies to reduce contraction-induced injury are of critical importance, because this mode of damage contributes to the etiology of myofiber breakdown in the dystrophic pathology. Transgenic overexpression of insulin-like growth factor-I (IGF-I) causes myofiber hypertrophy, increases force production, and can improve the dystrophic pathology in mdx mice. In contrast, the predominant effect of continuous exogenous administration of IGF-I to mdx mice at a low dose (1.0-1.5 mg.kg(-1).day(-1)) is a shift in muscle phenotype from fast glycolytic toward a more oxidative, fatigue-resistant, slow muscle without alterations in myofiber cross-sectional area, muscle mass, or maximum force-producing capacity. We found that exogenous administration of IGF-I to mdx mice increased myofiber succinate dehydrogenase activity, shifted the overall myosin heavy chain isoform composition toward a slower phenotype, and, most importantly, reduced contraction-induced damage in tibialis anterior muscles. The deficit in force-producing capacity after two damaging lengthening contractions was reduced significantly in tibialis anterior muscles of IGF-I-treated (53 +/- 4%) compared with untreated mdx mice (70 +/- 5%, P < 0.05). The results provide further evidence that IGF-I administration can enhance the functional properties of dystrophic skeletal muscle and, compared with results in transgenic mice or virus-mediated overexpression, highlight the disparities in different models of endocrine factor delivery.  相似文献   

8.
Duchenne muscular dystrophy (DMD) is the most common inherited neuromuscular disease and is characterized by absence of the cytoskeletal protein dystrophin, muscle wasting, and fibrosis. We previously demonstrated that systemic infusion or oral administration of angiotensin-(1-7) (Ang-(1-7)), a peptide with opposing effects to angiotensin II, normalized skeletal muscle architecture, decreased local fibrosis, and improved muscle function in mdx mice, a dystrophic model for DMD. In this study, we investigated the presence, activity, and localization of ACE2, the enzyme responsible for Ang-(1-7) production, in wild type (wt) and mdx skeletal muscle and in a model of induced chronic damage in wt mice. All dystrophic muscles studied showed higher ACE2 activity than wt muscle. Immunolocalization studies indicated that ACE2 was localized mainly at the sarcolemma and, to a lesser extent, associated with interstitial cells. Similar results were observed in the model of chronic damage in the tibialis anterior (TA) muscle. Furthermore, we evaluated the effect of ACE2 overexpression in mdx TA muscle using an adenovirus containing human ACE2 sequence and showed that expression of ACE2 reduced the fibrosis associated with TA dystrophic muscles. Moreover, we observed fewer inflammatory cells infiltrating the mdx muscle. Finally, mdx gastrocnemius muscles from mice infused with Ang-(1-7), which decreases fibrosis, contain less ACE2 associated with the muscle. This is the first evidence supporting ACE2 as an important therapeutic target to improve the dystrophic skeletal muscle phenotype.  相似文献   

9.
Tumor cells secrete factors that modulate macrophage activation and polarization into M2 type tumor-associated macrophages, which promote tumor growth, progression, and metastasis. The mechanisms that mediate this polarization are not clear. Macrophages are phagocytic cells that participate in the clearance of apoptotic cells, a process known as efferocytosis. Milk fat globule- EGF factor 8 (MFG-E8) is a bridge protein that facilitates efferocytosis and is associated with suppression of proinflammatory responses. This study investigated the hypothesis that MFG-E8-mediated efferocytosis promotes M2 polarization. Tissue and serum exosomes from prostate cancer patients presented higher levels of MFG-E8 compared with controls, a novel finding in human prostate cancer. Coculture of macrophages with apoptotic cancer cells increased efferocytosis, elevated MFG-E8 protein expression levels, and induced macrophage polarization into an alternatively activated M2 phenotype. Administration of antibody against MFG-E8 significantly attenuated the increase in M2 polarization. Inhibition of STAT3 phosphorylation using the inhibitor Stattic decreased efferocytosis and M2 macrophage polarization in vitro, with a correlating increase in SOCS3 protein expression. Moreover, MFG-E8 knockdown tumor cells cultured with wild-type or MFG-E8-deficient macrophages resulted in increased SOCS3 expression with decreased STAT3 activation. This suggests that SOCS3 and phospho-STAT3 act in an inversely dependent manner when stimulated by MFG-E8 and efferocytosis. These results uncover a unique role of efferocytosis via MFG-E8 as a mechanism for macrophage polarization into tumor-promoting M2 cells.  相似文献   

10.
The effect of halofuginone (Halo) on established fibrosis in older mdx dystrophic muscle was investigated. Mice (8 to 9 mo) treated with Halo (or saline in controls) for 5, 10, or 12 wk were assessed weekly for grip strength and voluntary running. Echocardiography was performed at 0, 5, and 10 wk. Respiratory function and exercise-induced muscle damage were tested. Heart, quadriceps, diaphragm, and tibialis anterior muscles were collected to study fibrosis, collagen I and III expression, collagen content using a novel collagenase-digestion method, and cell proliferation. Hepatocyte growth factor and alpha-smooth muscle actin proteins were assayed in quadriceps. Halo decreased fibrosis (diaphragm and quadriceps), collagen I and III expression, collagen protein, and smooth muscle actin content after 10 wk treatment. Muscle-cell proliferation increased at 5 wk, and hepatocyte growth factor increased by 10 wk treatment. Halo markedly improved both cardiac and respiratory function and reduced damage and improved recovery from exercise. The overall impact of established dystrophy and dysfunction in cardiac and skeletal muscles was reduced by Halo treatment. Marked improvements in vital-organ functions implicate Halo as a strong candidate drug to reduce morbidity and mortality in Duchenne muscular dystrophy.  相似文献   

11.
Silicosis is an occupational lung disease with no effective treatment. We hypothesized that dasatinib, a tyrosine kinase inhibitor, might exhibit therapeutic efficacy in silica-induced pulmonary fibrosis. Silicosis was induced in C57BL/6 mice by a single intratracheal administration of silica particles, whereas the control group received saline. After 14 days, when the disease was already established, animals were randomly assigned to receive DMSO or dasatinib (1 mg/kg) by oral gavage, twice daily, for 14 days. On day 28, lung morphofunction, inflammation, and remodeling were investigated. RAW 264.7 cells (a macrophage cell line) were incubated with silica particles, followed by treatment or not with dasatinib, and evaluated for macrophage polarization. On day 28, dasatinib improved lung mechanics, increased M2 macrophage counts in lung parenchyma and granuloma, and was associated with reduction of fraction area of granuloma, fraction area of collapsed alveoli, protein levels of tumor necrosis factor-α, interleukin-1β, transforming growth factor-β, and reduced neutrophils, M1 macrophages, and collagen fiber content in lung tissue and granuloma in silicotic animals. Additionally, dasatinib reduced expression of iNOS and increased expression of arginase and metalloproteinase-9 in silicotic macrophages. Dasatinib was effective at inducing macrophage polarization toward the M2 phenotype and reducing lung inflammation and fibrosis, thus improving lung mechanics in a murine model of acute silicosis.  相似文献   

12.
研究以黄颡鱼(Pelteobagrus fulvidraco)头肾巨噬细胞为研究对象,通过细菌脂多糖(LPS)和环磷酸腺苷(cAMP)分别诱导M1型和M2型极化,200 pmol/L维生素D3孵育后对其形态学特征、生物学功能及极化相关基因的表达进行分析鉴定来确定维生素D3在巨噬细胞极化中的调节作用。结果表明,维生素D3能降低诱导后M1型和M2型巨噬细胞的死亡率,并增强巨噬细胞的吞噬活性。在M1型巨噬细胞中维生素D3能够抑制活性氧(ROS)和炎症介质一氧化氮(NO)的产生,降低超氧阴离子自由基的活力,白介素1β(IL-1β)和肿瘤坏死因子-α(TNF-α)的表达水平显著降低(P<0.05);在M2型细胞中能够增加精氨酸酶的活性,显著增加白介素10(IL-10)和转化生长因子(TGF-β)的表达水平(P<0.05),最终抑制巨噬细胞向M1表型极化,促进巨噬细胞向M2表型极化,发挥抗炎作用;黄颡鱼头肾巨噬细胞中Nos-2和Arg-2分别是M1和M2巨噬细胞的生物标记基因。研究结果为进一步研究鱼...  相似文献   

13.
Young dystrophic (dy) murine muscle is capable of "spontaneous" regeneration (i.e., regeneration in the absence of external trauma); however, by the time the mice are 8 weeks old, this regeneration ceases. It has been suggested that the cessation of regeneration in dystrophic muscle may be due to exhaustion of the mitotic capability of myosatellite cells during the early stages of the disease. To test this hypothesis, orthotopic transplantation of bupivacaine treated, whole extensor digitorum longus muscles has been performed on 14 to 16-week-old 129 ReJ/++ and 129 ReJ/dydy mice. The grafted dystrophic muscle is able to produce and maintain for 100 days post-transplantation 356 +/- 22 myofibers, a number similar to that found in age-matched dystrophic muscle. The ability of old dystrophic muscle to regenerate subsequent to extreme trauma indicates that the cessation of "spontaneous" regeneration is due to factor(s) other than the exhaustion of mitotic capability of myosatellite cells. Moreover, there is no significant difference in myosatellite cell frequencies between grafted normal and dystrophic muscles (100 days post-transplantation). Myosatellite cell frequencies in grafted muscles are similar to those in age-matched, untraumatized muscles. While grafting of young dystrophic muscle modifies the phenotypic expression of histopathological changes usually associated with murine dystrophy, grafts of older dystrophic muscle show extensive connective-tissue infiltration and significantly fewer myofibers than do grafts of age-matched normal muscle. As early as 14 days post-transplantation, it is possible to distinguish between grafts of old, normal and dystrophic muscles. It is suggested that the connective tissue stroma, present in the dystrophic muscle at the time of transplantation, may survive the grafting procedure.  相似文献   

14.
《Cytotherapy》2023,25(4):375-386
Background aimsSkeletal muscle regeneration after severe damage is reliant on local stem cell proliferation and differentiation, processes that are tightly regulated by macrophages. Peripheral artery disease is a globally prevalent cardiovascular disease affecting millions of people. Progression of the disease leads to intermittent claudication, subsequent critical limb ischemia and muscle injury. Tissue-derived and ex vivo–expanded mesenchymal stromal cells (MSCs) for skeletal muscle regeneration have been studied, but pre-clinical and clinical results have not been consistent. As a result, the potential therapeutic efficacy and associated repair mechanisms of MSCs remain unclear. Numerous studies have demonstrated the vulnerability of delivered MSCs, with a precipitous drop in cell viability upon transplantation. This has prompted investigation into the therapeutic benefit of apoptotic cells, microvesicles, exosomes and soluble signals that are released upon cell death.MethodsIn this study, we characterized various components produced by MSCs after cell death induction under different conditions. We discovered anti-inflammatory and pro-regenerative effects produced by cell components following a freeze and thaw (F&T) process on macrophage polarization in vitro. We further investigated the underlying mechanisms of macrophage polarization by those components resulting from severe cell death induction.ResultsWe found potent therapeutic effects from F&T-induced cell debris are dependent on the externalization of phosphatidylserine on the plasma membrane. In contrast, effects from the supernatant of F&T-induced cell death primarily depends on the released protein content. We then applied the F&T-induced cell supernatant to an animal model of peripheral artery disease to treat muscle injury caused by severe ischemia. Treatment with the F&T supernatant but not the vulnerable MSCs resulted in significantly improved recovery of muscle function, blood flow and morphology and inflammation resolution in the affected muscles 2 weeks after injury.ConclusionsThis study validates the therapeutic potential of F&T-induced supernatant obviating the need for a viable population from vulnerable MSCs to treat injury, thus providing a roadmap for cell-free therapeutic approaches for tissue regeneration.  相似文献   

15.
Variations in the content and translatability of the poly(A)+ RNA and mRNA molecules coding for myosin (M) were studied in the hind leg muscles of genetically dystrophic mice. The poly(A)+ RNA content of total skeletal muscle failed to increase normally during progression of the disease. M mRNA, isolated from dystrophic normally during progression of the disease. M mRNA, isolated from dystrophic murine muscle poly(A)+ RNA, was mostly found to be associated with the 26S RNA species. The translation of M mRNA in an in vitro heterologous wheat germ system was lower at 8 and 16 weeks in the dystrophic group as compared with the controls. Analysis of the translation products via sodium dodecyl sulfate-polyacrylamide gel electrophoresis, autoradiography, and densitometric autoradiographic tracing demonstrated the gradual disappearance of a protein band corresponding to M, the major component of skeletal muscle. cDNA was synthesized, using M mRNA that was isolated and purified from normal and dystrophic mouse muscle as a template. Total radioactivity was measured in some cDNA fractions produced from normal and dystrophic mouse muscle, while other fractions were utilized for separation and sizing of cDNA by disc gel electrophoresis. The cDNA from normal muscle was hybridized with M mRNA from normal and 16-week-old dystrophic mouse muscles. The cDNA probe, hybridization experiments, and studies involving the content and synthesis of M mRNA suggest that murine muscular dystrophy elicited a shorter species of mRNA or shorter sequences of the same species of mRNA coding for M. Not all poly(A)+ mRNA sequences coding for M, found in control mice, were present in their dystrophic counterparts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Macrophage polarization contributes to a number of human pathologies. This is exemplified for tumor-associated macrophages (TAMs), which display a polarized M2 phenotype, closely associated with promotion of angiogenesis and suppression of innate immune responses. We present evidence that induction of apoptosis in tumor cells and subsequent recognition of apoptotic debris by macrophages participates in the macrophage phenotype shift. During coculture of human primary macrophages with human breast cancer carcinoma cells (MCF-7) the latter ones were killed, while macrophages acquired an alternatively activated phenotype. This was characterized by decreased tumor necrosis factor (TNF)-alpha and interleukin (IL) 12-p70 production, but increased formation of IL-8 and -10. Alternative macrophage activation required tumor cell death because a coculture with apoptosis-resistant colon carcinoma cells (RKO) or Bcl-2-overexpressing MCF-7 cells failed to induce phenotype alterations. Interestingly, phenotype alterations were achieved with conditioned media from apoptotic tumor cells, arguing for a soluble factor. Knockdown of sphingosine kinase (Sphk) 2, but not Sphk1, to attenuate S1P formation in MCF-7 cells, restored classical macrophage responses during coculture. Furthermore, macrophage polarization achieved by tumor cell apoptosis or substitution of authentic S1P suppressed nuclear factor (NF)-kappaB signaling. These findings suggest that tumor cell apoptosis-derived S1P contributes to macrophage polarization.  相似文献   

17.
Macrophages are myeloid cells that play an essential role in inflammation and host defense, regulating immune responses and maintaining tissue homeostasis. Depending on the microenvironment, macrophages can polarize to two distinct phenotypes. The M1 phenotype is activated by IFN-γ and bacterial products, and displays an inflammatory profile, while M2 macrophages are activated by IL-4 and tend to be anti-inflammatory or immunosupressive. It was observed that DnaK from Mycobacterium tuberculosis has immunosuppressive properties, inducing a tolerogenic phenotype in dendritic cells and MDSCs, contributing to graft acceptance and tumor growth. However, its role in macrophage polarization remains to be elucidated. We asked whether DnaK was able to modulate macrophage phenotype. Murine macrophages, derived from bone marrow, or from the peritoneum, were incubated with DnaK and their phenotype compared to M1 or M2 polarized macrophages. Treatment with DnaK leads macrophages to present higher arginase I activity, IL-10 production and FIZZ1 and Ym1 expression. Furthermore, DnaK increased surface levels of CD206. Importantly, DnaK-treated macrophages were able to promote tumor growth in an allogeneic melanoma model. Our results suggest that DnaK polarizes macrophages to the M2-like phenotype and could constitute a virulence factor and is an important immunomodulator of macrophage responses.  相似文献   

18.
We have demonstrated previously that adult human synovial membrane-derived mesenchymal stem cells (hSM-MSCs) have myogenic potential in vitro (De Bari, C., F. Dell'Accio, P. Tylzanowski, and F.P. Luyten. 2001. Arthritis Rheum. 44:1928-1942). In the present study, we have characterized their myogenic differentiation in a nude mouse model of skeletal muscle regeneration and provide proof of principle of their potential use for muscle repair in the mdx mouse model of Duchenne muscular dystrophy. When implanted into regenerating nude mouse muscle, hSM-MSCs contributed to myofibers and to long term persisting functional satellite cells. No nuclear fusion hybrids were observed between donor human cells and host mouse muscle cells. Myogenic differentiation proceeded through a molecular cascade resembling embryonic muscle development. Differentiation was sensitive to environmental cues, since hSM-MSCs injected into the bloodstream engrafted in several tissues, but acquired the muscle phenotype only within skeletal muscle. When administered into dystrophic muscles of immunosuppressed mdx mice, hSM-MSCs restored sarcolemmal expression of dystrophin, reduced central nucleation, and rescued the expression of mouse mechano growth factor.  相似文献   

19.
Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disorder characterized by primary muscle degeneration. Therapeutic strategies for DMD have been extensively explored, and some are in the stage of human clinical trials. Along with the development of new therapies, sensitive outcome measures are needed to monitor the effects of new treatments. Therefore, we investigated outcome measures such as biomarkers and motor function evaluation in a dystrophic model of beagle dogs, canine X-linked muscular dystrophy in Japan (CXMDJ). Osteopontin (OPN), a myogenic inflammatory cytokine, was explored as a potential biomarker in dystrophic dogs over the disease course. The serum OPN levels of CXMDJ dystrophic dogs were elevated, even in the early disease phase, and this could be related to the presence of regenerating muscle fibers; as such, OPN would be a promising biomarker for muscle regeneration. Next, accelerometry, which is an efficient method to quantify performance in validated tasks, was used to evaluate motor function longitudinally in dystrophic dogs. We measured three-axis acceleration and angular velocity with wireless hybrid sensors during gait evaluations. Multiple parameters of acceleration and angular velocity showed notedly lower values in dystrophic dogs compared with wild-type dogs, even at the onset of muscle weakness. These parameters accordingly decreased with exacerbation of clinical manifestations along with the disease course. Multiple parameters also indicated gait abnormalities in dystrophic dogs, such as a waddling gait. These outcome measures could be applicable in clinical trials of patients with DMD or other muscle disorders.  相似文献   

20.
It is established that the adipocyte-derived cytokine adiponectin protects against cardiovascular and metabolic diseases, but the effect of this adipokine on macrophage polarization, an important mediator of disease progression, has never been assessed. We hypothesized that adiponectin modulates macrophage polarization from that resembling a classically activated M1 phenotype to that resembling alternatively-activated M2 cells. Peritoneal macrophages and the stromal vascular fraction (SVF) cells of adipose tissue isolated from adiponectin knock-out mice displayed increased M1 markers, including tumor necrosis factor-α, interleukin-6, and monocyte chemoattractant protein-1 and decreased M2 markers, including arginase-1, macrophage galactose N-acetyl-galactosamine specific lectin-1, and interleukin-10. The systemic delivery of adenovirus expressing adiponectin significantly augmented arginase-1 expression in peritoneal macrophages and SVF cells in both wild-type and adiponectin knock-out mice. In culture, the treatment of macrophages with recombinant adiponectin protein led to an increase in the levels of M2 markers and a reduction of reactive oxygen species and reactive oxygen species-related gene expression. Adiponectin also stimulated the expression of M2 markers and attenuated the expression of M1 markers in human monocyte-derived macrophages and SVF cells isolated from human adipose tissue. These data show that adiponectin functions as a regulator of macrophage polarization, and they indicate that conditions of high adiponectin expression may deter metabolic and cardiovascular disease progression by favoring an anti-inflammatory phenotype in macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号