首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Polyamines (PA) are ubiquitous, small, aliphatic cations found in all living cells. In recent years the importance of these molecules for macroalgae has become evident and a substantial body of knowledge has been accumulated over the last three decades. This review summarizes research on the PAs found in macroalgae, their transport and metabolism, and their biological significance in processes such as cell division, chloroplast development, and reproduction. The involvement of PAs in environmental stress responses in macroalgae is also addressed. The discussion of PAs in this review not only demonstrates that PAs play an important role in physiological processes in macroalgae, but also clearly demonstrates the similarities and differences between PA metabolism in macroalgae and higher plants. Key areas for future research are also discussed.  相似文献   

2.
3.
Several classes of glycerolipids were isolated from the total lipids of the algae Saccharina cichorioides, Eualaria fistulosa, Fucus evanescens, Sargassum pallidum, Silvetia babingtonii (Ochrophyta, Phaeophyceae), Tichocarpus crinitus, and Neorhodomela larix (Rhodophyta, Florideophyceae). The structures of these lipids were examined by nuclear magnetic resonance (NMR) spectroscopy, including 1D (1H and 13C) and 2D (COSY, HSQC and HMBC) experiments. All of the investigated algae included common galactolipids and sulfonoglycolipids as the major glycolipids. Minor glycolipids isolated from S. cichorioides, T. crinitus, and N. laris were identified as lyso‐galactolipids with a polar group consisted of the galactose. Comparison of the 1H NMR data of minor nonpolar lipids isolated from the extracts of the brown algae S. pallidum and F. evanescens with the 1H NMR data of other lipids allowed them to be identified as diacylglycerols. The structures of betaine lipids isolated from brown algae were confirmed by NMR for the first time. The fatty acid compositions of the isolated lipids were determined by gas chromatography‐mass spectrometry.  相似文献   

4.
5.
A major limiting factor in the development of algae as a feedstock for the bioenergy industry is the consistent production and supply of biomass. This study is the first to access the suitability of the freshwater macroalgal genus Oedogonium to supply biomass for bioenergy applications. Specifically, we quantified the effect of CO2 supplementation on the rate of biomass production, carbon capture, and feedstock quality of Oedogonium when cultured in large‐scale outdoor tanks. Oedogonium cultures maintained at a pH of 7.5 through the addition of CO2 resulted in biomass productivities of 8.33 (±0.51) g DW m?2 day?1, which was 2.5 times higher than controls which had an average productivity of 3.37 (±0.75) g DW m?2 day?1. Under these productivities, Oedogonium had a carbon content of 41–45% and a higher heating value of 18.5 MJ kg?1, making it an ideal biomass energy feedstock. The rate of carbon fixation was 1380 g C m?2 yr?1 and 1073.1 g C m?2 yr?1 for cultures maintained at a pH of 7.5 and 8.5, and 481 g C m?2 yr?1 for cultures not supplemented with CO2. This study highlights the potential of integrating the large‐scale culture of freshwater macroalgae with existing carbon waste streams, for example coal‐fired power stations, both as a tool for carbon sequestration and as an enhanced and sustainable source of bioenergy.  相似文献   

6.
Although two plastid regions have been adopted as the standard markers for plant DNA barcoding, their limited resolution has provoked the consideration of other gene regions, especially in taxonomically diverse genera. The genus Gossypium (cotton) includes eight diploid genome groups (A–G, and K) and five allotetraploid species which are difficult to discriminate morphologically. In this study, we tested the effectiveness of three widely used markers (matK, rbcL, and ITS2) in the discrimination of 20 diploid and five tetraploid species of cotton. Sequences were analysed locus‐wise and in combinations to determine the most effective strategy for species identification. Sequence recovery was high, ranging from 92% to 100% with mean pairwise interspecific distance highest for ITS2 (3.68%) and lowest for rbcL (0.43%). At a 0.5% threshold, the combination of matK+ITS2 produced the greatest number of species clusters. Based on ‘best match’ analysis, the combination of matK+ITS2 was best, while based on ‘all species barcodes’ analysis, ITS2 gave the highest percentage of correct species identifications (98.93%). The combination of sequences for all three markers produced the best resolved tree. The disparity index test based on matK+rbcL+ITS2 was significant (< 0.05) for a higher number of species pairs than the individual gene sequences. Although all three barcodes separated the species with respect to their genome type, no single combination of barcodes could differentiate all the Gossypium species, and tetraploid species were particularly difficult.  相似文献   

7.
The discovery of biomarkers able to predict biological age of individuals is a crucial goal in aging research. Recently, researchers' attention has turn toward epigenetic markers of aging. Using the Illumina Infinium HumanMethylation450 BeadChip on whole blood DNA from a small cohort of 64 subjects of different ages, we identified 3 regions, the CpG islands of ELOVL2, FHL2, and PENK genes, whose methylation level strongly correlates with age. These results were confirmed by the Sequenom's EpiTYPER assay on a larger cohort of 501 subjects from 9 to 99 years, including 7 cord blood samples. Among the 3 genes, ELOVL2 shows a progressive increase in methylation that begins since the very first stage of life (Spearman's correlation coefficient = 0.92) and appears to be a very promising biomarker of aging.  相似文献   

8.
In Arabidopsis, AUXIN RESPONSE FACTOR 3 (ARF3) belongs to the auxin response factor (ARF) family that regulates the expression of auxin‐responsive genes. ARF3 is known to function in leaf polarity specification and gynoecium patterning. In this study, we discovered a previously unknown role for ARF3 in floral meristem (FM) determinacy through the isolation and characterization of a mutant of ARF3 that enhanced the FM determinacy defects of agamous (ag)‐10, a weak ag allele. Central players in FM determinacy include WUSCHEL (WUS), a gene critical for FM maintenance, and AG and APETALA2 (AP2), which regulate FM determinacy by repression and promotion of WUS expression, respectively. We showed that ARF3 confers FM determinacy through repression of WUS expression, and associates with the WUS locus in part in an AG‐dependent manner. We demonstrated that ARF3 is a direct target of AP2 and partially mediates AP2's function in FM determinacy. ARF3 exhibits dynamic and complex expression patterns in floral organ primordia; altering the patterns spatially compromised FM determinacy. This study uncovered a role for ARF3 in FM determinacy and revealed relationships among genes in the genetic network governing FM determinacy.  相似文献   

9.
10.
Successful urban colonization by formerly rural species represents an ideal situation in which to study adaptation to novel environments. We address this issue using candidate genes for behavioural traits that are expected to play a role in such colonization events. We identified and genotyped 16 polymorphisms in candidate genes for circadian rhythms, harm avoidance and migratory and exploratory behaviour in 12 paired urban and rural populations of the blackbird Turdus merula across the Western Palaearctic. An exonic microsatellite in the SERT gene, a candidate gene for harm avoidance behaviour, exhibited a highly significant association with habitat type in an analysis conducted across all populations. Genetic divergence at this locus was consistent in 10 of the 12 population pairs; this contrasts with previously reported stochastic genetic divergence between these populations at random markers. Our results indicate that behavioural traits related to harm avoidance and associated with the SERT polymorphism experience selection pressures during most blackbird urbanization events. These events thus appear to be influenced by homogeneous adaptive processes in addition to previously reported demographic founder events.  相似文献   

11.
12.
Overlapping runs of homozygosity (ROH islands) shared by the majority of a population are hypothesized to be the result of selection around a target locus. In this study we investigated the impact of selection for coat color within the Noriker horse on autozygosity and ROH patterns. We analyzed overlapping homozygous regions (ROH islands) for gene content in fragments shared by more than 50% of horses. Long‐term assortative mating of chestnut horses and the small effective population size of leopard spotted and tobiano horses resulted in higher mean genome‐wide ROH coverage (SROH) within the range of 237.4–284.2 Mb, whereas for bay, black and roan horses, where rotation mating is commonly applied, lower autozygosity (SROH from 176.4–180.0 Mb) was determined. We identified seven common ROH islands considering all Noriker horses from our dataset. Specific islands were documented for chestnut, leopard spotted, roan and bay horses. The ROH islands contained, among others, genes associated with body size (ZFAT, LASP1 and LCORL/NCAPG), coat color (MC1R in chestnut and the factor PATN1 in leopard spotted horses) and morphogenesis (HOXB cluster in all color strains except leopard spotted horses). This study demonstrates that within a closed population sharing the same founders and ancestors, selection on a single phenotypic trait, in this case coat color, can result in genetic fragmentation affecting levels of autozygosity and distribution of ROH islands and enclosed gene content.  相似文献   

13.
In symbiotic systems, patterns of symbiont diversity and selectivity are crucial for the understanding of fundamental ecological processes such as dispersal and establishment. The lichen genus Nephroma (Peltigerales, Ascomycota) has a nearly cosmopolitan distribution and is thus an attractive model for the study of symbiotic interactions over a wide range of spatial scales. In this study, we analyze the genetic diversity of Nephroma mycobionts and their associated Nostoc photobionts within a global framework. The study is based on Internal Transcribed Spacer (ITS) sequences of fungal symbionts and tRNALeu (UAA) intron sequences of cyanobacterial symbionts. The full data set includes 271 Nephroma and 358 Nostoc sequences, with over 150 sequence pairs known to originate from the same lichen thalli. Our results show that all bipartite Nephroma species associate with one group of Nostoc different from Nostoc typically found in tripartite Nephroma species. This conserved association appears to have been inherited from the common ancestor of all extant species. While specific associations between some symbiont genotypes can be observed over vast distances, both symbionts tend to show genetic differentiation over wide geographic scales. Most bipartite Nephroma species share their Nostoc symbionts with one or more other fungal taxa, and no fungal species associates solely with a single Nostoc genotype, supporting the concept of functional lichen guilds. Symbiont selectivity patterns within these lichens are best described as a geographic mosaic, with higher selectivity locally than globally. This may reflect specific habitat preferences of particular symbiont combinations, but also the influence of founder effects.  相似文献   

14.
Population viability analysis (PVA) has been applied to the management of many threatened populations. The objective of this study was, therefore, to estimate the PVA of Walia ibex at the Simen Mountains National Park, in the north‐central highlands of Ethiopia, with respect to population growth parameters, the probability of the population reaching a lower extinction threshold and the mean time to extinction. Direct census of the population was carried out in 2009. Secondary census data were also collected from park authorities and the literature reviews. The result revealed that the estimates of the infinitesimal mean, μ (0.04117) was greater than the infinitesimal variance, σ2 (0.0219). The probability that the population reaches the extinction threshold was very low (0.15%). The mean time required for the counts to decline from the existing population size to one individual animal was 160 years. But threatened species are adversely affected by changes in landscape. These changes can be brought by short‐ and long‐term human and climate change impacts, respectively. Therefore, with the absence of environmental and demographic stochasticity and, with the application of appropriate reproductions and habitat management, the population of Walia ibex will be viable and reaches its mean time of extinctions after 160 years.  相似文献   

15.
16.
Bischof K  Hanelt D  Wiencke C 《Planta》2000,211(4):555-562
 Changes in physiological parameters related to photosynthesis were studied in five macroalgal species from Spitsbergen (Monostroma arcticum, Laminaria solidungula, Alaria esculenta, Palmaria palmata, Phycodrys rubens) during a 72-h exposure to UV radiation. Maximal quantum yield of photochemistry (Fv/Fm) and maximal electron transport rate (ETRmax) were measured with a pulse-amplitude-modulated fluorometer; the activity of the Calvin cycle enzymes ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and glyceraldehyde-3-phosphate dehydrogenase (G3PDH) were estimated using a photometric test. Proteins of crude extracts were separated by SDS gel electrophoresis and changes in cellular concentrations of Rubisco were determined. Moreover, the concentration of chlorophyll a (Chl a), and protein content, were measured photometrically. In all species, Chl a content, maximal quantum yield as well as ETRmax decreased during the UV treatment. Changes in ETRmax were related to the changes in the overall activity of Rubisco. Analysis of SDS gels showed that in P. rubens, L. solidungula, M. arcticum and A. esculenta decreasing Rubisco activity partly resulted from a degradation of the enzyme. However, in A. esculenta, the formation of a high-molecular-weight polypeptide was observed. In all species, the activity of Rubisco was more strongly impaired than that of G3PDH. Exposure to UV resulted in loss of total protein only in the deepwater species L. solidungula and P. rubens. The different sensitivities to UV exposure of the species tested reflect their zonation pattern in the field. Received: 4 October 1999 / Accepted: 15 February 2000  相似文献   

17.
18.
19.
20.
LOS5/ABA3 gene encoding molybdenum cofactor sulphurase is involved in aldehyde oxidase (AO) activity in Arabidopsis, which indirectly regulates ABA biosynthesis and increased stress tolerance. Here, we used a constitutive super promoter to drive LOS5/ABA3 overexpression in soybean (Glycine max L.) to enhance drought tolerance in growth chamber and field conditions. Expression of LOS5/ABA3 was up‐regulated by drought stress, which led to increasing AO activity and then a notable increase in ABA accumulation. Transgenic soybean under drought stress had reduced water loss by decreased stomatal aperture size and transpiration rate, which alleviated leaf wilting and maintained higher relative water content. Exposed to drought stress, transgenic soybean exhibited reduced cell membrane damage by reducing electrolyte leakage and production of malondialdehyde and promoting proline accumulation and antioxidant enzyme activities. Also, overexpression of LOS5/ABA3 enhanced expression of stress‐up‐regulated genes. Furthermore, the seed yield of transgenic plants is at least 21% higher than that of wide‐type plants under drought stress conditions in the field. These data suggest that overexpression of LOS5/ABA3 could improve drought tolerance in transgenic soybean via enhanced ABA accumulation, which could activate expression of stress‐up‐regulated genes and cause a series of physiological and biochemical resistant responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号