首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
Binding of [3H]oxytocin to uterine subcellular preparations ('oxytocin receptor concentrations') was measured in uterine tissue of heifers and multiparous dairy cows at various stages of the oestrous cycle and during early pregnancy. A method for the assay of ovine uterine oxytocin receptors was optimized for use on bovine tissue. Oxytocin receptor concentrations were increased in cyclic animals around the period of luteolysis and oestrus, rising on Day 15 in endometrium and on Day 17 in myometrium while pregnant animals showed no comparable rise. Receptor concentrations then declined on Day 3 after oestrus in myometrium and on Day 5 in endometrium. Some cyclic animals did not show the expected rise in receptors in the late luteal phase; these animals had abnormally high progesterone concentrations for this stage of the cycle. In animals slaughtered on Day 18 after oestrus and/or insemination which had low oxytocin receptor levels, plasma progesterone concentrations were consistently high; while all animals showing the late luteal phase elevation in receptor values had low progesterone concentrations. Oxytocin receptor and progesterone concentrations were negatively correlated (P less than 0.05). These data support the hypothesis that oxytocin receptor level is a key factor in the process of luteolysis in cattle and that in pregnancy there is suppression of uterine oxytocin receptor at the expected time of luteolysis. We suggest that uterine oxytocin receptor levels are partly controlled by circulating steroid hormones and are suppressed during early pregnancy.  相似文献   

3.
Fibroblast growth factor-10 (FGF-10) is a stromal-derived paracrine growth factor considered to be important during embryogenesis; however, its expression by cells in the female reproductive tract has not been investigated. Therefore, an ovine FGF-10 cDNA was cloned from an ovine endometrial cDNA library to investigate expression and potential paracrine characteristics of FGF-10 in the ovine uterus. The ovine FGF-10 cDNA encodes a protein of 213 amino acids and possesses an unusually long 5' untranslated region (UTR). In situ hybridization demonstrated that ovine FGF-10 mRNA was expressed by endometrial stromal cells and by mesenchymal cells of the chorioallantoic placenta. The mRNA for FGF-7, a homologue of FGF-10, was localized in the tunica muscularis of blood vessels in endometrium and myometrium. In contrast, FGF receptor 2IIIb, the high-affinity receptor for both FGF-10 and FGF-7, was expressed exclusively in luminal epithelium, glandular epithelium, and placental trophectoderm. The in vivo spatial expression pattern suggests that FGF-10 is a novel endometrial stromal cell-derived mediator of uterine epithelial and conceptus trophectodermal functions. The nonoverlapping spatial patterns of expression for FGF-10 and FGF-7 in ovine uterus and conceptus suggest independent roles in uterine function and conceptus development.  相似文献   

4.
5.
Expression of the gene for prostaglandin synthase (PGS) was examined in whole endometrial tissue derived from ewes during the oestrous cycle (Days 4-14), on Day 15 of pregnancy and following ovariectomy and treatment with ovarian steroid hormones. Whilst no significant differences were seen in PGS mRNA concentrations analysed by Northern blot analysis in endometrial tissue during the oestrous cycle or in early pregnancy, treatment of ovariectomized (OVX) ewes with oestradiol-17 beta markedly reduced endometrial PGS mRNA concentration. There was no difference in PGS mRNA concentration in ewes treated with progesterone, either alone or in conjunction with oestrogen, from that in OVX controls. In contrast, differences in immunolocalization of PGS observed in uterine tissue from OVX-steroid-treated ewes were much more marked and reflected similar changes seen previously in the immunocytochemical distribution of endometrial PGS during the oestrous cycle. In OVX ewes and those treated with oestrogen, immunocytochemical staining for PGS was seen in stromal cells, but little immunoreactive PGS was located in the endometrial epithelial cells. However, in ewes treated with progesterone alone or with oestrogen plus progesterone, PGS was found in luminal and glandular epithelial cells and in stromal cells. Intensity of immunostaining for PGS in endothelial cells and myometrium did not differ between the treatments. Thus, whilst oestrogen lowers PGS mRNA in the endometrium, presumably in stroma, it may also increase the stability of the enzyme itself in the stromal cells. Although oestradiol-17 beta has no effect on PGS in endometrial epithelium, progesterone stimulates the production of PGS in endometrial epithelial cells without altering the overall abundance of PGS mRNA in the endometrium as a whole. Conceptus-induced changes in PGF-2 alpha release by ovine endometrium would not appear to be mediated via effects on PGS gene expression or protein synthesis.  相似文献   

6.
Interferon tau (IFNtau) is the antiluteolytic signal produced by the conceptus of ruminants. Intrauterine administration of recombinant ovine IFNtau suppresses expression of endometrial estrogen receptor (ER) and oxytocin receptor (OTR) in the luminal and superficial glandular epithelia to abrogate the production of luteolytic prostaglandin F(2alpha) (PGF(2alpha)) pulses. Subcutaneous (s.c.) injections of recombinant ovine (o) IFNtau appear to extend the interestrous interval by altering uterine PGF(2alpha) response to oxytocin. The present study tested the hypothesis that antiluteolytic effects of roIFNtau injected into the uterine lumen (paracrine) or s.c. (endocrine) are equivalent in suppressing expression of endometrial ER and OTR and inducing uterine expression of type I IFN-regulated Mx and ubiquitin cross-reactive proteins (UCRP). Sixteen cyclic ewes were fitted with uterine catheters on Day 5 (Day 0 = estrus), were assigned randomly to receive treatment with control proteins or roIFNtau (2 x 10(7) antiviral units/day) by either intrauterine or s.c. injections from Days 11 to 15, and were ovariohysterectomized on Day 16. Results indicated that expression of ER and OTR mRNAs in endometrial epithelium was suppressed by intrauterine but not by s.c. injections of roIFNtau. Intrauterine injections of roIFNtau increased expression of Mx and UCRP mRNA in the endometrium. Subcutaneous injections of roIFNtau increased endometrial Mx mRNA levels but not UCRP mRNA. Unexpectedly, intrauterine and s.c. injections of roIFNtau were equally effective in inducing expression of Mx and UCRP mRNA in the corpus luteum. Although s.c. injections of roIFNtau induced Mx mRNA in the endometrial epithelium, s.c. injections of roIFNtau did not abrogate activation of the uterine luteolytic mechanism by suppressing epithelial ER and OTR expression. Therefore, results of this study failed to support the assumption that endocrine roIFNtau mimics antiluteolytic effects of paracrine IFNtau to improve pregnancy rates in sheep.  相似文献   

7.
8.
Two experiments were performed to determine changes in the abundance of oestrogen and progesterone receptor (ER alpha and PR) mRNAs in equine endometrium during the oestrous cycle and early pregnancy, and under the influence of exogenous steroids. In Expt 1, endometrial biopsies were obtained from non-mated mares during oestrus and at days 5, 10 and 15 after ovulation, and from pregnant mares at days 10, 15 and 20 after ovulation. There were overall effects of day on the abundance of ER alpha (P = 0.0001) and PR (P = 0.0014) mRNAs. The amount of ER alpha mRNA decreased at day 10 of pregnancy, and PR mRNA was reduced at day 5 in non-mated mares and at day 15 of pregnancy, compared with oestrous values. Experiment 2 was conducted to determine the effects of exogenous steroids on endometrial ER alpha and PR mRNAs. Endometrial biopsies were obtained from 19 anoestrous mares that had been treated with vehicle, oestradiol, progesterone, or oestradiol followed by progesterone for either a short or a long duration. The steroid treatment affected the abundance of ER alpha mRNA (P = 0.0420), which was higher (P < 0.05) in the oestradiol group than in the group treated with oestradiol followed by long duration progesterone. The steroid treatment did not affect the abundance of PR mRNA. These results demonstrate that the amount of steroid receptor mRNA changes with the fluctuating steroid environment in the uterine endometrium of cyclic and early pregnant mares, and that the duration of progesterone dominance may affect ER alpha gene expression. In addition, factors other than steroids may regulate ER alpha and PR gene expression in equine uterine endometrium.  相似文献   

9.
Leptin, the product of the OB gene, is a 16-kDa polypeptide of 146 amino acid residues produced mainly by adipocytes that regulates metabolism and reproduction. The actions of leptin are mediated mainly via the long form of the leptin receptor (OB-Rb). The identification of leptin and OB-Rb mRNAs and proteins in human and mouse endometrium, and placental trophoblast suggests that leptin may be involved in the implantation process. Thus, the aim of this study was to compare the expression levels of porcine OB-Rb mRNA and protein in the endometrium and myometrium during mid- and late-luteal phases of the oestrous cycle (days 10-12 and 14-16, respectively) as well as during two stages of pregnancy respondent to the beginning of the implantation process (days 14-16) and the post-implantation period (days 30-32), and in trophoblast during both periods of pregnancy. OB-Rb gene expression in endometrium during the examined stages of pregnancy and the mid- and late-luteal phases of the cycle was at the same level. In contrast, in myometrium leptin receptor gene expression decreased on days 14-16 of pregnancy compared to both phases of the cycle, and on days 30-32 of pregnancy in relation to late-luteal phase. OB-Rb protein expression in the tissues was lower during the examined stages of pregnancy in comparison to the mid- and late-luteal phases of the cycle. In trophoblast, OB-Rb mRNA and protein expression was higher on days 30-32 than during days 14-16 of pregnancy. In conclusion, our results might suggest that leptin can participate in the control of pig reproduction by exercising its action at the uterine and trophoblast level and have a direct effect on these organ during both the luteal phase of the cycle and early pregnancy. Moreover, changes in OB-Rb gene and protein expression in tissues of pig reproductive tract strongly suggest that their sensitivity to leptin varies throughout luteal phase of the cycle and early pregnancy.  相似文献   

10.
11.
12.
13.
The uterine serpins have been described in sheep, cattle, and pigs as a highly diverged group of the large superfamily of serpin proteins that typically function as serine proteinase inhibitors. Here, the range of species that possess and express a uterine serpin gene is extended to the goat. Sequencing of cDNA amplified from total RNA from a pregnant goat at day 25 of pregnancy resulted in a 1,292 bp full-length consensus cDNA sequence for caprine uterine serpin (CaUS). The predicted amino acid sequence of the caprine precursor showed 96%, 82%, 55%, and 56% identity to OvUS, BoUS, PoUS1, and PoUS2, respectively. The signal peptide extends from amino acids 1 to 25, resulting in a secreted protein of 404 amino acids and 46,227 Mr (excluding carbohydrate). Both the goat and sheep uterine serpins have a nine amino acid insert in the Helix I region that is not found in bovine or porcine uterine serpins. A total of 13 amino acids in CaUS are different than those for the nearest homologue, ovine uterine serpin. One of these is in the site of cleavage of the signal sequence, where a single nucleotide substitution (G --> C) changed the cysteine for the sheep, bovine, and porcine genes to a serine. In addition, the amino acid at the putative P1-P1' site (the scissile bond for antiproteinase activity) is a valine for CaUS, BoUS, PoUS1, and PoUS2 versus an alanine for OvUS. The hinge region of all five of the uterine serpins (P17-P9) is distinct from the consensus pattern for inhibitory sequences and it is unlikely, therefore, that the uterine serpins possess prototypical proteinase inhibitory activity. The goat uterine serpin was immunolocalized to the glandular epithelium of the endometrium from a pregnant nanny at day 25 of pregnancy. There was also immunoreactive product in scattered luminal epithelial cells. No immunoreaction product was detected in endometrium from a nanny at day 5 of the estrous cycle. Western blotting of uterine fluid collected from the pregnant uterine horn of a unilaterally-pregnant goat revealed the presence of a protein band at Mr approximately 56,000 that reacted with monoclonal antibody to OvUS. In conclusion, the range of species in which uterine serpins are present and expressed in the uterus includes the goat in addition to the previously described sheep, cow, and pig. In all of these species, the uterine serpin is derived primarily from glandular epithelium, is secreted into the uterine lumen, and contains sequence characteristics suggesting it is not an inhibitory serpin.  相似文献   

14.
Continuous intravenous infusion of oxytocin (3 micrograms/h) between Days 13 and 21 after oestrus delayed return to oestrus by 7 days (length of cycle 23.3 +/- 0.6 days compared to 16.6 +/- 0.2 days in control ewes). At a lower infusion rate (0.3 micrograms/h) oxytocin delayed luteolysis in only 2 of 5 ewes. Treatment from Day 14, when luteolysis had already begun, was ineffective. Delay of luteal regression by oxytocin had no effect on the length of subsequent cycles. Measurement of circulating progesterone concentrations and luteal weight showed that prolongation of the oestrous cycle was due to prevention of luteal regression. Luteal regression and behavioural oestrus were induced during continuous oxytocin administration begun on Day 13 when cloprostenol was given on Day 15 (mean cycle length, 17.3 +/- 0.21 days). Continuous oxytocin infusion from Day 13 blocked the rise in uterine oxytocin receptor concentrations which normally precedes oestrus. Mean receptor concentrations in caruncular and intercaruncular endometrium and in myometrium were 76, 36 and 9 fmol/mg protein on Day 17 in ewes receiving continuous oxytocin (3 micrograms/h); in control ewes these values were 675, 638 and 130 fmol/mg protein respectively at oestrus. Receptor concentrations on the day of oestrus in ewes receiving oxytocin and cloprostenol were not significantly different from those in control ewes (649, 852, and 109 fmol/mg protein respectively). Since cloprostenol, a PGF-2 alpha analogue, overcame the antiluteolytic action of oxytocin, it is suggested that continuous oxytocin treatment may inhibit uterine production of PGF-2 alpha, possibly by down regulating the uterine oxytocin receptor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Steroid hormones regulate endometrial gene expression to meet the needs of developing embryos. Our hypothesis is that steroid hormones transiently induce expression of genes in the endometrial epithelium to make the uterine environment different between the earliest days of pregnancy. We identified one such gene product using differential display-polymerase chain reactions. The gene product that was strongly induced in ewes between day 3 and 6 of the estrous cycle was cloned and sequenced to identify it as encoding a member of the Nudix family of hydrolase enzymes. Northern blot analyses indicated that NUDT16 mRNA concentrations were elevated 10-fold in the endometrium of sheep from day 5 to 9 of the estrous cycle and returned to basal levels by day 11. In assays of RNA samples from 15 different tissues from an adult ewe, the concentrations of NUDT16 mRNA were greatest in endometrium. In situ hybridization localized NUDT16 mRNA exclusively to the endometrial epithelial cells of the glands and uterine lumen. In ovariectomized ewes, NUDT16 mRNA was induced by a regimen of alternating estrogen and progesterone therapy designed to mimic the hormonal experiences of a ewe at day 6 of the estrous cycle. The final estrogen treatment in the regimen was critical to the expression of NUDT16 as well as progesterone receptor and estrogen receptor-beta genes. Characterization of the NUDT16 gene identified putative steroid hormone response elements, which can now be investigated to understand its unique pattern of regulation in the earliest days of pregnancy.  相似文献   

16.
We previously showed that progesterone rapidly down regulates nuclear estrogen receptor (Re) in the estrogen-primed rodent uterus. We have now extended these studies to test the response of the Re system in sheep uterus to progesterone withdrawal. Since the estrogen-Re complex is believed to regulate hormone-dependent gene expression, it was of interest to determine whether withdrawal of progesterone under constant estrogen stimulation would lead to the recovery of nuclear Re levels and estrogen action, i.e. oxytocin receptor (ROT) synthesis. Ovariectomized ewes were primed with estradiol-17 beta and serum steroid levels were maintained by constant infusion of estradiol (0.5 microgram/h) and progesterone (500 micrograms/h) for 5 days. The animals were anesthetized with fluothane/O2, and uterine samples were excised 1 h before and 3, 6 and 12 h after progesterone withdrawal. Estradiol infusion was continued during the experiment in order to maintain estrogen levels at a steady state (14 pg/ml plasma). Re, ROT and progesterone receptor (Rp) were measured in endometrium and myometrium using standard 3H-hormone binding assays. Following progesterone withdrawal, the nuclear Re concentration increased in both uterine compartments, and the nuclear Re level was correlated significantly with the ROT concentration in the membrane fraction of both uterine tissues (endometrium, r = 0.79; myometrium, r = 0.86). Although cytosol Re rose between 6 and 12 h in the endometrium, cytosol Re levels remained unchanged in myometrium. Cytosol Rp appeared to increase in endometrium but not in myometrium. Uterine tissue sampled from a control animal before stopping the progesterone infusion revealed that the observed changes in receptor concentration following progesterone withdrawal were not due to regional differences in receptor levels. These results demonstrate that the recovery of nuclear Re in the ovine endometrium and myometrium following progesterone withdrawal represents a selective effect on Re retention in the nucleus rather than on cytosol Re availability or Re activation which was controlled by constant estrogen infusion. Thus, these results are consistent with the hypothesis that progesterone induces an Re regulatory factor which acts to down regulate nuclear Re, and that the activity of this factor diminishes rapidly after progesterone withdrawal.  相似文献   

17.
The effects of administration of progesterone and oestradiol on ovine endometrial oxytocin receptor concentrations and plasma concentrations of 13,14-dihydro-15-keto prostaglandin F-2 alpha (PGFM) after oxytocin treatment were determined in ovariectomized ewes. Ewes received progestagen pre-treatment, progesterone and/or oestradiol in 11 different treatment schedules. Progestagen pre-treatment decreased oxytocin receptor concentrations in endometrium from ewes treated subsequently with either progesterone for 5 days or progesterone for 5 days plus oestradiol on Days 4 and 5 of progesterone treatment. Oestradiol increased endometrial oxytocin receptor concentrations when administered on Days 4 and 5 of 5 days progesterone treatment. Progestagen pre-treatment followed by progesterone treatment for 12 days caused a large increase in oxytocin receptors and no further increase occurred when ewes were given oestradiol on Days 11 and 12, or when progesterone was withdrawn on Days 11 and 12, or these two treatments were combined. Oxytocin administration caused an increase in plasma PGFM concentrations in ewes which did not receive progestagen pre-treatment, and subsequently received progesterone treatment for 5 days and oestradiol treatment on Days 4 and 5 of progesterone treatment. Similarly treated ewes which received progestagen pre-treatment did not respond to oxytocin. Oxytocin administration also increased plasma PGFM concentrations in ewes which received progestagen pre-treatment followed by progesterone treatment for 12 days, progesterone treatment for 12 days plus oestradiol on Day 11 and 12 of progesterone treatment, progesterone withdrawal on Day 11 and 12, or progesterone withdrawal and oestradiol treatment combined. The results indicate that (1) progesterone pre-treatment affects oxytocin receptor concentrations in the endometrium and uterine responsiveness to oxytocin and (2) progesterone treatment alone for 12 days after a treatment which mimics a previous luteal phase and oestrus is sufficient to induce oxytocin receptors and increase oxytocin-induced PGF release. These results emphasize the importance of progesterone and provide information which can be used to form an hypothesis for control of luteolysis and oestrous cycle length in the ewe.  相似文献   

18.
19.
20.
Leptin is a 16-kDa protein hormone encoded by the obese (ob) gene and acts on receptors in the hypothalamus to regulate food intake and energy balance. The identification of leptin and its receptor mRNAs and proteins in human and mouse endometrium and placental trophoblast has attracted attention to the potential role of leptin in implantation. Thus, the aim of this study was to compare the expression levels of porcine leptin mRNA and protein in endometrium and myometrium during mid- and late-luteal phases of the oestrous cycle (days 10 - 12 and 14 - 16) as well as during two stages of pregnancy respondent to the beginning (days 14 - 16) and the end (days 30 - 32) of the implantation process, and in trophoblast during both periods of pregnancy. Leptin gene and protein expression in myometrium, and leptin mRNA expression in endometrium was more pronounced in the mid- and late-luteal phases of the cycle in comparison to studied periods of pregnancy, whereas leptin protein concentration in endometrium was either enhanced on days 30 - 32 of pregnancy in relation to days 14 - 16 of the cycle or there were no changes between pregnancy and luteal phase of the cycle. On days 30 - 32 of pregnancy, expression of the leptin gene in the endometrium, and of the leptin gene and protein in the myometrium was more pronounced in comparison to the earlier stage of pregnancy. Moreover, leptin gene expression in porcine trophoblast increased during the beginning of the implantation process compared to days 30 - 32 of pregnancy, while the protein concentration decreased on days 14 - 16 of pregnancy. In conclusion, the finding of leptin gene and protein expression in porcine endometrium, myometrium and trophoblast indicates that locally synthesised leptin can participate in the control of pig reproduction. The fluctuation of the hormone concentration during pregnancy and changes in its level between pregnancy and the oestrous cycle may indicate leptin's involvement in the implantation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号