首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Albumin was isolated immunologically from various subcellular fractions from livers of adult male rats receiving an intraperitoneal injection of [3H]leucine to investigate the kinetics and pathway of subcellular transfer of newly synthesized albumin during secretion. At appropriate time intervals, livers were excised and fractionated into endoplasmic reticulum and Golgi apparatus. Golgi apparatus were further subfractionated into cisternae and secretory vesicles. In endoplasmic reticulum fractions, labeled albumin appeared within 7.5 min of injection of isotope, followed by a rapid decline in specific activity. Albumin in Golgi apparatus was labeled and concentrated in secretory vesicles over 25 min. The radioactivity in albumin per mg total protein was highest in secretory vesicles and insignificant in the cisternal fraction. Labeled albumin was present in serum by 30 min and radioactivity in serum albumin reached a plateau within 60–90 min after injection of isotope. Results provide evidence for the migration of albumin from its site of synthesis on endoplasmic reticulum membrane-bound polyribosomes to its site of secretion into the circulation via the Golgi apparatus. The pathway of albumin transport to secretory vesicles is suggested to involve peripheral elemenst of the Golgi apparatus. Secretory vesicle formation and maturation required 20 to 30 min for completion, via a mechanism whereby the inner spaces of the central saccules may be bypassed.  相似文献   

2.
Summary A distinct electron-dense aggregate can be observed in association with the central part of the distalmost cisternae of rat hepatocyte dictyosomes. The possible function of this extracisternal element of the Golgi apparatus is discussed.The authors thank MissSigrid Krien for careful technical assistance as well as Drs. H.Falk and D. J.Morré (Purdue University) for stimulating discussions.  相似文献   

3.
Protein transport via the endoplasmic reticulum Golgi apparatus-cell surface export route was blocked when slices (6-15 cells thick) of livers of 10-day-old rats were incubated with 1 microM monensin. Production of secretory vesicles by Golgi apparatus was reduced or eliminated and, in their place, swollen cisternae accumulated in the cytoplasm at the trans Golgi apparatus face. The swelling response was restricted to the six external cell layers of the liver slices, and the number of cells showing the response was little increased by either a greater concentration of monensin or by longer times of incubation. When monensin was added post-chase to the slices, flux of radioactive proteins to the cell surface was inhibited by about 80% as determined from standard pulse-chase analyses with isolated cell fractions. Radioactive proteins accumulated in both endoplasmic reticulum and Golgi apparatus and in a fraction that may contain monensin-blocked Golgi apparatus cisternae released from the stack. The latter fraction was characterized by galactosyltransferase/thiamine pyrophosphatase ratios similar to those of Golgi apparatus from control slices. The use of monensin with the tissue slice system may provide an opportunity for the cells to accumulate monensin-blocked Golgi apparatus cisternae in sufficient quantities to permit their isolation and purification by conventional cell fractionation methods.  相似文献   

4.
R G Anderson  R K Pathak 《Cell》1985,40(3):635-643
Recently we demonstrated that low-pH compartments can be visualized with the electron microscope using a basic congener of dinitrophenol, 3-(2,4-dinitroanilino)-3'-amino-N-methyldipropylamine (DAMP), which concentrates in acidic compartments and can be detected by immunocytochemistry with a monoclonal anti-dinitrophenol antibody. We now report that DAMP also accumulates in cisternae and vesicles associated with the trans face of the Golgi apparatus. DAMP rapidly leaves this compartment when cells are incubated with the ionophore monensin, which indicates that accumulation is due to the acidic pH in this compartment. Using indirect protein A-gold immunocytochemistry, we localized fibronectin, a major secretory protein in fibroblasts, to the trans Golgi vesicles that took up DAMP. Therefore, the trans cisternae of the Golgi apparatus and forming secretory vesicles have an acidic pH.  相似文献   

5.
In mammalian cells, the Golgi complex has an elaborate structure consisting of stacked, flattened cisternal membranes collected into a ribbon in the center of the cell. Amazingly, the flattened cisternae can rapidly dilate to accommodate large cargo as it traffics through the organelle. The mechanism by which this occurs is unknown. Exocytosis of large cargo is essential for many physiological processes, including collagen and lipoprotein secretion, and defects in the process lead to disease. In addition, enveloped viruses that bud into the endoplasmic reticulum or Golgi complex must also be transported through Golgi cisternae for secretion from the infected cell. This review summarizes our understanding of intra-Golgi transport of large cargo, and outlines current questions open for experimentation.  相似文献   

6.
The intracellular site of sphingomyelin (SM) synthesis was examined in subcellular fractions from rat liver using a radioactive ceramide analog N-([1-14C]hexanoyl)-D-erythro-sphingosine. This lipid readily transferred from a complex with bovine serum albumin to liver fractions without disrupting the membranes, and was metabolized to radioactive SM. To prevent degradation of the newly synthesized SM to ceramide, all experiments were performed in the presence of EDTA to minimize neutral sphingomyelinase activity and at neutral pH to minimize acid sphingomyelinase activity. An intact Golgi apparatus fraction gave an 85-98-fold enrichment of SM synthesis and a 58-83-fold enrichment of galactosyltransferase activity. Controlled trypsin digestion demonstrated that SM synthesis was localized to the lumen of intact Golgi apparatus vesicles. Although small amounts of SM synthesis were detected in plasma membrane and rough microsome fractions, after accounting for contamination by Golgi apparatus membranes, their combined activity contributed less than 13% of the total SM synthesis in rat liver. Subfractions of the Golgi apparatus were obtained and characterized by immunoblotting and biochemical assays using cis/medial (mannosidase II) and trans (sialyltransferase and galactosyltransferase) Golgi apparatus markers. The specific activity of SM synthesis was highest in enriched cis and medial fractions but far lower in a trans fraction. We conclude that SM synthesis in rat liver occurs predominantly in the cis and medial cisternae of the Golgi apparatus and not at the plasma membrane or endoplasmic reticulum as has been previously suggested.  相似文献   

7.
Lateral segregation of mobile membrane constituents (e.g. lipids, proteins or membrane domains) into the regions of their preferred curvature relaxes stresses in the membrane. The equilibrium distribution of the constituents in the membrane is thus a balance between the gains in the membrane elastic energy and the segregation-induced loss of entropy. The membrane in the Golgi cisternae is particularly susceptible to the curvature-driven segregation because it possesses two very different curvatures-the highly curved membrane in the cisternal rims and the flat membrane in the cisternal sides. In this work, we calculate the extent of lateral segregation in the Golgi cisternae in the case where the segregation is driven by the Helfrich bending energy. It is assumed that the membrane bending constant and spontaneous curvature depend on the local membrane composition. A simple analytical expression for the extent of the lateral segregation is derived. The results show that the segregation depends on the ratio between the bending constant and the thermal energy, the difference of the preferred curvatures of the constituents and the sizes of the constituents. Applying the model to a typical Golgi cisterna, it was found that entropy can effectively limit the extent of the curvature-driven lateral segregation.  相似文献   

8.
The mystery of the unstained Golgi complex cisternae   总被引:2,自引:0,他引:2  
The Champy-Maillet OsKI reaction has been used upon Golgi complexes to show two kinds of staining. It stains material being processed as it passes along the secretory pathway of the rough endoplasmic reticulum (RER) and Golgi cisternae (GC) up to crystallization in secretory vesicles. It also stains separately the environment within parts of the GC. This GC staining may occur in all compartments (transition vesicles, saccules, condensing vacuoles), but it is characteristically missing from any one of them. The unstained cisternae may be explained if outer saccules are made from either stained or unstained transition vesicles, both of which occur. The presence of empty, unstained transition vesicles is dictated by the surface to volume ratios of microvesicles in relation to saccules. Most transition vesicles must return their membrane to the endoplasmic reticulum, but from time to time it is presumed that they fuse to make a saccule. Saccules, stained and unstained, then mature through the stack. OsKI reactions with tissues and test molecules suggest that in the RER and GC the stain detects labile--S . S--bridges before they lock the tertiary configuration of proteins.  相似文献   

9.
In 1898, the Golgi apparatus was discovered by light microscopy, and since the 1950s, the ultrastructure composition is known by electron microscopic investigation. The complex three-dimensional morphology fascinated researchers and was sometimes even the driving force to develop novel visualization techniques. However, the highly dynamic membrane systems of Golgi apparatus are delicate and prone to fixation artifacts. Therefore, the understanding of Golgi morphology and its function has been improved significantly with the development of better preparation methods. Nowadays, cryo-fixation is the method of choice to arrest instantly all dynamic and physiological processes inside cells, tissues, and small organisms. Embedded in amorphous ice, such samples can be further processed by freeze substitution or directly analyzed in their fully hydrated state by cryo-electron microscopy and tomography. Even though the overall morphology of vitrified Golgi stacks is comparable to well-prepared and resin-embedded samples, previously unknown structural details can be observed solely based on their native density. At this point, any further improvement of sample preparation would gain novel insights, perhaps not in terms of general morphology, but on fine structural details of this dynamic organelle.  相似文献   

10.
The energy requirement for the processing of newly-synthesized proteins by the Golgi was examined. Rat liver Golgi preparations enriched more than 100-fold have high ATPase activity that co-purified with the Golgi marker enzyme galactosyl transferase. The ATPase activity was 80% inhibited by dicyclohexylcarbodiimide and may represent a proton pump. Evidence is presented for a functional role of the ATPase in Golgi. First, measurement of [14C]methylamine uptake demonstrated ATP-dependent acidification. Second, inhibition of the ATPase with dicyclohexylcarbodiimide resulted in a 3-fold accumulation of newly-synthesized protein in the Golgi.  相似文献   

11.
Golgi-apparatus membranes, isolated from mouse liver, pump protons inwards, when supplied with NADH or ATP. The acidification of Golgi-apparatus cisternae and vesicles was detected with neutral red, a permeant dye, as a difference in absorbance at 550 nm minus that at 600 nm. The maximum rates detected with NADH and ATP were between 0.0006-0.0009 and 0.0030-0.0050 delta OD units/mg of protein/min, respectively, at pH 7.5. The outside buffer used was a bovine serum albumin suspension. The acidification of Golgi apparatus was inhibited from 45 to 100% by ionophores and from 22 to 100% by uncouplers. The results implicate both ATP and a redox system coupled to NADH oxidation in the acidification of Golgi-apparatus membranes.  相似文献   

12.
Structure of Golgi apparatus   总被引:2,自引:0,他引:2  
Summary Golgi apparatus (GA) of eukaryotic cells consist of one or more stacks of flattened saccules (cisternae) and an array of fenestrae and tubules continuous with the peripheral edges of the saccules. Golgi apparatus also are characterized by zones of exclusion that surround each stack and by an assortment of vesicles (or vesicle buds) associated with both the stacks and the peripheral tubules of the stack cisternae. Each stack (sometimes referred to as Golgi apparatus, Golgi complex, or dictyosome) is structurally and functionally polarized, reflecting its role as an intermediate between the endoplasmic reticulum, the cell surface, and the lysosomal system of the cell. There is probably only one GA per cell, and all stacks of the GA appear to function synchronously. All Golgi apparatus are involved in the generation and movement of product and membrane within the cell or to the cell exterior, and these functions are often reflected as structural changes across the stacks. For example, in plants, both product and membrane appear to maturate from the cis to the trans poles of the stacks in a sequential, or serial, manner. However, there is also strong ultrastructural evidence in plants for a parallel input to the stack saccules, probably through the peripheral tubules. The same modes of functioning probably also occur in animal GA; although here, the parallel mode of functioning almost surely predominates. In some cells at least, GA stacks give rise to tubular-vesicular structures that resemble the trans Golgi network. Rudimentary GA, consisting of tubular-vesicular networks, have been identified in fungi and may represent an early stage of GA evolution.  相似文献   

13.
Two different methods, stimulation of transport by fatty acyl-coenzyme A (CoA) and inhibition of transport by a nonhydrolyzable analogue of palmitoyl-CoA, reveal that fatty acylation is required to promote fusion of transport vesicles with Golgi cisternae. Specifically, fatty acyl-CoA is needed after the attachment of coated vesicles and subsequent uncoating of the vesicles, and after the binding of the NEM-sensitive fusion protein (NSF) to the membranes, but before the actual fusion event. We therefore suggest that an acylated transport component participates, directly or indirectly, in membrane fusion.  相似文献   

14.
The Golgi complex is composed of at least four distinct compartments, termed the cis-, medial, and trans-Golgi cisternae and the trans-Golgi network (TGN). It has recently been reported that the organization of the Golgi complex is disrupted in cells treated with the fungal metabolite, brefeldin-A. Under these conditions, it was shown that resident enzymes of the cis-, medial, and trans-Golgi return to the ER. We report here that 300-kD mannose 6-phosphate receptors, when pulse-labeled within the ER of brefeldin-A-treated cells, acquired numerous N-linked galactose residues with a half time of approximately 2 h, as measured by their ability to bind to RCA-I lectin affinity columns. In contrast, Limax flavus lectin chromatography revealed that less than 10% of these receptors acquired sialic acid after 8 h in brefeldin-A. Two lines of evidence suggested that proteins within and beyond the TGN did not return to the ER in the presence of brefeldin-A. First, the majority of 300-kD mannose 6-phosphate receptors present in the TGN and endosomes did not return to the ER after up to 6 h in brefeldin-A, as determined by their failure to contact galactosyltransferase that had relocated there. Moreover, although mannose 6-phosphate receptors did not acquire sialic acid when present in the ER of brefeldin-A-treated cells, they were readily sialylated when labeled at the cell surface and transported to the TGN. These experiments indicate that galactosyltransferase, a trans-Golgi enzyme, returns to the endoplasmic reticulum in the presence of brefeldin-A, while the bulk of sialyltransferase, a resident of the TGN, does not. Our findings support the proposal that the TGN is a distinct, fourth compartment of the Golgi apparatus that is insensitive to brefeldin-A.  相似文献   

15.
Summary Swelling of Golgi apparatus cisternae is reported to be a common response to the ionophore, monensin. However, the amount of swelling depends on fixation, thus raising the question of whether the swelling response is due to monensin or to the fixation protocol. To resolve this problem, maize root cap cells were treated with monensin and then fixed with glutaraldehyde and osmium tetroxide (applied sequentially), osmium tetroxide alone, or aqueous potassium permanganate, or were quick frozen in liquid propane and substituted in acetone-osmium tetroxide. The chemical fixatives (which take minutes to stabilize tissue elements) were judged by comparison with freeze substitution which requires only fractions of a second to stabilize tissue elements. The results verify that monensin causes cisternal swelling and that this swelling is best observed at the ultrastructural level by fixation in glutaraldehyde/osmium tetroxide or by freeze substitution.  相似文献   

16.
The budding yeast Pichia pastoris contains ordered Golgi stacks next to discrete transitional endoplasmic reticulum (tER) sites, making this organism ideal for structure-function studies of the secretory pathway. Here, we have used P. pastoris to test various models for Golgi trafficking. The experimental approach was to analyze P. pastoris tER-Golgi units by using cryofixed and freeze-substituted cells for electron microscope tomography, immunoelectron microscopy, and serial thin section analysis of entire cells. We find that tER sites and the adjacent Golgi stacks are enclosed in a ribosome-excluding "matrix." Each stack contains three to four cisternae, which can be classified as cis, medial, trans, or trans-Golgi network (TGN). No membrane continuities between compartments were detected. This work provides three major new insights. First, two types of transport vesicles accumulate at the tER-Golgi interface. Morphological analysis indicates that the center of the tER-Golgi interface contains COPII vesicles, whereas the periphery contains COPI vesicles. Second, fenestrae are absent from cis cisternae, but are present in medial through TGN cisternae. The number and distribution of the fenestrae suggest that they form at the edges of the medial cisternae and then migrate inward. Third, intact TGN cisternae apparently peel off from the Golgi stacks and persist for some time in the cytosol, and these "free-floating" TGN cisternae produce clathrin-coated vesicles. These observations are most readily explained by assuming that Golgi cisternae form at the cis face of the stack, progressively mature, and ultimately dissociate from the trans face of the stack.  相似文献   

17.
18.
This review is dedicated to the structure and function of Golgi apparatus (GA). It summarizes contemporary data published in numerous experimental papers and in several reviews. Possible ways of intra-Golgi transport of proteins, existent models of structural and functional organization of Golgi organelle, as well as the issues of its biogenesis, posttranslational modification and sorting of proteins and lipids, and mechanisms of their trafficking are discussed. Special attention is paid to the role of coatomer proteins (COPI, COPII and clathrin), fusion proteins (SNAREs), and small GTPases (ARF, SARI) in the secretory pathway. In addition, the phenomena of ultrastructural alterations of GA due to various functional conditions and physiological stimuli are specifically accented. We included in this review our original data on a probable involvement of GA in water transport, and on the organization of atypical GA in microsporidia--intracellular parasitic protists.  相似文献   

19.
This review is dedicated to the structure and function of Golgi apparatus (GA). It summarizes contemporary data published in numerous experimental papers and in several reviews. Possible ways of intra-Golgi transport of proteins, existent models of structural and functional organization of Golgi organelle, as well as the issues of its biogenesis, posttranslational modification and sorting of proteins and lipids, and mechanisms of their traffic-king are discussed. Special attention is paid to the role of coatomer proteins (COPI, COPII and clathrin), fusion proteins (SNAREs), and small GTPases (ARF, SARI) in the secretory pathway. In addition, the phenomena of ultrastructural alterations of GA due to various functional conditions and physiological stimuli are specifically accented. We included in this review our original data on a probable involvement of GA in water transport, and on the organization of atypical GA in microsporidia--intracellular parasitic protists.  相似文献   

20.
The fragmentation/re-formation process of the Golgi apparatus during mitosis was studied by flotation centrifugation in a stepwise sucrose density gradient. The mitotic Golgi fraction was obtained from Chinese hamster ovary cells synchronized with thymidine and nocodazole. The Golgi apparatus detected by a marker enzyme, galactosyltransferase, was separated into two peaks by the flotation centrifugation. The amount of the Golgi recovered at the lower density peak was less in the mitotic cells than in the interphase cells. The separation profile of the mitotic Golgi returned to that of the interphase Golgi by further incubation of the mitotic cells. The re-formation of the fragmented Golgi was inhibited by nocodazole and vinblastine, but not by actinomycin D and cycloheximide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号