首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Understanding the effects of warming on greenhouse gas feedbacks to climate change represents a major global challenge. Most research has focused on direct effects of warming, without considering how concurrent changes in plant communities may alter such effects. Here, we combined vegetation manipulations with warming to investigate their interactive effects on greenhouse gas emissions from peatland. We found that although warming consistently increased respiration, the effect on net ecosystem CO2 exchange depended on vegetation composition. The greatest increase in CO2 sink strength after warming was when shrubs were present, and the greatest decrease when graminoids were present. CH4 was more strongly controlled by vegetation composition than by warming, with largest emissions from graminoid communities. Our results show that plant community composition is a significant modulator of greenhouse gas emissions and their response to warming, and suggest that vegetation change could alter peatland carbon sink strength under future climate change.  相似文献   

3.
Understanding how plant community dynamics are impacted by altered disturbance regimes is a pressing challenge for restoration ecology. Most assessments of community dynamics involve computationally intensive statistical techniques, while management often defers to derived, qualitative “state‐and‐transition” models. Here, we demonstrate an intermediate approach to track and predict community resilience, diversifying the tools available to assess ecosystem change. First, we develop indices of sagebrush‐steppe community structure in permanent monitoring plots based on plant functional types and our conceptual understanding of the ecosystem. The indices define a bivariate space within which the trajectories of permanent monitoring plots can be tracked. Second, we quantify two metrics of community resilience: resistance (overall change during the time period) and stability (average amount of movement per monitoring period). Plots dominated by obligate seeder shrubs displayed low resilience relative to those dominated by grasses and forbs or resprouting shrubs. Resilience was strongly related to initial plant functional type composition and elevation. Our results suggest restoration objectives should consider how plant traits control ecosystem responses to disturbance. We suggest that the approach developed here can help assess longer‐term resilience, evaluate restoration success, and identify communities at risk of state transitions.  相似文献   

4.
川西亚高山森林作为西南林区主体,是长江上游的生态屏障,该区域植被恢复方式主要为人工恢复和自然恢复,比较不同恢复方式下森林的物种组成和群落结构动态变化,对于川西亚高山森林恢复与重建有重要的意义,可以为制定合理的森林管理策略提供科学依据。基于茂县山地生态系统定位研究站不同恢复模式形成的的华山松人工林、油松人工林和自然恢复的次生林野外调查数据,分析了2005-2020年乔、灌、草三个层次的群落结构特征和多样性。结果表明:(1)不同恢复途径下,乔木层物种数都呈现增加趋势,华山松人工林、油松人工林、自然恢复的次生林乔木层物种数分别增加了11种、7种、8种;(2)华山松人工林中华山松重要值从48.06%降低到31.1%,乡土阔叶树种四川蜡瓣花进入乔木层,2020年重要值增大至21.62%,油松人工林中油松重要值逐渐降低,从43.59%降至29.76%;自然恢复的次生林中,乡土树种锐齿槲栎逐渐成为第一优势种,2020年重要值增至19.9%。(3) 华山松人工林、油松人工林和自然恢复的次生林中,温带区系成分分别占总属数的71.43%,80.77%和84%,温带区系特征明显。(4)华山松人工林和油松人工林乔木层径级结构均为偏正态分布;而自然恢复的次生林径级分布呈倒"J"形,以小径级个体为主。(5)不同林型的乔木层高度在15年间呈现增加的趋势,具体表现为油松人工林>华山松人工林>自然恢复的次生林。(6)乔木层Shannon-wiener指数和 Simpson指数均表现为自然恢复的次生林显著大于两个人工林,丰富度指数和均匀度指数表现为油松人工林最大;灌木层4个多样性指数均表现为油松人工林最大;草本层的丰富度指数、Shannon-wiener 指数和 Simpson 指数均表现为油松人工林较大,均匀度指数没有显著差异。结论:人工林恢复速度大于自然恢复的次生林,但自然恢复的次生林更新能力更强,且更有利于多样性的保存。两个人工林逐渐由常绿针叶林演替为以常绿针叶树为主的针阔混交林,自然恢复的次生林演替为以常绿阔叶树为主的针阔混交林。  相似文献   

5.
Bioengineering of photoautotrophic microalgae into CO2 scrubbers and producers of value‐added metabolites is an appealing approach in low‐carbon economy. A strategy for microalgal bioengineering is to enhance the photosynthetic carbon assimilation through genetically modifying the photosynthetic pathways. The halotolerant microalgae Dunaliella posses an unique osmoregulatory mechanism, which accumulates intracellular glycerol in response to extracellular hyperosmotic stresses. In our study, the Calvin cycle enzyme sedoheptulose 1,7‐bisphosphatase from Chlamydomonas reinhardtii (CrSBPase) was transformed into Dunaliella bardawil, and the transformant CrSBP showed improved photosynthetic performance along with increased total organic carbon content and the osmoticum glycerol production. The results demonstrate that the potential of photosynthetic microalgae as CO2 removers could be enhanced through modifying the photosynthetic carbon reduction cycle, with glycerol as the carbon sink.  相似文献   

6.
To realistically simulate climate feedbacks from the land surface to the atmosphere, models must replicate the responses of plants to environmental changes. Several processes, operating at various scales, cause the responses of photosynthesis and plant respiration to temperature and CO2 to change over time of exposure to new or changing environmental conditions. Here, we review the latest empirical evidence that short‐term responses of plant carbon exchange rates to temperature and CO2 are modified by plant photosynthetic and respiratory acclimation as well as biogeochemical feedbacks. We assess the frequency with which these responses have been incorporated into vegetation models, and highlight recently designed algorithms that can facilitate their incorporation. Few models currently include representations of the long‐term plant responses that have been recorded by empirical studies, likely because these responses are still poorly understood at scales relevant for models. Studies show that, at a regional scale, simulated carbon flux between the atmosphere and vegetation can dramatically differ between versions of models that do and do not include acclimation. However, the realism of these results is difficult to evaluate, as algorithm development is still in an early stage, and a limited number of data are available. We provide a series of recommendations that suggest how a combination of empirical and modeling studies can produce mechanistic algorithms that will realistically simulate longer term responses within global‐scale models.  相似文献   

7.
This work originates from three facts: (i) changes in CO2 availability influence metabolic processes in algal cells; (ii) Spatial and temporal variations of nitrogen availability cause repercussions on phytoplankton physiology; (iii) Growth and cell composition are dependent on the stoichiometry of nutritional resources. In this study, we assess whether the impact of rising pCO2 is influenced by N availability, through the impact that it would have on the C/N stoichiometry, in conditions of N sufficiency. Our experiments used the dinoflagellate Protoceratium reticulatum, which we cultured under three CO2 regimes (400, 1,000, and 5,000 ppmv, pH of 8.1) and either variable (the NO3? concentration was always 2.5 mmol · L?1) or constant (NO3? concentration varied to maintain the same Ci/NO3? ratio at all pCO2) Ci/NO3? ratio. Regardless of N availability, cells had higher specific growth rates, but lower cell dry weight and C and N quotas, at elevated CO2. The carbohydrate pool size and the C/N was unaltered in all treatments. The lipid content only decreased at high pCO2 at constant Ci/NO3? ratio. In the variable Ci/NO3? conditions, the relative abundance of Rubisco (and other proteins) also changed; this did not occur at constant Ci/NO3?. Thus, the biomass quality of P. reticulatum for grazers was affected by the Ci/NO3? ratio in the environment and not only by the pCO2, both with respect to the size of the main organic pools and the composition of the expressed proteome.  相似文献   

8.
In recent years, there have been considerable efforts to restore degraded tropical montane forests through active restoration using indigenous tree species. However, little is known about how these species used for restoration influence other species. In this study, two potential restoration species, Albizia gummifera and Neoboutonia macrocalyx, are investigated with regard to the relationship between their density and the abundance and richness of other plant species. The study was conducted in a degraded forest consisting of disturbed transition zones and secondary forest. Our results show positive relationships between the density of A. gummifera and the abundance of tree seedling and sapling richness in the transition zones and in the secondary forest. Shrub richness was negatively related to the density of A. gummifera. Abundance and richness of tree saplings and shrubs were positively related to N. macrocalyx density both in the transition zones and in the secondary forest. Herb species richness declined with N. macrocalyx density in the transition zones but increased with N. macrocalyx density in the secondary forest. The positive relationships between the density of the two tree species and species richness of other woody species suggest that both A. gummifera and N. macrocalyx can be suitable for active restoration of degraded mountain forests within their natural range.  相似文献   

9.
Removal of shrubs and trees is an important management and restoration practice to promote openness and light‐dependent vegetation in fens, especially as tree cover is increasing in previously open wetlands. The effects of woody vegetation removal on target species have been poorly documented in wetlands up to now. In this study, I investigated the effect of tree and shrub removal (especially of Juniperus communis) on the target vegetation in a partly overgrown and degraded grazed rich fen after 6 years. I also tested whether additional intensified management by mowing could promote initial recovery. Shrub removal resulted in a rapid recovery of species‐rich fen vegetation such that after 6 years brown moss cover more than tripled and target species richness doubled and became similar to values of a reference area in a favorable conservation status. Additional mowing resulted in a much higher abundance of the target rich fen vascular plants. The reasons for the success at this site may be the proximity to well‐developed rich fen vegetation, presence of cattle that dispersed diaspores, and presence of bare, colonizable substrate. Thus, it may be more beneficial to restore and expand already existing sites in a partly favorable status than to restore severely deteriorated sites. Extensive management by woody vegetation removal may be an alternative method to maintain high conservation values of open mires and other wetlands, where grazing or mowing is not necessary or feasible to meet future needs in response to overgrowth caused by global warming.  相似文献   

10.
Below‐ground interactions between soil microbial communities and plants play important roles in shaping plant community structure, but are currently poorly understood. Understanding these processes has important practical implications, including for restoration. In this study, we investigated whether soil microbes from remnant areas can aid the restoration of old‐fields, and whether soil microbes from an old‐field encourages further invasive establishment. In a glasshouse experiment, we measured growth and survival of two native grasses (Austrostipa nodosa and Rytidosperma auriculatum) and an invasive grass (Lolium rigidum) grown in sterile soil inoculated with whole soil from three locations: an old‐field, a remnant grassland, and a seed orchard planted with native grasses 7 years ago. Plants grown in sterile, non‐inoculated soil acted as controls. The orchard inoculant was included to test whether soil microbes from an area cultivated with native grasses induced plant responses similar to remnant areas. The remnant treatment resulted in the highest biomass and no mortality for R. auriculatum. All inoculant types increased the biomass of the invasive species equally. The native grass, A. nodosa, was the most sensitive to the addition of inoculum, whereas the invasive L. rigidum suffered very low mortality across all treatments. Overall, mortality was highest in the old‐field treatment at 42.9%. These results give insights into how soil microbes can affect community structure and dynamics, e.g. the high mortality of natives with old‐field inoculant may be one mechanism that allows invasive species to dominate. Poorer performance of native species with the orchard inoculant suggests it would not make a suitable replacement for remnant soil; therefore, more work is needed to understand the requirements of target species and their interactions before this technique can be exploited to maximum benefit.  相似文献   

11.
Shifting cultivation is a widespread land‐use in the tropics that is considered a major threat to rainforest diversity and structure. In the Philippines, a country with rich biodiversity and high rates of species endemism, shifting cultivation, locally termed as kaingin, is a major land‐use and has been for centuries. Despite the potential impact of shifting cultivation on forests and its importance to many people, it is not clear how biodiversity and forest structure recover after kaingin abandonment in the country, and how well these post‐kaingin secondary forests can complement the old‐growth forests. We investigated parameters of forest diversity and structure along a fallow age gradient in secondary forests regenerating after kaingin abandonment in Leyte Island, the Philippines (elevation range: 445–650 m asl). We first measured the tree diversity and forest structure indices in regenerating secondary forests and old‐growth forest. We then measured the recovery of tree diversity and forest structure parameters in relation to the old‐growth forest. Finally, using linear mixed effect models (LMM), we assessed the effect of different environmental variables on the recovery of forest diversity and structure. We found significantly higher species density in the oldest fallow sites, while Shannon’s index, species evenness, stem number, basal area, and leaf area index were higher in the old‐growth forest. A homogeneous species composition was found across the sites of older fallow age. Multivariate analysis revealed patch size as a strong predictor of tree diversity and forest structure recovery after shifting cultivation. Our study suggests that, secondary forests regenerating after shifting cultivation abandonment can recover rapidly. Although recovery of forest structure was not as rapid as the tree diversity, our older fallow sites contained a similar number of species as the old‐growth forest. Many of these species are also endemic to the Philippines. Novel and emerging ecosystems like tropical secondary forests are of high conservation importance and can act as a refuge for dwindling tropical forest biodiversity.  相似文献   

12.
Current atmospheric CO2 levels are about 400 μmol mol?1 and are predicted to rise to 650 μmol mol?1 later this century. Although the positive and negative impacts of CO2 on plants are well documented, little is known about interactions with pests and diseases. If disease severity increases under future environmental conditions, then it becomes imperative to understand the impacts of pathogens on crop production in order to minimize crop losses and maximize food production. Barley yellow dwarf virus (BYDV) adversely affects the yield and quality of economically important crops including wheat, barley and oats. It is transmitted by numerous aphid species and causes a serious disease of cereal crops worldwide. This study examined the effects of ambient (aCO2; 400 μmol mol?1) and elevated CO2 (eCO2; 650 μmol mol?1) on noninfected and BYDV‐infected wheat. Using a RT‐qPCR technique, we measured virus titre from aCO2 and eCO2 treatments. BYDV titre increased significantly by 36.8% in leaves of wheat grown under eCO2 conditions compared to aCO2. Plant growth parameters including height, tiller number, leaf area and biomass were generally higher in plants exposed to higher CO2 levels but increased growth did not explain the increase in BYDV titre in these plants. High virus titre in plants has been shown to have a significant negative effect on plant yield and causes earlier and more pronounced symptom expression increasing the probability of virus spread by insects. The combination of these factors could negatively impact food production in Australia and worldwide under future climate conditions. This is the first quantitative evidence that BYDV titre increases in plants grown under elevated CO2 levels.  相似文献   

13.
Bowalization is a particular form of land degradation and leads to lateral expansion of ferricrete horizons. The process occurs only in tropical regions. In this study, the most adapted and resistant species towards climate change were identified on bowé. The 15 most common bowé species of the subhumid and semi‐arid climate zones of Benin were submitted together with significant environmental variables (elevation, current bioclimatic variables, soil types) to three ecological niche modelling programmes (Maxent, Domain and GARP). For future prediction (2050), IPCC4/CIAT and IPCC5/CMIP5 climate data were applied. Asparagus africanus, Andropogon pseudapricus and Combretum nigricans were identified as the most resistant species for ecological restoration of bowé in the semi‐arid climate zone and Asparagus africanus, Detarium microcarpum and Lannea microcarpa in the subhumid climate zone. The ‘Pull’ strategies were identified as appropriate for ecological restoration of bowé in Benin.  相似文献   

14.
Global change impacts on biogeochemical cycles have been widely studied, but our understanding of whether the responses of plant elemental composition to global change drivers differ between above‐ and belowground plant organs remains incomplete. We conducted a meta‐analysis of 201 reports including 1,687 observations of studies that have analyzed simultaneously N and P concentrations changes in leaves and roots in the same plants in response to drought, elevated [CO2], and N and P fertilization around the world, and contrasted the results within those obtained with a general database (838 reports and 14,772 observations) that analyzed the changes in N and P concentrations in leaves and/or roots of plants submitted to the commented global change drivers. At global level, elevated [CO2] decreased N concentrations in leaves and roots and decreased N:P ratio in roots but no in leaves, but was not related to P concentration changes. However, the response differed among vegetation types. In temperate forests, elevated [CO2] was related with lower N concentrations in leaves but not in roots, whereas in crops, the contrary patterns were observed. Elevated [CO2] decreased N concentrations in leaves and roots in tundra plants, whereas not clear relationships were observed in temperate grasslands. However, when elevated [CO2] and N fertilization coincided, leaves had lower N concentrations, whereas root had higher N concentrations suggesting that more nutrients will be allocated to roots to improve uptake of the soil resources not directly provided by the global change drivers. N fertilization and drought increased foliar and root N concentrations while the effects on P concentrations were less clear. The changes in N and P allocation to leaves and root, especially those occurring in opposite direction between them have the capacity to differentially affect above‐ and belowground ecosystem functions, such as litter mineralization and above‐ and belowground food webs.  相似文献   

15.
16.
17.
Genome‐wide association studies have successfully identified over 70 loci associated with the risk of type 2 diabetes mellitus (T2DM) in multiple populations of European ancestry. However, the risk attributable to an individual variant is modest and does not yet provide convincing evidence for clinical utility. Association between these established genetic variants and T2DM in general populations is hitherto understudied in the isolated populations, such as the Uyghurs, resident in Hetian, far southern Xinjiang Uyghur Autonomous Region, China. In this case–control study, we genotyped 13 single‐nucleotide polymorphisms (SNPs) at 10 genes associated with diabetes in 130 cases with T2DM and 135 healthy controls of Uyghur, a Chinese minority ethnic group. Three of the 13 SNPs demonstrated significant association with T2DM in the Uyghur population. There were significant differences between the T2DM patients and controls in the risk allele distributions of rs3792267 (CAPN10) (P = 0.002), rs1501299 (APM1) (P = 0.017), and rs3760776 (FUT6) (P = 0.031). Allelic carriers of rs3792267‐A, rs1501299‐T, and rs3760776‐T had a 2.24‐fold [OR (95% CI): 1.35–3.71], 0.59‐fold [OR (95% CI): 0.39–0.91], 0.57‐fold [OR (95% CI): 0.34–0.95] increased risk for T2DM respectively. We further confirmed that the cumulative risk allelic scores calculated from the 13 susceptibility loci for T2DM differed significantly between the T2DM patients and controls (P = 0.001), and the effect of obesity/overweight on T2DM was only observed in the subjects with a combined risk allelic score under a value of 17. This study observed that the SNPs rs3792267 in CAPN10, rs1501299 in APM1, and rs3760776 in FUT6 might serve as potential susceptible biomarkers for T2DM in Uyghurs. The cumulative risk allelic scores of multiple loci with modest individual effects are also significant risk factors in Uyghurs for T2DM, particularly among non‐obese individuals. This is the first investigation having observed/found genetic variations on genetic loci functionally linked with glycosylation associated with the risk of T2DM in a Uyghur population.  相似文献   

18.
19.
The process of discovering species is a fundamental responsibility of systematics. Recently, there has been a growing interest in coalescent‐based methods of species delimitation aimed at objectively identifying species early in the divergence process. However, few empirical studies have compared these new methods with character‐based approaches for discovering species. In this study, we applied both a character‐based and a coalescent‐based approaches to delimit species in a closely related avian complex, the light‐vented/Taiwan bulbul (Pycnonotus sinensis/Pycnonotus taivanus). Population aggregation analyses of plumage, mitochondrial and 13 nuclear intron character data sets produced conflicting species hypotheses with plumage data suggesting three species, mitochondrial data suggesting two species, and nuclear intron data suggesting one species. Such conflict is expected among recently diverged species, and by integrating all sources of data, we delimited three species verified with independently congruent character evidence as well as a more weakly supported fourth species identified by a single character. Attempts to validate species hypothesis using Bayesian Phylogenetics and Phylogeography (BPP), a coalescent‐based method of species delimitation, revealed several issues that can seemingly affect statistical support for species recognition. We found that θ priors had a dramatic impact on speciation probabilities, with lower values consistently favouring splitting and higher values consistently favouring lumping. More resolved guide trees also resulted in overall higher speciation probabilities. Finally, we found suggestive evidence that BPP is sensitive to the divergent effects of nonrandom mating caused by intraspecific processes such as isolation‐with‐distance, and therefore, BPP may not be a conservative method for delimiting independently evolving population lineages. Based on these concerns, we questioned the reliability of BPP results and based our conclusions about species limits exclusively on character data.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号