共查询到20条相似文献,搜索用时 15 毫秒
1.
Nectar feeding increases exploratory behaviour in the aphid parasitoid Diaeretiella rapae (McIntosh) 下载免费PDF全文
Y.‐D. Varennes M. Gonzalez Chang S. Boyer S. D. Wratten 《Journal of Applied Entomology》2016,140(6):479-483
Feeding on floral nectar has multiple positive effects on parasitic wasps, including increased longevity and fecundity, and in addition, nectar feeding can also alter parasitoid behaviour. To advance understanding of the effects of nectar feeding on Diaeretiella rapae (McIntosh) [Hymenoptera: Braconidae], the activities of 1‐day‐old female D. rapae with or without a prior buckwheat (Fagopyrum esculentum) nectar meal were quantified. Nectar increased searching time of D. rapae by a factor of 40 compared with individuals provided with water only and reduced the time spent stationary. The number of attacks to aphids by nectar‐fed parasitoids was not significantly (P = 0.06) higher than that of unfed D. rapae, suggesting that the conditions of the experiment facilitated host finding by ‘quiet’ parasitoids. Nevertheless, nectar feeding modified the behaviour of D. rapae in a way that parasitoids were more explorative and less inactive. This represents one additional mechanism through which nectar feeding impacts parasitoid biology and suggests that a synergy between increased host searching, increased longevity and increased fecundity should lead to an enhancement of biocontrol when D. rapae females have access to nectar in the field. 相似文献
2.
B. I. Honne J. Rohloff J. T. Rossiter A. M. Bones 《Plant biology (Stuttgart, Germany)》2012,14(6):894-904
The enzyme myrosinase (EC 3.2.3.1.147) is present in specialised myrosin cells and forms part of the glucosinolate–myrosinase system, also known as ‘the mustard oil bomb’, which has an important role in the defence system of cruciferous plants against insect pests. Transgenic Brassica napus MINELESS have been produced by transgenic ablation of myrosin cells. This prompted us to investigate the importance of myrosin cells in plant–aphid interactions. In order to study this, we challenged transgenic MINELESS and wild‐type cultivar Westar seedlings with the aphids Brevicoryne brassicae (a specialist) and Myzus persicae (a generalist). Our study included aphid free‐choice and aphid fecundity experiments. Data from these experiments showed that B. brassicae prefers wild‐type seedlings and M. persicae prefers MINELESS. B. brassicae and M. persicae showed significant variation in establishment on plants regardless of whether they were wild type or MINELESS and also differed significantly in affecting plant parts. Myrosinase activity in MINELESS control seedlings was 83.6% lower than the wild‐type control seedlings. Infestation with either of the two aphid species induced myrosinase levels in both wild‐type and MINELESS seedlings. Infestation with M. persicae reduced the concentration of most glucosinolates while B. brassicae had the opposite effect. B. brassicae enhanced the formation of glucosinolate hydrolysis products both in wild‐type and MINELESS seedlings. However, M. persicae decreased All ITC but increased 3,4ETBut NIT in wild‐type seedlings. Taken together, the investigation shows that the presence of myrosin cells affects the preference of generalist and specialist aphid species for Brassica napus plants. 相似文献
3.
On the role of sinigrin (mustard oil) in a tritrophic context: plant–aphid–aphidophagous hoverfly 下载免费PDF全文
ALIREZA AMIRI‐JAMI HUSSEIN SADEGHI‐NAMAGHI FRANCIS GILBERT GHOLAMHOSSEIN MORAVVEJ AHMAD ASOODEH 《Ecological Entomology》2016,41(2):138-146
1. Plant secondary metabolites can govern prey–predator interactions by altering the diet breadth of predators and sometimes provide an ecological refuge to prey. Brassicaceae plants and their specialist pests can be used as a model system for understanding the role of chemically mediated effects restricting the diet breadth of natural enemies, and consequently the occurrence of enemy‐free space for the specialist pest. 2. The objective of the present study was to test the performance of the generalist predator Episyrphus balteatus De Geer (Diptera: Syrphidae) fed on the specialist herbivore Brevicoryne brassicae L.(Homoptera: Aphididae), reared on two different brassica species: black mustard (Brassica nigra), a wild species with high levels of sinigrin; and canola (Brassica napus), a cultivated species without sinigrin. 3. The preference and performance of the predator and the performance of the prey were measured. Sinigrin was quantified by high‐performance liquid chromatography in both leaf samples and aphids reared on the two host plants. 4. The cabbage aphid performed better on canola than on black mustard. The performance of the predator on this aphid when reared on canola was clearly better than when reared on black mustard. Females had a higher overall preference for cabbage aphids reared on canola than on black mustard. 5. The ability of aphids reared on plants with high glucosinolate content to reduce the performance of their generalist predators indicates that the presence of B. nigra may provide enemy‐free space for the cabbage aphid from its predator, a concept that has useful application in the context of biological control for agricultural systems. 相似文献
4.
Elisangela G. Fidelis Elizeu S. Farias Mayara C. Lopes Fernanda F. Sousa Jos C. Zanuncio Marcelo C. Picano 《Journal of Applied Entomology》2019,143(4):365-370
Brevicoryne brassicae (L), Lipaphis erysimi (Kalt) and Myzus persicae (Sultzer) (Homoptera: Aphididae) form the aphid complex that causes great losses in Brassicaceae in tropical and subtropical regions. Knowledge of their population dynamics is important for the development of integrated pest management programmes. This study aimed to investigate the effects of cabbage phenology, climatic factors and natural enemies populations on the dynamics of these organisms, and the factors regulating their predators’ occurrence. The densities of aphids and their natural enemies and the climate were monitored for two years in 16 cabbage crops. The highest densities of the aphids occurred during periods of relative humidity (RH) drop, a condition that affects them positively. Regarding the predators, the factors affecting their abundance varied but RH was positively related to most of them. This study provides relevant insights into the factors that regulate the aphids in cabbage and for the decision‐making process of control of these severe pests. 相似文献
5.
Rongquan Lai Hanqing Hu Xiaoting Wu Jingjing Bai Gang Gu Jianbao Bai Ting Zhou Tianran Lin Xiujin Zhong 《Entomologia Experimentalis et Applicata》2019,167(11):969-976
Tobacco viruses transmitted by green peach aphids, Myzus persicae (Sulzer) (Hemiptera: Aphididae), cause severe disease in flue‐cured tobacco, Nicotiana tabacum L. (Solanaceae), in China and throughout the world. Field experiments were conducted in 2016 and 2017 in Longyan City, Fujian Province, China, to determine whether M. persicae and aphid‐transmitted virus diseases are affected by intercropping of oilseed rape, Brassica napus L. (Brassicaceae), in tobacco fields. The results showed that, compared with those in monocultured fields, the densities of M. persicae and winged aphids in intercropped fields significantly decreased in both 2016 and 2017. In particular, the appearance of winged aphids was delayed by ca. 7 days. Moreover, the densities of Aphidius gifuensis Ashmead (Hymenoptera: Aphidiidae), a parasitoid of the aphid, significantly increased in 2016 and 2017. Accordingly, the incidence rates of aphid‐transmitted virus diseases (those caused by the cucumber mosaic virus, potato virus Y, and tobacco etch virus) significantly decreased in the intercropped fields in 2016 and 2017. Tobacco yields and monetary value significantly increased in 2016 (by 10–25 and 14–29%, respectively) and 2017 (by 17–22 and 22–34%, respectively). Consequently, our results suggest that intercropping oilseed rape in tobacco fields is a good approach to regulating and controlling aphids and tobacco mosaic viruses, for example potyvirus, and this intercropping can help control aphid‐transmitted virus diseases in tobacco. 相似文献
6.
Plant‐derived differences in the composition of aphid honeydew and their effects on colonies of aphid‐tending ants 下载免费PDF全文
Elizabeth G. Pringle Alexandria Novo Ian Ableson Raymond V. Barbehenn Rachel L. Vannette 《Ecology and evolution》2014,4(21):4065-4079
In plant–ant–hemipteran interactions, ants visit plants to consume the honeydew produced by phloem‐feeding hemipterans. If genetically based differences in plant phloem chemistry change the chemical composition of hemipteran honeydew, then the plant's genetic constitution could have indirect effects on ants via the hemipterans. If such effects change ant behavior, they could feed back to affect the plant itself. We compared the chemical composition of honeydews produced by Aphis nerii aphid clones on two milkweed congeners, Asclepias curassavica and Asclepias incarnata, and we measured the responses of experimental Linepithema humile ant colonies to these honeydews. The compositions of secondary metabolites, sugars, and amino acids differed significantly in the honeydews from the two plant species. Ant colonies feeding on honeydew derived from A. incarnata recruited in higher numbers to artificial diet, maintained higher queen and worker dry weight, and sustained marginally more workers than ants feeding on honeydew derived from A. curassavica. Ants feeding on honeydew from A. incarnata were also more exploratory in behavioral assays than ants feeding from A. curassavica. Despite performing better when feeding on the A. incarnata honeydew, ant workers marginally preferred honeydew from A. curassavica to honeydew from A. incarnata when given a choice. Our results demonstrate that plant congeners can exert strong indirect effects on ant colonies by means of plant‐species‐specific differences in aphid honeydew chemistry. Moreover, these effects changed ant behavior and thus could feed back to affect plant performance in the field. 相似文献
7.
JORDAN A. BANNERMAN DAVID R. GILLESPIE BERNARD D. ROITBERG 《Ecological Entomology》2011,36(4):490-498
1. Global climate change models predict an increase in the frequency and magnitude of extreme temperature events. These temperature events, heatwaves for example, will impact a wide range of physiological and behavioural processes, particularly in ectotherms, and may therefore influence interactions between species. 2. Anti‐predator responses may be more costly under more severe temperature regimes and therefore trait‐mediated disturbance could lead to high mortality or reduced reproduction under extreme and fluctuating temperature regimes. 3. We examined the impacts of extreme and fluctuating temperatures on trait‐mediated indirect interactions in an aphid–parasitoid community. 4. In treatments that isolated the effects of trait‐mediated disturbance from the effects of foraging parasitoids we found that an increase in both the amplitude and frequency of peak temperatures reduced aphid numbers and provided evidence that the cost of trait‐mediated disturbance could increase under frequent periods of high temperature. Aphid dispersal also increased with more frequent periods of high temperature. 5. In treatments where female wasps were allowed to freely forage (direct + trait‐mediated effects), there was no evidence that extreme and fluctuating temperatures influenced the wasp's foraging ability. Exposure to extreme fluctuating temperatures did not influence the offspring production of exposed wasps or the position of the mummies within the plots. 相似文献
8.
9.
Inoculation of susceptible and resistant potato plants with the late blight pathogen Phytophthora infestans: effects on an aphid and its parasitoid 下载免费PDF全文
Jenny Lazebnik Marianne Tibboel Marcel Dicke Joop J.A. van Loon 《Entomologia Experimentalis et Applicata》2017,163(3):305-314
Plants are exposed to microbial pathogens as well as herbivorous insects and their natural enemies. Here, we examined the effects of inoculation of potato plants, Solanum tuberosum L. (Solanaceae), with the late blight pathogen Phytophthora infestans (Mont.) de Bary (Peronosporales: Pythiaceae) on an aphid species commonly infesting potato crops and one of the aphid's major parasitoids. We observed the peach‐potato aphid, Myzus persicae Sulzer (Hemiptera: Aphididae), and its natural enemy, the biocontrol agent Aphidius colemani Viereck (Hymenoptera: Braconidae), on potato either inoculated with water or P. infestans. Population growth of the aphid, parasitism rate of its natural enemy, and other insect life‐history traits were compared on several potato genotypes, the susceptible cultivar Désirée and genetically modified (GM) isogenic lines carrying genes conferring resistance to P. infestans. Effects of P. infestans inoculation on the intrinsic rate of aphid population increase and the performance of the parasitoid were only found on the susceptible cultivar. Insect traits were similar when comparing inoculated with non‐inoculated resistant GM genotypes. We also tested how GM‐plant characteristics such as location of gene insertion and number of R genes could influence non‐target insects by comparing insect performance among GM events. Different transformation events leading to different positions of R‐gene insertion in the genome influenced aphids either with or without P. infestans infection, whereas effects of position of R‐gene insertion on the parasitoid A. colemani were evident only in the presence of inoculation with P. infestans. We conclude that it is important to study different transformation events before continuing with further stages of risk assessment of this GM crop. This provides important information on the effects of plant resistance to a phytopathogen on non‐target insects at various trophic levels. 相似文献
10.
Temperature and water stress affect plant–pollinator interactions in Borago officinalis (Boraginaceae) 下载免费PDF全文
Charlotte Descamps Muriel Quinet Aurélie Baijot Anne‐Laure Jacquemart 《Ecology and evolution》2018,8(6):3443-3456
Climate change alters the abiotic constraints faced by plants, including increasing temperature and water stress. These changes may affect flower development and production of flower rewards, thus altering plant–pollinator interactions. Here, we investigated the consequences of increased temperature and water stress on plant growth, floral biology, flower‐reward production, and insect visitation of a widespread bee‐visited species, Borago officinalis. Plants were grown for 5 weeks under three temperature regimes (21, 24, and 27°C) and two watering regimes (well‐watered and water‐stressed). Plant growth was more affected by temperature rise than water stress, and the reproductive growth was affected by both stresses. Vegetative traits were stimulated at 24°C, but impaired at 27°C. Flower development was mainly affected by water stress, which decreased flower number (15 ± 2 flowers/plant in well‐watered plants vs. 8 ± 1 flowers/plant under water stress). Flowers had a reduced corolla surface under temperature rise and water stress (3.8 ± 0.5 cm2 in well‐watered plants at 21°C vs. 2.2 ± 0.1 cm2 in water‐stressed plants at 27°C). Both constraints reduced flower‐reward production. Nectar sugar content decreased from 3.9 ± 0.3 mg/flower in the well‐watered plants at 21°C to 1.3 ± 0.4 mg/flower in the water‐stressed plants at 27°C. Total pollen quantity was not affected, but pollen viability decreased from 79 ± 4% in the well‐watered plants at 21°C to 25 ± 9% in the water‐stressed plants at 27°C. Flowers in the well‐watered plants at 21°C received at least twice as many bumblebee visits compared with the other treatments. In conclusion, floral modifications induced by abiotic stresses related to climate change affect insect behavior and alter plant–pollinator interactions. 相似文献
11.
12.
13.
The influence of cultivars of common cabbage, Brassica oleracea var. capitata with varying levels of resistance to Brevicoryne brassicae (L.) and Myzus persicae (Sulzer) on key biological characteristics of Aphidius colemani (Viereck) was investigated under laboratory conditions. The total development time for female parasitoids reared on M. persicae did not differ significantly between Minicole (green-leaved, partially resistant with antibiosis factors for B. brassicae) and Derby Day (green-leaved, susceptible to both aphid species); but development was significantly faster (ca 10%) on Ruby Ball (red-leaved, partially resistant with antixenosis factors for B. brassicae). Total development time for females reared on B. brassicae was slightly shorter on Ruby Ball than on Minicole. Males reared on M. persicae developed into adults significantly faster (ca 10%) on Ruby Ball than on Minicole. However, when B. brassicae was the host, no significant variations in development time were observed. Sex ratios, size and longevity of both male and female parasitoids on either host were not significantly influenced by cultivar. The results are discussed in relation to the compatible utilisation of host-plant resistance and biological control in the integrated management of aphids. 相似文献
14.
The shape of the relationship between intensity of biotic interactions and strength of selection is important for spatial variation in selection, but is little explored. We quantified interactions and selection in 69 populations of the short‐lived herb Primula farinosa. As predicted because of saturation and depletion effects, the strength of selection on a discrete and on a continuously varying floral display trait were in several cases significantly non‐linearly related to the mean intensity of mutualistic and antagonistic interactions. Strength of selection was strongest at low levels of fruit initiation and at high intensities of seed predation. Seed predation varied more among populations than did fruit initiation and could explain a larger proportion of the among‐population variation in strength of selection. Our results support the contention that interaction intensity affects selection strength, and suggests that for mutualistic and antagonistic interactions that can be saturated or depleted, this relationship is sometimes non‐linear. 相似文献
15.
Clare L. Casteel Chunling Yang Ananya C. Nanduri Hannah N. De Jong Steven A. Whitham Georg Jander 《The Plant journal : for cell and molecular biology》2014,77(4):653-663
Many plant viruses depend on aphids and other phloem‐feeding insects for transmission within and among host plants. Thus, viruses may promote their own transmission by manipulating plant physiology to attract aphids and increase aphid reproduction. Consistent with this hypothesis, Myzus persicae (green peach aphids) prefer to settle on Nicotiana benthamiana infected with Turnip mosaic virus (TuMV) and fecundity on virus‐infected N. benthamiana and Arabidopsis thaliana (Arabidopsis) is higher than on uninfected controls. TuMV infection suppresses callose deposition, an important plant defense, and increases the amount of free amino acids, the major source of nitrogen for aphids. To investigate the underlying molecular mechanisms of this phenomenon, 10 TuMV genes were over‐expressed in plants to determine their effects on aphid reproduction. Production of a single TuMV protein, nuclear inclusion a‐protease domain (NIa‐Pro), increased M. persicae reproduction on both N. benthamiana and Arabidopsis. Similar to the effects that are observed during TuMV infection, NIa‐Pro expression alone increased aphid arrestment, suppressed callose deposition and increased the abundance of free amino acids. Together, these results suggest a function for the TuMV NIa‐Pro protein in manipulating the physiology of host plants. By attracting aphid vectors and promoting their reproduction, TuMV may influence plant–aphid interactions to promote its own transmission. 相似文献
16.
Feeding behavior of aphids on narrow‐leafed lupin (Lupinus angustifolius) genotypes varying in the content of quinolizidine alkaloids 下载免费PDF全文
Jasmin Philippi Edgar Schliephake Hans‐Ulrich Jürgens Gisela Jansen Frank Ordon 《Entomologia Experimentalis et Applicata》2015,156(1):37-51
Since the beginning of breeding narrow‐leafed lupins [Lupinus angustifolius L. (Fabaceae)] with a low alkaloid content, susceptibility to several aphid species has increased. Therefore, the probing and feeding behavior of Aphis fabae Scopoli, Aphis craccivora Koch, Acyrthosiphon pisum (Harris), Myzus persicae (Sulzer), and the well‐adapted Macrosiphum albifrons Essig (all Hemiptera: Aphididae) was studied over 12 h on narrow‐leafed lupin genotypes containing varying amounts and compositions of alkaloids. We used the electrical penetration graph (EPG) technique to obtain information on the influence of alkaloid content and composition on the susceptibility to various aphid species. Results indicated that the total time of probing of A. fabae, A. craccivora, A. pisum, and M. persicae increased with a reduced alkaloid content, whereas the alkaloid content had no influence on M. albifrons. Almost all of the individuals (>93%) conducted sieve element phases on the highly susceptible genotype Bo083521AR (low alkaloid content). A reduced occurrence of phloem phases was observed during the 12‐h recording on the alkaloid‐rich cultivar Azuro, especially for A. pisum (37.5%) and A. fabae (55.0%). Furthermore, aphids feeding on genotypes with low alkaloid content had in most cases significantly longer sieve element phases than when feeding on resistant genotypes (Kalya: low alkaloid content, yet resistant; Azuro: high alkaloid content, resistant), whereas M. albifrons showed the longest phloem phase on the alkaloid‐rich cultivar Azuro. As most significant differences were found in phloem‐related parameters, it is likely that the most important plant factors influencing aphid probing and feeding behavior are localized in the sieve elements. The aphids’ feeding behavior on the cultivar Kalya, with a low alkaloid content but reduced susceptibility, indicates that not only the total alkaloid content influences the feeding behavior but additional plant factors have an impact. 相似文献
17.
Transgenic Bacillus thuringiensis Berliner (Bt) crops receive particular attention because they carry genes encoding insecticidal proteins that might negatively affect non‐target arthropods. Here, laboratory experiments were conducted to evaluate the impact of Cry1Ab‐expressing transgenic maize [5422Bt1 (event Bt11) and 5422CBCL (MON810)] on the biological parameters of two non‐target arthropods, the aphid Rhopalosiphum maidis (Fitch) (Hemiptera: Aphididae) and its predator the ladybeetle Propylea japonica (Thunberg) (Coleoptera: Coccinellidae). In a long‐term assay (three generations), no significant differences were found between R. maidis fed Bt maize and those fed a near‐isogenic line (5422) when individual parameters were compared, including nymph development time, adult longevity, aphid spawning period, and fecundity. No negative effects were detected throughout the life cycle of P. japonica in aphids’ feeding amount, development (nymphs, pupae, adults, and progeny eggs), fecundity, or egg hatching when they preyed on Bt maize‐fed aphids compared with non‐Bt maize treatments. A tritrophic assay revealed that Cry1Ab was highly diluted through the food chain (Bt maize leaves, R. maidis, and P. japonica), as detected by an enzyme‐linked immunosorbent assay (ELISA). In conclusion, although Cry1Ab concentrations in maize leaves increased as the plants developed, Cry1Ab levels were significantly reduced in the aphid R. maidis, and no traces of Cry1Ab were detected in P. japonica preying on Bt maize‐fed aphids. The two hybrids of Bt maize expressing Cry1Ab had no negative effects on the measured biological parameters of the aphid R. maidis or its predator, the ladybeetle P. japonica. 相似文献
18.
Scott L. Collins Laura M. Ladwig Matthew D. Petrie Sydney K. Jones John M. Mulhouse James R. Thibault William T. Pockman 《Global Change Biology》2017,23(3):1095-1108
Global environmental change is altering temperature, precipitation patterns, resource availability, and disturbance regimes. Theory predicts that ecological presses will interact with pulse events to alter ecosystem structure and function. In 2006, we established a long‐term, multifactor global change experiment to determine the interactive effects of nighttime warming, increased atmospheric nitrogen (N) deposition, and increased winter precipitation on plant community structure and aboveground net primary production (ANPP) in a northern Chihuahuan Desert grassland. In 2009, a lightning‐caused wildfire burned through the experiment. Here, we report on the interactive effects of these global change drivers on pre‐ and postfire grassland community structure and ANPP. Our nighttime warming treatment increased winter nighttime air temperatures by an average of 1.1 °C and summer nighttime air temperature by 1.5 °C. Soil N availability was 2.5 times higher in fertilized compared with control plots. Average soil volumetric water content (VWC) in winter was slightly but significantly higher (13.0% vs. 11.0%) in plots receiving added winter rain relative to controls, and VWC was slightly higher in warmed (14.5%) compared with control (13.5%) plots during the growing season even though surface soil temperatures were significantly higher in warmed plots. Despite these significant treatment effects, ANPP and plant community structure were highly resistant to these global change drivers prior to the fire. Burning reduced the cover of the dominant grasses by more than 75%. Following the fire, forb species richness and biomass increased significantly, particularly in warmed, fertilized plots that received additional winter precipitation. Thus, although unburned grassland showed little initial response to multiple ecological presses, our results demonstrate how a single pulse disturbance can interact with chronic alterations in resource availability to increase ecosystem sensitivity to multiple drivers of global environmental change. 相似文献
19.
A.I. Menéndez A.M. Folcia L. Vizgarra A.M. Romero M.A. Martínez‐Ghersa 《Entomologia Experimentalis et Applicata》2013,149(2):128-137
Plants can activate inducible defence mechanisms against pests, pathogens, or chemical elicitors, such as ozone, mediated by reactive oxygen species (ROS), particularly hydrogen peroxide (H2O2). An unfavourable balance between ROS production and the plant antioxidant capacity seems to be responsible for the resulting susceptibility of the plant to insect attack. Arugula plants [Eruca sativa Mill. (Brassicaceae)] and green peach aphids, Myzus persicae (Sulzer) (Hemiptera: Aphididae), were used in this study to test the hypothesis that the growth of an aphid population depends on both plant and insect stress history. We investigated the impact of density and duration of a previous aphid infestation, and the time lag before re‐infestation, on aphid population growth. In a second experiment, we assessed the effect on aphid population growth of previous ozone exposure of arugula plants in open top chambers receiving a continuous O3 fumigation of 100–120 p.p.b., 90 min per day during 3 days. A third experiment was conducted to study the effect of aphid density during a previous infestation on the population growth on an uninfested host. Both previous herbivory and ozone changed the oxidative status of plant tissues and facilitated aphid population growth, which increased with the duration and density of a previous infestation by aphids. Colonization success also depended on the aphids' own history. Aphids coming from high‐density populations and/or longer infestation periods produced larger populations on an (initially) uninfested plant. Pest outbreaks in a polluted environment might be expected to be modulated by the hosts' spatial‐temporal heterogeneity related to the ozone exposure and previous herbivory. 相似文献
20.
Marjan De Block Kevin Pauwels Maarten Van Den Broeck Luc De Meester Robby Stoks 《Global Change Biology》2013,19(3):689-696
Temperature effects on predator–prey interactions are fundamental to better understand the effects of global warming. Previous studies never considered local adaptation of both predators and prey at different latitudes, and ignored the novel population combinations of the same predator–prey species system that may arise because of northward dispersal. We set up a common garden warming experiment to study predator–prey interactions between Ischnura elegans damselfly predators and Daphnia magna zooplankton prey from three source latitudes spanning >1500 km. Damselfly foraging rates showed thermal plasticity and strong latitudinal differences consistent with adaptation to local time constraints. Relative survival was higher at 24 °C than at 20 °C in southern Daphnia and higher at 20 °C than at 24 °C, in northern Daphnia indicating local thermal adaptation of the Daphnia prey. Yet, this thermal advantage disappeared when they were confronted with the damselfly predators of the same latitude, reflecting also a signal of local thermal adaptation in the damselfly predators. Our results further suggest the invasion success of northward moving predators as well as prey to be latitude‐specific. We advocate the novel common garden experimental approach using predators and prey obtained from natural temperature gradients spanning the predicted temperature increase in the northern populations as a powerful approach to gain mechanistic insights into how community modules will be affected by global warming. It can be used as a space‐for‐time substitution to inform how predator–prey interaction may gradually evolve to long‐term warming. 相似文献