首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxygen isotope signature of sulphate (δ18Osulphate) is increasingly used to study nutritional fluxes and sulphur transformation processes in a variety of natural environments. However, mechanisms controlling the δ18Osulphate signature in soil–plant systems are largely unknown. The objective of this study was to determine key factors, which affect δ18Osulphate values in soil and plants. The impact of an 18O‐water isotopic gradient and different types of fertilizers was investigated in a soil incubation study and a radish (Raphanus sativus L.) greenhouse growth experiment. Water provided 31–64% of oxygen atoms in soil sulphate formed via mineralization of organic residues (green and chicken manures) while 49% of oxygen atoms were derived from water during oxidation of elemental sulphur. In contrast, δ18Osulphate values of synthetic fertilizer were not affected by soil water. Correlations between soil and plant δ18Osulphate values were controlled by water δ18O values and fertilizer treatments. Additionally, plant δ34S data showed that the sulphate isotopic composition of plants is a function of S assimilation. This study documents the potential of using compound‐specific isotope ratio analysis for investigating and tracing fertilization strategies in agricultural and environmental studies.  相似文献   

2.
δ18OP values and 87Sr/86Sr ratios were determined on disarticulated xenacanthiform, hybodontid and ctenacanthid shark tooth material from several Early Permian (Sakmarian–Kungurian) continental bone beds of northern Texas and southern Oklahoma as well as from the marine Middle Permian (Roadian) of northern Arizona. The δ18OP values derived from the teeth of bone beds are in the range of 17.6–23.5‰ VSMOW, and are mostly depleted in 18O by 0.5–5‰ relative to proposed coeval marine δ18OP values. This indicates an adaptation to freshwater habitats on the Early Permian coastal plain by several sharks. Distinctly higher δ18OP values from two bone beds are attributed to significant evaporative enrichment in 18O in flood plain ponds. 87Sr/86Sr ratios of around 0.71077 are notably more radiogenic than 87Sr/86Sr of contemporaneous seawater. In contrast, the isotopic composition of teeth from the marine Kaibab Formation is characterised by low δ18OP values in the range of 13.4–15.6‰ VSMOW while 87Sr/86Sr ratios of around 0.70821 are closer to the Roadian seawater value. The distinctly depleted δ18OP values cannot be readily explained by fluvially affected freshening in a nearshore marine environment, so a diagenetic alteration of the Kaibab material seems to be more likely, excluding it from further interpretation.  相似文献   

3.
Changes in the 2H and 18O of atmospheric water vapour provide information for integrating aspects of gas exchange within forest canopies. In this study, we show that diurnal fluctuations in the oxygen isotope ratio (δ18O) as high as 4‰ were observed for water vapour (δ18Ovp) above and within an old‐growth coniferous forest in the Pacific Northwest region of the United States. Values of δ18Ovp decreased in the morning, reached a minimum at midday, and recovered to early‐morning values in the late afternoon, creating a nearly symmetrical diurnal pattern for two consecutive summer days. A mass balance budget was derived and assessed for the 18O of canopy water vapour over a 2‐d period by considering the 18O‐isoflux of canopy transpiration, soil evaporation and the air entering the canopy column. The budget was used to address two questions: (1) do δ18O values of canopy water vapour reflect the biospheric influence, or are such signals swamped by atmospheric mixing? and (2) what mechanisms drive temporal variations of δ18Ovp? Model calculations show that the entry of air into the canopy column resulted in an isotopically depleted 18O‐isoflux in the morning of day 1, causing values of δ18Ovp to decrease. An isotopically enriched 18O‐isoflux resulting from transpiration then offset this decreased δ18Ovp later during the day. Contributions of 18O‐isoflux from soil evaporation were relatively small on day 1 but were more significant on day 2, despite the small H216O fluxes. From measurements of leaf water volume and sapflux, we determined the turnover time of leaf water in the needles of Douglas‐fir trees as ≈ 11 h at midday. Such an extended turnover time suggests that transpiration may not have occurred at the commonly assumed isotopic steady state. We tested a non‐steady state model for predicting δ18O of leaf water. Our model calculations show that assuming isotopic steady state increased isoflux of transpiration. The impact of this increase on the modelled δ 18Ovp was clearly detectable, suggesting the importance of considering isotopic non‐steady state of transpiration in studies of forest 18O water balance.  相似文献   

4.
Stable isotope results from seven Miocene Deep Sea Drilling Projects in the equatorial and southwest Pacific Ocean, previously correlated using carbon isotope stratigraphy, have been examined, discussed, and interpreted in terms of the development of the Miocene Pacific Ocean. The most obvious features of the benthonic foraminiferal stable isotopic records are a major increase inδ18O(~1.0‰) during the Middle Miocene, a series of long-term oscillations (2–3 My) of amplitude 0.5–0.75‰ and a decrease inδ13C values (0.5–;1.0‰) during the latest Miocene. Planktonic foraminiferalδ18O records show different trends for high and low latitude regions. In the equatorial Pacific, planktonicδ18O values actually decrease during the Miocene whereas in the higher southern latitudes planktonicδ18O values become more positive in response to cooling surface waters.Planktonicδ13C records show opposite trends toδ18O with the high latitude values becoming more negative relative to the tropical regions. The development of the Miocene Pacific Ocean in terms of its vertical and horizontal thermal structure and isotopic composition is well illustrated by examining changes in the isotopic difference between planktonic and benthonic foraminifera.Δδ18OB-P (Benthonic-Planktonic) is a measure of the thermal structure of the water column.Δδ18OPH-PL (high latitude-low latitude) planktonic values is a measure of the latitudinal temperature gradient.Δδ13CB-P is an indirect measure of nutrient concentrations in the water column, andΔδ13CPH-PL measures differences in surface-water nutrient concentrations between high and low latitude.Δδ18OB-P increases during the Miocene with the greatest increase occurring in the Middel Miocene at about 14 Ma. By the latest Miocene the isotopic gradient at Site 289 in the equatorial Pacific approaches the present-day isotopic gradient (about 4–5‰). An increase inΔδ18OPH-PL during the Miocene suggests that the latitudinal temperature gradient increased by about 6°C to a value of 12°C in the latest Miocene between Sites 289 (Equator) and 281 (subantarctic).Δδ13CB-P and Δδ13CPH-PL values are relatively constant through the Early Miocene but begin to increase during the Middle Miocene. Bottom-waterδ13C values respond similarly at all sites, but surface-waterδ13C values exhibit different trends because higher latitude values begin to decrease. This decrease perhaps suggests that phosphate concentrations may have increased due to increased upwelling as the circum-Antarctic circulation system evolved its present day characteristics.The isotopic data compiled in this paper suggest that the southwest Pacific was responding uniformly to some global or at least Pacific-wide control during the Early Miocene. In the Middle Miocene the response became more complex as the low and high latitudes began to show independent trends. The changes in the thermal (vertical and latitudinal) structure probably occurred in respons to the build-up of the East Antarctic ice-sheet, intensification of bottom-water circulation and an increase in zonal circulation in surface waters in the southern hemisphere.The changes inδ13C (vertical and latitudinal) gradients are due to some complex interaction of sea-level, continental hypsometry, climate, and biological processes coupled with oceanic circulation changes. A strong correlation between estimated sea-level changes andδ13C values suggests that transgressions and regressions play a critical role in controlling the flux of oxidized organic carbon enriched in12C, from the continental shelves and epicontinental seas to the open ocean.  相似文献   

5.
Almost no δ18O data are available for leaf carbohydrates, leaving a gap in the understanding of the δ18O relationship between leaf water and cellulose. We measured δ18O values of bulk leaf water (δ18OLW) and individual leaf carbohydrates (e.g. fructose, glucose and sucrose) in grass and tree species and δ18O of leaf cellulose in grasses. The grasses were grown under two relative humidity (rH) conditions. Sucrose was generally 18O‐enriched compared with hexoses across all species with an apparent biosynthetic fractionation factor (εbio) of more than 27‰ relative to δ18OLW, which might be explained by isotopic leaf water and sucrose synthesis gradients. δ18OLW and δ18O values of carbohydrates and cellulose in grasses were strongly related, indicating that the leaf water signal in carbohydrates was transferred to cellulose (εbio = 25.1‰). Interestingly, damping factor pexpx, which reflects oxygen isotope exchange with less enriched water during cellulose synthesis, responded to rH conditions if modelled from δ18OLW but not if modelled directly from δ18O of individual carbohydrates. We conclude that δ18OLW is not always a good substitute for δ18O of synthesis water due to isotopic leaf water gradients. Thus, compound‐specific δ18O analyses of individual carbohydrates are helpful to better constrain (post‐)photosynthetic isotope fractionation processes in plants.  相似文献   

6.
Non-climatic variations in the oxygen isotopic compositions of plants   总被引:4,自引:0,他引:4  
The 18O content of leaf water strongly influences the 18O contents of atmospheric CO2 and O2. The 18O signatures of these atmospheric gases, in turn, emerge as important indicators of large-scale gas exchange processes. Better understanding of the factors that influence the isotopic composition of leaf water is still required, however, for the quantitative utilization of these tracers. The 18O enrichment of leaf water relative to local meteoric water, is known to reflect climatic conditions. Less is known about the extent variations in the 18O content of leaf water are influenced by nonclimatic, species-specific characteristics. In a collection of 90 plant species from all continents grown under the same climatic conditions in the Jerusalem Botanical Garden we observed variations of about 9‰ in the δ18O values of stem water, δs, and of about 14‰ in the mid-day δ18O enrichment of bulk leaf water, δLW–δs. Differences between δ18O values predicted by a conventional evaporation model, δM, and δLW ranged between – 3.3‰ and + 11.8‰. The δ18O values of water in the chloroplasts (δch) in leaves of 10 selected plants were estimated from on-line CO2 discrimination measurements. Although much uncertainty is still involved in these estimates, the results indicated that δch can significantly deviate from δM in species with high leaf peclet number. The δ18O values of bulk leaf water significantly correlated with δ18O values of leaf cellulose (directly) and with instantaneous water use efficiency (A/E, inversely). Differences in isotopic characteristics among conventionally defined vegetation types were not significant, except for conifers that significantly differed from shrubs in δ18O and δ13C values of cellulose and in their peclet numbers, and from deciduous woodland species in their δ18O and δ13C values of cellulose. The results indicated that predictions of the δ18O values of leaf water (δLW, δM and δch) could be improved by considering plant species-specific characteristics.  相似文献   

7.
Oxygen isotope compositions of phosphate (δ18Op) were measured in tooth enamel from captive and wild individuals of 8 crocodilian species. A rough linear correlation is observed between the δ18Op of all the studied species and the oxygen isotope composition of ambient water (δ18Ow). Differences in mean air temperature, diet and physiology could contribute significantly to the large scatter of δ18Op values. The combination of these parameters results in a fractionation equation for which the slope (0.82) is lower than that expected (≥ 1) from predictive model equations that assume temperature and diet as fixed parameters. Taking into account large uncertainties, the observed oxygen isotope fractionation between phosphate and ambient water does not statistically differ from that formerly established for aquatic turtles. Case studies show that δ18Op values of fossil crocodile tooth enamel can be used to discriminate between marine and freshwater living environments within a precision of about ± 2‰ only.  相似文献   

8.
The oxygen isotope composition (δ18O) of atmospheric CO2 is among a very limited number of tools available to constrain estimates of the biospheric gross CO2 fluxes, photosynthesis and respiration at large scales. However, the accuracy of the partitioning strongly depends on the extent of isotopic disequilibrium between the signals carried by these two gross fluxes. Chamber‐based field measurements of total CO2 and CO18O fluxes from foliage and soil can help evaluate and refine our models of isotopic fractionation by plants and soils and validate the extent and pattern of isotopic disequilibrium within terrestrial ecosystems. Owing to sampling limitations in the past, such measurements have been very rare and covered only a few days. In this study, we coupled automated branch and soil chambers with tuneable diode laser absorption spectroscopy techniques to continuously capture the δ18O signals of foliage and soil CO2 exchange in a Pinus pinaster Aït forest in France. Over the growing season, we observed a seasonally persistent isotopic disequilibrium between the δ18O signatures of net CO2 fluxes from leaves and soils, except during rain events when the isotopic imbalance became temporarily weaker. Variations in the δ18O of CO2 exchanged between leaves, soil and the atmosphere were well explained by theory describing changes in the oxygen isotope composition of ecosystem water pools in response to changes in leaf transpiration and soil evaporation.  相似文献   

9.
《Marine Micropaleontology》2006,58(4):243-258
We sampled the upper water column for living planktic foraminifera along the SW-African continental margin. The species Globorotalia inflata strongly dominates the foraminiferal assemblages with an overall relative abundance of 70–90%. The shell δ18O and δ13C values of G. inflata were measured and compared to the predicted oxygen isotope equilibrium values (δ18Oeq) and to the carbon isotope composition of the total dissolved inorganic carbon (δ13CDIC) of seawater. The δ18O of G. inflata reflects the general gradient observed in the predicted δ18Oeq profile, while the δ13C of G. inflata shows almost no variation with depth and the reflection of the δ13CDIC in the foraminiferal shell seems to be covered by other effects. We found that offsets between δ18Oshell and predicted δ18Oeq in the surface mixed layer do not correlate to changes in seawater [CO32−].To calculate an isotopic mass balance of depth integrated growth, we used the oxygen isotope composition of G. inflata to estimate the fraction of the total shell mass that is grown within each plankton tow depth interval of the upper 500 m of the water column. This approach allows us to calculate the Δδ13Cinterval added-DIC; i.e. the isotopic composition of calcite that was grown within a given depth interval. Our results consistently show that the Δδ13CIA-DIC correlates negatively with in situ measured [CO32−] of the ambient water. Using this approach, we found Δδ13CIA-DIC/[CO32−] slopes for G. inflata in the large size fraction (250–355 μm) of − 0.013‰ to 0.015‰ (μmol kg 1) 1 and of − 0.013‰ to 0.017‰ (μmol kg 1) 1 for the smaller specimens (150–250 μm). These slopes are in the range of those found for other non-symbiotic species, such as Globigerina bulloides, from laboratory culture experiments. Since the Δδ13CIA-DIC/[CO32−] slopes from our field data are nearly identical to the slopes established from laboratory culture experiments we assume that the influence of other effects, such as temperature, are negligibly small. If we correct the δ13C values of G. inflata for a carbonate ion effect, the δ13Cshell and δ13CDIC are correlated with an average offset of 2.11.  相似文献   

10.
In this paper, we present an integrated account of the diurnal variation in the stable isotopes of water (δD and δ18O) and dry matter (δ15N, δ13C, and δ18O) in the long‐distance transport fluids (xylem sap and phloem sap), leaves, pod walls, and seeds of Lupinus angustifolius under field conditions in Western Australia. The δD and δ18O of leaf water showed a pronounced diurnal variation, ranging from early morning minima near 0‰ for both δD and δ18O to early afternoon maxima of 62 and 23‰, respectively. Xylem sap water showed no diurnal variation in isotopic composition and had mean values of ?13·2 and ?2·3‰ for δD and δ18O. Phloem sap water collected from pod tips was intermediate in isotopic composition between xylem sap and leaf water and exhibited only a moderate diurnal fluctuation. Isotopic compositions of pod wall and seed water were intermediate between those of phloem and xylem sap water. A model of average leaf water enrichment in the steady state (Craig & Gordon, pp. 9–130 in Proceedings of a Conference on Stable Isotopes in Oceanographic Studies and Palaeotemperatures, Lischi and Figli, Pisa, Italy, 1965; Dongmann et al., Radiation and Environmental Biophysics 11, 41–52, 1974; Farquhar & Lloyd, pp. 47–70 in Stable Isotopes and Plant Carbon–Water Relations, Academic Press, San Diego, CA, USA, 1993) agreed closely with observed leaf water enrichment in the morning and early afternoon, but poorly during the night. A modified model taking into account non‐steady‐state effects (Farquhar and Cernusak, unpublished) gave better predictions of observed leaf water enrichments over a full diurnal cycle. The δ15N, δ13C, and δ18O of dry matter varied appreciably among components. Dry matter δ15N was highest in xylem sap and lowest in leaves, whereas dry matter δ13C was lowest in leaves and highest in phloem sap and seeds, and dry matter δ18O was lowest in leaves and highest in pod walls. Phloem sap, leaf, and fruit dry matter δ18O varied diurnally, as did phloem sap dry matter δ13C. These results demonstrate the importance of considering the non‐steady‐state when modelling biological fractionation of stable isotopes in the natural environment.  相似文献   

11.
Using both oxygen isotope ratios of leaf water (δ18OL) and cellulose (δ18OC) of Tillandsia usneoides in situ, this paper examined how short‐ and long‐term responses to environmental variation and model parameterization affected the reconstruction of the atmospheric water vapour (δ18Oa). During sample‐intensive field campaigns, predictions of δ18OL matched observations well using a non‐steady‐state model, but the model required data‐rich parameterization. Predictions from the more easily parameterized maximum enrichment model (δ18OL–M) matched observed δ18OL and observed δ18Oa when leaf water turnover was less than 3.5 d. Using the δ18OL–M model and weekly samples of δ18OL across two growing seasons in Florida, USA, reconstructed δ18Oa was ?12.6 ± 0.3‰. This is compared with δ18Oa of ?12.4 ± 0.2‰ resolved from the growing‐season‐weighted δ18OC. Both of these values were similar to δ18Oa in equilibrium with precipitation, ?12.9‰. δ18Oa was also reconstructed through a large‐scale transect with δ18OL and the growing‐season‐integrated δ18OC across the southeastern United States. There was considerable large‐scale variation, but there was regional, weather‐induced coherence in δ18Oa when using δ18OL. The reconstruction of δ18Oa with δ18OC generally supported the assumption of δ18Oa being in equilibrium with precipitation δ18O (δ18Oppt), but the pool of δ18Oppt with which δ18Oa was in equilibrium – growing season versus annual δ18Oppt – changed with latitude.  相似文献   

12.
The oxygen stable isotope composition (δ18O) of CO2 is a valuable tool for studying the gas exchange between terrestrial ecosystems and the atmosphere. In the soil, it records the isotopic signal of water pools subjected to precipitation and evaporation events. The δ18O of the surface soil net CO2 flux is dominated by the physical processes of diffusion of CO2 into and out of the soil and the chemical reactions during CO2–H2O equilibration. Catalytic reactions by the enzyme carbonic anhydrase, reducing CO2 hydration times, have been proposed recently to explain field observations of the δ18O signatures of net soil CO2 fluxes. How important these catalytic reactions are for accurately predicting large‐scale biosphere fluxes and partitioning net ecosystem fluxes is currently uncertain because of the lack of field data. In this study, we determined the δ18O signatures of net soil CO2 fluxes from soil chamber measurements in a Mediterranean forest. Over the 3 days of measurements, the observed δ18O signatures of net soil CO2 fluxes became progressively enriched with a well‐characterized diurnal cycle. Model simulations indicated that the δ18O signatures recorded the interplay of two effects: (1) progressive enrichment of water in the upper soil by evaporation, and (2) catalytic acceleration of the isotopic exchange between CO2 and soil water, amplifying the contributions of ‘atmospheric invasion’ to net signatures. We conclude that there is a need for better understanding of the role of enzymatic reactions, and hence soil biology, in determining the contributions of soil fluxes to oxygen isotope signals in atmospheric CO2.  相似文献   

13.
Previous mangrove tree ring studies attempted, unsuccessfully, to relate the δ18O of trunk cellulose (δ18OCELL) to the δ18O of source water (δ18OSW). Here, we tested whether biochemical fractionation associated with one of the oxygen in the cellulose glucose moiety or variation in leaf water oxygen isotope fractionation (ΔLW) can interfere with the δ18OSW signal as it is recorded in the δ18OCELL of mangrove (saltwater) and hammock (freshwater) plants. We selected two transects experiencing a salinity gradient, located in the Florida Keys, USA. The δ18OCELL throughout both transects did not show the pattern expected based on that of the δ18OSW. We found that in one of the transects, biochemical fractionation interfered with the δ18OSW signal, while in the other transect ΔLW differed between mangrove and hammock plants. Observed differences in ΔLW between mangroves and hammocks were caused by a longer effective leaf mixing length (L) of the water pathway in mangrove leaves compared to those of hammock leaves. Changes in L could have caused the δ18OCELL to record not only variations in the δ18OSW but also in ΔLW making it impossible to isolate the δ18OSW signal.  相似文献   

14.
《Marine Micropaleontology》2006,58(2):135-157
The stable carbon and oxygen isotope composition of different benthic foraminiferal species of the latest Campanian and earliest Maastrichtian from Ocean Drilling Project Hole 690C (Weddell Sea, southern South Atlantic, ∼1800 m paleowater depth) have been investigated. The total range of measured isotope values of all samples exceeds ∼4‰ for δ13C and 1.1‰ for δ18O. Carbon isotope values of proposed deep infaunal species are generally similar or only slightly lower when compared to proposed epifaunal to shallow infaunal species. Interspecific differences vary between samples probably reflecting temporal changes in organic carbon fluxes to the sea floor. Constantly lower δ13C values for Pullenia marssoni and Pullenia reussi suggest the deepest habitat for these species. The strong depletion of δ13C values by up to 3‰ within lenticulinids may be attributed to a deep infaunal microhabitat, strong vital effects, or different feeding strategy when compared to other species or modern lenticulinids. The mean δ18O values reveal a strong separation of epifaunal to shallow infaunal and deep infaunal species. Epifaunal to shallow infaunal species are characterized by low δ18O values, deep infaunal species by higher values. This result possibly reflects lower metabolic rates and longer life cycles of deep infaunal species or the operating of a pore water [CO32−] effect on the benthic foraminiferal stable isotopes.Pyramidina szajnochae shows an enrichment of oxygen isotopes with test size comprising a total of 0.6‰ between 250 and 1250 μm shell size. Although δ13C lacks a corresponding trend these data likely represent the presence of changes in metabolic rates during ontogenesis. These results demonstrate the general applicability of multi-species stable isotope measurements of pristine Cretaceous benthic foraminifera to reconstruct past microhabitats and to evaluate biological and environmental effects on the stable isotope composition.  相似文献   

15.
Recent studies have documented the occurrence of dissolved molecular oxygen (DO) in shallow groundwater that is isotopically lighter than can be explained by atmospheric gas exchange or by biogeochemical reactions that consume 16O16O faster than 16O18O. In the present study, spatial gradients in the isotopic composition of DO (δ18O-DO) and dissolved inorganic carbon (δ13C-DIC) were measured in three shallow floodplain aquifers: (1) the Nyack aquifer, of the Middle Fork of the Flathead River in northwest Montana; (2) the Silver Bow Creek floodplain in southwest Montana; and (3) the Umatilla River floodplain in northeast Oregon. The field data show general trends of increasing DIC concentration, decreasing δ13C-DIC, and decreasing DO concentration with increase in groundwater path length. These trends are consistent with consumption of DO and production of DIC by microbial respiration. Although the expected trend of an increase in δ18O-DO with increase in path length was found at an area adjacent to hyporheic recharge at the Nyack floodplain, the majority of groundwater samples collected at Nyack and from the other sites distal to recharge zones had anomalously low δ18O-DO values well below 24.2 ‰, the value corresponding to atmospheric isotopic equilibrium. At the Nyack site, 3H-3He dates were used to estimate groundwater travel time: all groundwater samples with apparent age >1 year had δ18O-DO<24.2 ‰. Previously it has been suggested that diffusion of O2 could be a viable mechanism to explain the existence of isotopically light DO in shallow groundwater. To test this hypothesis, laboratory experiments were conducted to measure the isotopic fractionation of O2 as it diffuses from air across a simulated capillary fringe (made from a floating layer of foam beads) into a stirred, initially anoxic, water column. As expected, 16O16O diffused faster than 16O18O, and the magnitude of isotope fractionation associated with diffusion increased with a decrease in temperature. Fractionation factors (α) calculated from these diffusion experiments were 1.0030 at 15–19 °C and 1.0048 at 8 °C. The combined field and laboratory data suggest that diffusion is an important mechanism to maintain aerobic conditions in shallow groundwater systems, allowing microbial respiration to continue at long distances (km scale) from the source of groundwater recharge.  相似文献   

16.
“Lo Hueco” (Cuenca, Spain) is an upper Campanian–lower Maastrichtian Fossil-Lagerstätte that has provided more than 8,500 well-preserved macrofossils, including titanosaur sauropod dinosaurs. Although the facies and fossil record point to both fresh and brackish or marine water influences, a detailed study of the sulphate-bearing layers of the site through petrography, fluid inclusions, and isotopes has been undertaken to evaluate the possible marine influence. The two main sulphate units of the “Lo Hueco” site consist chiefly of bimodal micro- to meso- lenticular gypsum crystals that grew displacively in a clayey-carbonate sediment. The well-preserved lenticular gypsum crystals are primary, as demonstrated by the presence of the original twinning and the absence of hydration textures or anhydrite relicts. Primary fluid inclusions of the lenticular gypsum crystals indicate a vadose environment of formation, with salinities between 1,800 and 14,000 ppm, pointing to a brackish but non-marine environment. Furthermore, gypsum exhibits 87Sr/86Sr values between 0.708034 and 0.708120, which are higher than those from marine evaporites of Campanian–Maastrichtian age, indicating a clear influence of fresh water. Gypsum δ 34S VCDT values (18.1 to 19.0 ± 0.5 ‰) and δ 18OVSMOW values (11.0 to 15.2 ± 0.5 ‰), on the other hand, are typical isotopic values recorded in marine evaporites of this age. This apparent contradiction between fluid inclusion and Sr isotopic data is probably the result of some recycling from Upper Cretaceous evaporites. Based on all these observations, the sulphate-bearing layers are interpreted as probably formed in a near-coastal saline mudflat of a playa lake. As a whole, this study highlights the importance of combining different proxies when dealing with evaporites formed in brackish-water environments.  相似文献   

17.
We determined that the oxygen isotopic composition of cellulose synthesized by a submerged plant, Egeria densa Planch., is related to the isotopic composition of environmental water by a linear function, δ18O cellulose = 0.48 δ18O water + 24.1%‰. The observation of a slope of less than 1 indicates that a portion of cellulose oxygen is derived from an isotopically constant source other than water. We tested whether this source might be molecular oxygen by growing plants in the presence of high concentrations of 18O in the form of O2 bubbled into the bottom of an aquarium. Cellulose synthesized during this experiment did not have significantly different oxygen isotope ratios than that synthesized by control plants exposed to O2 of normal 18O abundance. We propose that oxygen in organic matter recycled from senescent portions of the plant is incorporated into cellulose. Our findings indicate that paleoclimatic models linking the oxygen isotope composition of environmental water to cellulose from fossil plants will have to be modified to account for contributions of oxygen from this or other sources besides water.  相似文献   

18.
Efforts to understand the cause of 12C versus 13C isotope fractionation in plants during photosynthesis and post‐photosynthetic metabolism are frustrated by the lack of data on the intramolecular 13C‐distribution in metabolites and its variation with environmental conditions. We have exploited isotopic carbon‐13 nuclear magnetic resonance (13C NMR) spectrometry to measure the positional isotope composition (δ13Ci, ‰) in ethanol samples from different origins: European wines, liquors and sugars from C3, C4 and crassulacean acid metabolism (CAM) plants. In C3‐ethanol samples, the methylene group was always 13C‐enriched (~2‰) relative to the methyl group. In wines, this pattern was correlated with both air temperature and δ18O of wine water, indicating that water vapour deficit may be a critical defining factor. Furthermore, in C4‐ethanol, the reverse relationship was observed (methylene‐C relatively 13C‐depleted), supporting the concept that photorespiration is the key metabolic process leading to the 13C distribution in C3‐ethanol. By contrast, in CAM‐ethanol, the isotopic pattern was similar to but stronger than C3‐ethanol, with a relative 13C‐enrichment in the methylene‐C of up to 13‰. Plausible causes of this 13C‐pattern are briefly discussed. As the intramolecular δ13Ci‐values in ethanol reflect that in source glucose, our data point out the crucial impact on the ratio of metabolic pathways sustaining glucose synthesis.  相似文献   

19.
Seasonal variation in δ13C and δ18O of cellulose (δ13Cc and δ18Oc) was measured within two annual rings of Pinus radiata growing at three sites in New Zealand. In general, both δ13Cc and δ18Oc increased to a peak over summer. The three sites differed markedly in annual water balance, and these differences were reflected in δ13Cc and δ18Oc. Average δ13Cc and δ18Oc from each site were positively related, so that the driest site had the most enriched cellulose. δ13Cc and δ18Oc were also related within each site, although both the slope and the closeness of fit of the relationship varied between sites. Supporting the theory, the site with the lowest average relative humidity also had the greatest change in δ18Oc‰ change in δ13Cc. Specific climatic events, such as drought or high rainfall, were recorded as a peak or a trough in enrichment, respectively. These results suggest that seasonal and between‐site variation in δ13Cc and δ18Oc are driven by the interaction between variation in climatic conditions and soil water availability, and plant response to this variation.  相似文献   

20.
Some of the oxygen produced during oxygenic photosynthesis is consumed but little is known about the extent of the processes involved. We measured the 17O/16O and 18O/16O ratios in O2 produced by certain marine and freshwater phytoplankton representing important groups of primary producers. When the cells were performing photosynthesis under very low dissolved oxygen concentrations (<3 μM), we observed significant enrichment in both 18O and 17O with respect to the substrate water. The difference in δ18O between O2 and water was about 4.5, 3, 5.5, and 7‰ in the diatom Phaeodactylum tricornutum, Nannochloropsis sp. (Eustigmatophyceae), the coccolithophore Emiliania huxleyi and the green alga Chlamydomonas reinhardtii, respectively. The difference in δ17O was about 0.52 that of δ18O. As explained, the observed enrichments most probably stem from considerable oxygen consumption during photosynthesis even when major O2-consuming reactions such as photorespiration were minimized. These enrichments increased linearly with rising O2 levels but with different δ17O/δ18O slopes for the various organisms, suggesting engagements of different O2-consuming reactions with rising O2 levels. Consumption of O2 may be important for energy dissipation during photosynthesis. The isotope enrichment observed here, not accounted for in earlier assessments, closes an important gap in our understanding of the difference between the isotopic compositions of atmospheric oxygen and that of seawater, i.e., the Dole effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号