首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
In the context of climate change, many plant species may have problems adapting or dispersing rapidly enough to keep pace with changing environmental conditions. Given these potential problems, some experts argue against using local plant ecotypes for ecosystem restoration. Instead, they propose to use foreign ecotypes that are adapted to the predicted climate in an approach called assisted migration within species range or predictive provenancing. I argue that such actions may cause a mismatch in biotic interactions and have negative effects on other organisms. As such, assisted migration should only be considered in cases when the local ecotypes would fail to ensure ecosystem services. In fact, there is little experimental evidence on the assisted migration approach so far, and what little there is does not seem to support its use. Even in altered climates, local ecotypes mostly performed equally well or better than foreign ones selected for their adaptations to these climates. The reason is that even if adaptation to climate plays a role, this factor may be overridden by other drivers of local adaptation, such as soil or biotic interactions. Despite assisted migration being a popular concept that is repeatedly commended in scientific literature and propagated among practitioners, it should not be considered a universal tool to improve restoration outcomes during climate change. Given the lack of hard experimental data, I call for large‐scale multispecies experimental studies that will provide the necessary evidence to derive general guidelines and recommendations for management of ecosystems during climate change.  相似文献   

2.
Many prior studies have uncovered evidence for local adaptation using reciprocal transplant experiments. However, these studies are rarely conducted for a long enough time to observe succession and competitive dynamics in a community context, limiting inferences for long‐lived species. Furthermore, the genetic basis of local adaptation and genetic associations with climate has rarely been identified. Here, we report on a long‐term (6‐year) experiment conducted under natural conditions focused on Andropogon gerardii, the dominant grass of the North American Great Plains tallgrass ecosystem. We focus on this foundation grass that comprises 80% of tallgrass prairie biomass and is widely used in 20,000 km2 of restoration. Specifically, we asked the following questions: (a) Whether ecotypes are locally adapted to regional climate in realistic ecological communities. (b) Does adaptive genetic variation underpin divergent phenotypes across the climate gradient? (c) Is there evidence of local adaptation if the plants are exposed to competition among ecotypes in mixed ecotype plots? Finally, (d) are local adaptation and genetic divergence related to climate? Reciprocal gardens were planted with 3 regional ecotypes (originating from dry, mesic, wet climate sources) of Andropogon gerardii across a precipitation gradient (500–1,200 mm/year) in the US Great Plains. We demonstrate local adaptation and differentiation of ecotypes in wet and dry environments. Surprisingly, the apparent generalist mesic ecotype performed comparably under all rainfall conditions. Ecotype performance was underpinned by differences in neutral diversity and candidate genes corroborating strong differences among ecotypes. Ecotype differentiation was related to climate, primarily rainfall. Without long‐term studies, wrong conclusions would have been reached based on the first two years. Further, restoring prairies with climate‐matched ecotypes is critical to future ecology, conservation, and sustainability under climate change.  相似文献   

3.
Assisted migration of warm‐adapted genotypes to currently cooler climates may reduce maladaptation from future climate change. Few assisted migration trials have considered limitations of the cooler climates and pathogens currently present at transplant sites. This is especially important to consider in riparian ecosystems that are priority targets for restoration in the western United States as they harbor diverse communities. In an effort to validate assisted migration as an effective strategy for mediating the negative impacts of climate change, we used a provenance trial with replicated genotypes from 19 populations of the foundation riparian tree species, Fremont cottonwood (Populus fremontii), transplanted to a cold site to test for genetic variation in growth, mortality, and resistance to shoot blight fungi (Venturia sp.). Populations from cool sites had up to 4 times faster growth, 3 times higher survival, and 8 times higher resistance to Venturia than populations from warm sites, providing evidence of local adaptation to both climate and pathogenic fungi. Budburst phenology and shoot blight were correlated with frost damage, subsequent shrub‐form architecture, and mortality. While climate change models predict 6°C increases, plants transferred distances of 6°C at this time would not perform well; an intermediate transfer distance of less than 3°C would avoid maladaptation to the current environment during assisted migration. Thus, multiple and intermediate transfer phases to supplement local genetic variation will likely be necessary for effective assisted migration to accommodate current environments and large changes in climate.  相似文献   

4.
Mast‐seeding plants often produce high seed crops the year after a warm spring or summer, but the warm‐temperature model has inconsistent predictive ability. Here, we show for 26 long‐term data sets from five plant families that the temperature difference between the two previous summers (ΔT) better predicts seed crops. This discovery explains how masting species tailor their flowering patterns to sites across altitudinal temperature gradients; predicts that masting will be unaffected by increasing mean temperatures under climate change; improves prediction of impacts on seed consumers; demonstrates that strongly masting species are hypersensitive to climate; explains the rarity of consecutive high‐seed years without invoking resource constraints; and generates hypotheses about physiological mechanisms in plants and insect seed predators. For plants, ΔT has many attributes of an ideal cue. This temperature‐difference model clarifies our understanding of mast seeding under environmental change, and could also be applied to other cues, such as rainfall.  相似文献   

5.
Species that inhabited Europe during the Late Quaternary were impacted by temperature changes and early humans, resulting in the disappearance of half of the European large mammals. However, quantifying the relative importance that each factor had in the extinction risk of species has been challenging, mostly due to the spatio‐temporal biases of fossil records, which complicate the calibration of realistic and accurate ecological niche modeling. Here, we overcome this problem by using ecotypes, and not real species, to run our models. We created 40 ecotypes with different temperature requirements (mean temperature from ?20 °C to 25 °C and temperature range from 10 °C to 40 °C) and used them to quantify the effect of climate change and human impact. Our results show that cold‐adapted ecotypes would have been highly affected by past temperature changes in Europe, whereas temperate and warm‐adapted ecotypes would have been positively affected by temperature change. Human impact affected all ecotypes negatively, and temperate ecotypes suffered the greatest impacts. Based on these results, the extinction of cold‐adapted species like Mammuthus primigenius may be related to temperature change, while the extinction of temperate species, like Crocuta crocuta, may be related to human impact. Our results suggest that temperature change and human impact affected different ecotypes in distinct ways, and that the interaction of both impacts may have shaped species extinctions in Europe.  相似文献   

6.
Understanding the impacts of climate on migratory species is complicated by the fact that these species travel through several climates that may be changing in diverse ways throughout their complete migratory cycle. Most studies are not designed to tease out the direct and indirect effects of climate at various stages along the migration route. We assess the impacts of spring and summer climate conditions on breeding monarch butterflies, a species that completes its annual migration cycle over several generations. No single, broad‐scale climate metric can explain summer breeding phenology or the substantial year‐to‐year fluctuations observed in population abundances. As such, we built a Poisson regression model to help explain annual arrival times and abundances in the Midwestern United States. We incorporated the climate conditions experienced both during a spring migration/breeding phase in Texas as well as during subsequent arrival and breeding during the main recruitment period in Ohio. Using data from a state‐wide butterfly monitoring network in Ohio, our results suggest that climate acts in conflicting ways during the spring and summer seasons. High spring precipitation in Texas is associated with the largest annual population growth in Ohio and the earliest arrival to the summer breeding ground, as are intermediate spring temperatures in Texas. On the other hand, the timing of monarch arrivals to the summer breeding grounds is not affected by climate conditions within Ohio. Once in Ohio for summer breeding, precipitation has minimal impacts on overall abundances, whereas warmer summer temperatures are generally associated with the highest expected abundances, yet this effect is mitigated by the average seasonal temperature of each location in that the warmest sites receive no benefit of above average summer temperatures. Our results highlight the complex relationship between climate and performance for a migrating species and suggest that attempts to understand how monarchs will be affected by future climate conditions will be challenging.  相似文献   

7.
The phenology of diameter‐growth cessation in trees will likely play a key role in mediating species and ecosystem responses to climate change. A common expectation is that warming will delay cessation, but the environmental and genetic influences on this process are poorly understood. We modeled the effects of temperature, photoperiod, and seed‐source climate on diameter‐growth‐cessation timing in coast Douglas‐fir (an ecologically and economically vital tree) using high‐frequency growth measurements across broad environmental gradients for a range of genotypes from different seed sources. Our model suggests that cool temperatures or short photoperiods can induce cessation in autumn. At cool locations (high latitude and elevation), cessation seems to be induced primarily by low temperatures in early autumn (under relatively long photoperiods), so warming will likely delay cessation and extend the growing season. But at warm locations (low latitude or elevation), cessation seems to be induced primarily by short photoperiods later in autumn, so warming will likely lead to only slight extensions of the growing season, reflecting photoperiod limitations on phenological shifts. Trees from seed sources experiencing frequent frosts in autumn or early winter tended to cease growth earlier in the autumn, potentially as an adaptation to avoid frost. Thus, gene flow into populations in warm locations with little frost will likely have limited potential to delay mean cessation dates because these populations already cease growth relatively late. In addition, data from an abnormal heat wave suggested that very high temperatures during long photoperiods in early summer might also induce cessation. Climate change could make these conditions more common in warm locations, leading to much earlier cessation. Thus, photoperiod cues, patterns of genetic variation, and summer heat waves could limit the capacity of coast Douglas‐fir to extend its growing season in response to climate change in the warm parts of its range.  相似文献   

8.
Arctic ecosystems are known to be extremely vulnerable to climate change. As the Intergovernmental Panel on Climate Change scenarios project extreme climate events to increase in frequency and severity, we exposed High Arctic tundra plots during 8 days in summer to a temperature rise of approximately 9°C, induced by infrared irradiation, followed by a recovery period. Increased plant growth rates during the heat wave, increased green cover at the end of the heat wave and higher chlorophyll concentrations of all four predominating species (Salix arctica Pall., Arctagrostis latifolia Griseb., Carex bigelowii Torr. ex Schwein and Polygonum viviparum L.) after the recovery period, indicated stimulation of vegetative growth. Improved plant performance during the heat wave was confirmed at plant level by higher leaf photochemical efficiency (Fv/Fm) and at ecosystem level by increased gross canopy photosynthesis. However, in the aftermath of the temperature extreme, the heated plants were more stressed than the unheated plants, probably because they acclimated to warmer conditions and experienced the return to (low) ambient as stressful. We also calculated the impact of the heat wave on the carbon balance of this tundra ecosystem. Below‐ and aboveground respiration were stimulated by the instantaneous warmer soil and canopy, respectively, outweighing the increased gross photosynthesis. As a result, during the heat wave, the heated plots were a smaller sink compared with their unheated counterparts, whereas afterwards the balance was not affected. If other High Arctic tundra ecosystems react similarly, more frequent extreme temperature events in a future climate may shift this biome towards a source. It is uncertain, however, whether these short‐term effects will hold when C exchange rates acclimate to higher average temperatures.  相似文献   

9.
Successful species interactions require that both partners share a similar cue. For many species, spring warming acts as a shared signal to synchronize mutualist behaviors. Spring flowering plants and the ants that disperse their seeds respond to warming temperatures so that ants forage when plants drop seeds. However, where warm‐adapted ants replace cold‐adapted ants, changes in this timing might leave early seeds stranded without a disperser. We investigate plant seed dispersal south and north of a distinct boundary between warm‐ and cold‐adapted ants to determine if changes in the ant species influence local plant dispersal. The warm‐adapted ants forage much later than the cold‐adapted ants, and so we first assess natural populations of early and late blooming plants. We then transplant these plants south and north of the ant boundary to test whether distinct ant climate requirements disrupt the ant–plant mutualism. Whereas the early blooming plant's inability to synchronize with the warm‐adapted ant leaves its populations clumped and patchy and its seedlings clustered around the parents in natural populations, when transplanted into the range of the cold‐adapted ant, effective seed dispersal recovers. In contrast, the mutualism persists for the later blooming plant regardless of location because it sets seed later in spring when both warm‐ and cold‐adapted ant species forage, resulting in effective seed dispersal. These results indicate that the climate response of species interactions, not just the species themselves, is integral in understanding ecological responses to a changing climate. Data linking phenological synchrony and dispersal are rare, and these results suggest a viable mechanism by which a species' range is limited more by biotic than abiotic interactions – despite the general assumption that biotic influences are buried within larger climate drivers. These results show that biotic partner can be as fundamental a niche requirement as abiotic resources.  相似文献   

10.
Parasites typically have broader thermal limits than hosts, so large performance gaps between pathogens and their cold‐ and warm‐adapted hosts should occur at relatively warm and cold temperatures, respectively. We tested this thermal mismatch hypothesis by quantifying the temperature‐dependent susceptibility of cold‐ and warm‐adapted amphibian species to the fungal pathogen Batrachochytrium dendrobatidis (Bd) using laboratory experiments and field prevalence estimates from 15 410 individuals in 598 populations. In both the laboratory and field, we found that the greatest susceptibility of cold‐ and warm‐adapted hosts occurred at relatively warm and cool temperatures, respectively, providing support for the thermal mismatch hypothesis. Our results suggest that as climate change shifts hosts away from their optimal temperatures, the probability of increased host susceptibility to infectious disease might increase, but the effect will depend on the host species and the direction of the climate shift. Our findings help explain the tremendous variation in species responses to Bd across climates and spatial, temporal and species‐level variation in disease outbreaks associated with extreme weather events that are becoming more common with climate change.  相似文献   

11.
Assisted colonization as an adaptation strategy to conserve or restore biodiversity in the face of climate change deservedly evokes controversy. Assisted colonization is perceived by some as a last option for conserving endangered species and by others as a risky and unwise management effort due to current gaps of knowledge. Based on the pros and cons of the recent debate, we show that the current discussion mainly focuses on the assisted colonization of rare and endangered species beyond their natural range of distribution. We suggest that a more useful approach for the conservation of endangered species could occur by focusing on the relevant foundation or keystone species, which ensure ecosystem integrity for a multitude of dependent species by governing the habitat structure and micro‐climate of the site. Examples of foundation species include dominant tree species in forests or dominant corals in coral reefs. For a given conservation or restoration need (e.g. conservation of rare species), we recommend the assisted colonization of pre‐adapted ecotypes of the relevant foundation species from climates similar to future expectations for the target site. This approach could lead to climate‐safe habitats for endangered species with minimal adverse effects on recipient ecosystems.  相似文献   

12.
One of the lesser known effects of global climate change is the occurrence of heat waves. Climatic models predict that heat waves will become more intense, longer lasting and/or more frequent, as a consequence of the increased inter‐annual variability and increased average values of summer temperatures. Plants are damaged by heat waves through direct effects of extreme temperatures influencing plant physiology and through indirect effects, like drought and exposure to high ozone concentration. This study investigates the flowering abundance and biomass production of two orophytic species, Alopecurus alpinus Vill. and Vicia cusnae Foggi et Ricceri following the heat wave that occurred in the summer of 2003 and analyses the effects of summer temperatures during the period 1999–2004 on the species reproductive performance. In 2003, we observed a significant decrease in the number of flowering stems and flowers per flowering stem for both species. Flower production reached its lowest value in correspondence to the heat wave in 2003 and Redundancy Analysis showed that flower production was related to the mean June temperature. Flower production was more sensitive than vegetative growth, which was maintained. This suggests that changes in reproductive strategies, e.g. changes in the ratio between sexual and clonal reproduction, may occur by as an effect of extreme weather events. Such changes may be of great importance when the population consists of a small number of flowering individuals, as is the case for A. alpinus and V. cusnae in the study area. As a consequence, although the plants generally responded positively to gradual warming, we found that, during the monitoring period 1999–2004, extreme temperatures had a negative effect on A. alpinus and V. cusnae.  相似文献   

13.
1. Climate change has affected zooplankton phenology and abundance in many freshwater ecosystems. The strong temperature anomalies that characterise summer heat waves make these events particularly suitable to study the effects of different seasonal warming patterns on zooplankton. Since heat waves are expected to occur more frequently under continuing climate change, they may also allow us to investigate how freshwater systems will be affected in the future. 2. Using a long‐term data set (1991–2007) from a shallow, eutrophic lake in Germany, we identify time periods in spring and summer during which cyclopoid copepods and bosminids are particularly sensitive to changes in water temperature. Based on this knowledge, we consider why summer populations responded differently to recent heat wave events that occurred at different times in the season. 3. Linear regressions of moving averages suggested that water temperatures shortly before and shortly after the clear‐water phase (CWP) were crucial for summer development of bosminids and cyclopoid copepods, respectively. Algal food availability (diatoms and cryptophytes) in the first weeks after the CWP also strongly influenced the summer populations of the two zooplankton groups. 4. Inter‐annual differences in water temperature during the critical time periods at least partly explained the contrasting responses of cyclopoid copepods and bosminids to heat wave events. 5. Our findings indicate that the zooplankton response to climate warming, particularly to heat wave events, is critically dependent on the temporal pattern of elevated water temperatures. Beyond that, we show that the summer zooplankton populations react to periods of warming in relation to events in the plankton annual cycle (such as the CWP in eutrophic lakes) rather than to warming at a fixed time in the season.  相似文献   

14.
We used 179 tree ring chronologies of Douglas‐fir [Pseudotsuga menziesii (Mirb.) Franco] from the International Tree‐Ring Data Bank to study radial growth response to historical climate variability. For the coastal variety of Douglas‐fir, we found positive correlations of ring width with summer precipitation and temperature of the preceding winter, indicating that growth of coastal populations was limited by summer dryness and that photosynthesis in winter contributed to growth. For the interior variety, low precipitation and high growing season temperatures limited growth. Based on these relationships, we chose a simple heat moisture index (growing season temperature divided by precipitation of the preceding winter and current growing season) to predict growth response for the interior variety. For 105 tree ring chronologies or 81% of the interior samples, we found significant linear correlations with this heat moisture index, and moving correlation functions showed that the response was stable over time (1901–1980). We proceeded to use those relationships to predict regional growth response under 18 climate change scenarios for the 2020s, 2050s, and 2080s with unexpected results: for comparable changes in heat moisture index, the most southern and outlying populations of Douglas‐fir in Mexico showed the least reduction in productivity. Moderate growth reductions were found in the southern United States, and strongly negative response in the central Rocky Mountains. Growth reductions were further more pronounced for high than for low elevation populations. Based on regional differences in the slope of the growth–climate relationship, we propose that southern populations are better adapted to drought conditions and could therefore contain valuable genotypes for reforestation under climate change. The results support the view that climate change may impact species not just at the trailing edges but throughout their range due to genetic adaptation of populations to local environments.  相似文献   

15.
Background and AimsThe impact of global warming on life cycle timing is uncertain. We investigated changes in life cycle timing in a global warming scenario. We compared Arabidopsis thaliana ecotypes adapted to the warm/dry Cape Verdi Islands (Cvi), Macaronesia, and the cool/wet climate of the Burren (Bur), Ireland, Northern Europe. These are obligate winter and summer annuals, respectively.MethodsUsing a global warming scenario predicting a 4 °C temperature rise from 2011 to approx. 2080, we produced F1 seeds at each end of a thermogradient tunnel. Each F1 cohort (cool and warm) then produced F2 seeds at both ends of the thermal gradient in winter and summer annual life cycles. F2 seeds from the winter life cycle were buried at three positions along the gradient to determine the impact of temperature on seedling emergence in a simulated winter life cycle.Key ResultsIn a winter life cycle, increasing temperatures advanced flowering time by 10.1 d °C–1 in the winter annual and 4.9 d °C–1 in the summer annual. Plant size and seed yield responded positively to global warming in both ecotypes. In a winter life cycle, the impact of increasing temperature on seedling emergence timing was positive in the winter annual, but negative in the summer annual. Global warming reduced summer annual plant size and seed yield in a summer life cycle.ConclusionsSeedling emergence timing observed in the north European summer annual ecotype may exacerbate the negative impact of predicted increased spring and summer temperatures on their establishment and reproductive performance. In contrast, seedling establishment of the Macaronesian winter annual may benefit from higher soil temperatures that will delay emergence until autumn, but which also facilitates earlier spring flowering and consequent avoidance of high summer temperatures. Such plasticity gives winter annual arabidopsis ecotypes a distinct advantage over summer annuals in expected global warming scenarios. This highlights the importance of variation in the timing of seedling establishment in understanding plant species responses to anthropogenic climate change.  相似文献   

16.
17.
Slow‐colonizing forest understorey plants are probably not able to rapidly adjust their distribution range following large‐scale climate change. Therefore, the acclimation potential to climate change within their actual occupied habitats will likely be key for their short‐ and long‐term persistence. We combined transplant experiments along a latitudinal gradient with open‐top chambers to assess the effects of temperature on phenology, growth and reproductive performance of multiple populations of slow‐colonizing understorey plants, using the spring flowering geophytic forb Anemone nemorosa and the early summer flowering grass Milium effusum as study species. In both species, emergence time and start of flowering clearly advanced with increasing temperatures. Vegetative growth (plant height, aboveground biomass) and reproductive success (seed mass, seed germination and germinable seed output) of A. nemorosa benefited from higher temperatures. Climate warming may thus increase future competitive ability and colonization rates of this species. Apart from the effects on phenology, growth and reproductive performance of M. effusum generally decreased when transplanted southwards (e.g., plant size and number of individuals decreased towards the south) and was probably more limited by light availability in the south. Specific leaf area of both species increased when transplanted southwards, but decreased with open‐top chamber installation in A. nemorosa. In general, individuals of both species transplanted at the home site performed best, suggesting local adaptation. We conclude that contrasting understorey plants may display divergent plasticity in response to changing temperatures which may alter future understorey community dynamics.  相似文献   

18.
Impacts of long‐term climate shifts on the dynamics of intact communities within species ranges are not well understood. Here, we show that warming and drying of the Southwestern United States over the last 25 years has corresponded to a shift in the species composition of Sonoran Desert winter annuals, paradoxically favoring species that germinate and grow best in cold temperatures. Winter rains have been arriving later in the season, during December rather than October, leading to the unexpected result that plants are germinating under colder temperatures, shifting community composition to favor slow growing, water‐use efficient, cold‐adapted species. Our results demonstrate how detailed ecophysiological knowledge of individual species, combined with long‐term demographic data, can reveal complex and sometimes unexpected shifts in community composition in response to climate change. Further, these results highlight the potentially overwhelming impact of changes in phenology on the response of biota to a changing climate.  相似文献   

19.
An increase in the frequency and intensity of extreme climatic conditions is expected for the Mediterranean area as a response to climate change. As a consequence, the ability of Mediterranean plant species to adapt to complex and stressful environmental conditions plays an important role in driving their future distribution. The adaption of plant species may be expressed by ecotypes already adapted to local climate. Our goal was to analyse the seasonal physiological behaviour of five Quercus ilex ecotypes coming from different Italian geographical areas (from the north to the south) in order to test if ecotypes maintained their physiological traits when grown in the same environmental conditions. Measurements of gas exchange, biochemistry and chlorophyll fluorescence carried out during winter, spring and summer underlined that the response of the considered ecotypes reflected the climate of the original provenances, particularly under suboptimal conditions. The ecotypes from the northernmost and the southernmost limits were the most sensitive to high and low temperatures, respectively. Our results can be used to advance hypotheses about the respone of Q. ilex to climate change.  相似文献   

20.
Extreme events, such as heat waves, are predicted to increase in frequency, duration, and severity as a consequence of climate change. However, global change research generally focuses on increases in mean temperatures and fails to address the potential impacts of increasingly severe heat waves. In addition, climate change may interact with another primary threat to biodiversity, non‐native species invasions. We assessed the impacts of a short‐term heat wave on the marine epibenthic fouling community of Bodega Harbor, California, USA, by exposing experimental mesocosms to a simulated heat wave in the laboratory and then monitoring community development in the field. We hypothesized that (1) juveniles would be more susceptible to heat waves than adults, (2) native species would be more susceptible than non‐native species, and (3) non‐native species would recover more quickly than native species. We observed no effect of the heat wave on juvenile species richness, either initially or during the recovery period, relative to communities at ambient seawater temperatures. In contrast, total adult species richness initially declined in response to the heat wave. Adult community composition also changed in heat‐wave treatments, with non‐natives representing the majority of species and occupying more cover than native species. The reduction in native richness associated with the heat wave persisted through the recovery period, whereas invasive richness was actually higher on heat‐wave versus ambient plates at 95 days. Heat waves have the potential to alter the composition of this community because of species‐, taxon‐, and/or origin‐specific responses; for example, non‐native bryozoans displayed greater resistance than native and non‐native tunicates. Recovery from the heat wave occurred via growth of resistant individuals and larval recruitment. Our study highlights the importance of considering species’ and community responses to heat waves, and not just mean predicted temperature increases, to evaluate the consequences of climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号