首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the regeneration of a threatened tree, the yew Taxus baccata, in relation to the presence of fleshy‐fruited woody plants acting as seed dispersal foci as well as protecting yew recruits against ungulate herbivores. We seek to determine if local facilitative effects are consistent across landscape in the Cantabrian range (NW Spain). Yew seed rain by birds mostly concentrated under yew trees and beneath hollies Ilex aquifolium. Seedling emergence distributed similarly to seed rain, but first‐year seedling survival was higher beneath hollies. In one site where woody vegetation was structured as nucleation centres (multispecific patches of fleshy‐fruited plants acting as foci for seed rain) yew recruits mostly occurred in yew‐dominated centres, suggesting dispersers‐mediated facilitation. However, holly was the main nurse plant for most of these recruits, considering the nurse as the species whose canopy covered directly the yew recruit. Living beneath nurse plants reduced herbivore damage on saplings and enhanced seedling survival. A planting experiment with yew rooted‐cuttings beneath different spiny shrubs corroborated this effect. Additional evidence on yew recruitment limitation by herbivory emerged from one population where ungulates were fence‐excluded. Our results suggest that nurse plants mitigate the negative effect of herbivores on yew regeneration, by providing defence against browsing and trampling. Shelter ability related to nurse structure, cone‐shaped shrubs with branches at their bases acting better as a barrier. Paradoxically, this structure resulted from heavy browsing on nurse plants. The study of yew regeneration and habitat structure in seven sites provided evidence for the consistency of facilitation by holly at the landscape level, since local values of yew recruitment positively related to nurse ground cover. Range‐scale yew management must consider the local functioning of the interaction among avian seed‐dispersers, nurse fleshy‐fruited plants and ungulate herbivores, in combination with regional measures, targeting the habitats where facilitation emerges.  相似文献   

2.
Cold stratification provided by snow cover is essential to break seed dormancy in many alpine plant species. The forecast reduction in snow precipitation and snow cover duration in most temperate mountains as a result of global warming could threaten alpine plant populations, especially those at the edge of their species distribution, by altering the dynamics of early life stages. We simulated some effects of a reduction in the snow cover period by manipulating the duration of cold stratification in seeds of Silene ciliata, a Mediterranean alpine specialist. Seeds from three populations distributed along an altitudinal gradient were exposed to different periods of cold stratification (2, 4 and 6 months) in the laboratory and then moved to common garden conditions in a greenhouse. The duration of the cold stratification treatment and population origin significantly affected seed emergence percentage, emergence rate and seedling size, but not the number of seedling leaves. The 6‐month and 4‐month cold stratification treatments produced higher emergence percentages and faster emergence rates than seeds without cold stratification treatment. No significant cold stratification duration x seed population origin interactions were found, thus differential sensitivity to cold stratification along elevation is not supported.  相似文献   

3.
The differential adaptation of populations of the same species to their local environmental conditions through divergent selection, known as local adaptation, is a key step in the process of diversification of species. Here, we explore the local adaptation of the perennial mountain herb Helleborus foetidus to variable environmental conditions of seedling emergence and establishment at two different spatial scales (habitats and regions) with special attention to the role of physical and chemical soil properties. The possibility of local adaptation was evaluated under the ??local versus foreign?? and the ??home versus away?? criteria. Reciprocal sowing experiments were carried out by cross-sowing seeds among habitats and regions, controlling for maternal effects by means of seed mass, and recording seedling emergence and survival. Several topsoil properties were measured linked to each sowing point. Only partial patterns of local adaptation were found, which were insufficient to eventually state the existence of local adaptation at any spatial scale or under any criteria assessed. Here, we discuss how soil properties and selection on seed size may be related to the non-achievement of local adaptation criteria. Negative evidence of local adaptation seems to be due to a congruency in the selective pressures exerted by the different soil environments on seedling emergence and survival.  相似文献   

4.
Dullinger S  Hülber K 《PloS one》2011,6(6):e21537

Background

The distribution and abundance of plants is controlled by the availability of seeds and of sites suitable for establishment. The relative importance of these two constraints is still contentious and possibly varies among species and ecosystems. In alpine landscapes, the role of seed limitation has traditionally been neglected, and the role of abiotic gradients emphasized.

Methodology/Principal Findings

We evaluated the importance of seed limitation for the incidence of four alpine snowbed species (Achillea atrata L., Achillea clusiana Tausch, Arabis caerulea L., Gnaphalium hoppeanum W. D. J. Koch) in local plant communities by comparing seedling emergence, seedling, juvenile and adult survival, juvenile and adult growth, flowering frequency as well as population growth rates λ of experimental plants transplanted into snowbed patches which were either occupied or unoccupied by the focal species. In addition, we accounted for possible effects of competition or facilitation on these rates by including a measure of neighbourhood biomass into the analysis. We found that only A. caerulea had significantly lower seedling and adult survival as well as a lower population growth rate in unoccupied sites whereas the vital rates of the other three species did not differ among occupied and unoccupied sites. By contrast, all species were sensitive to competitive effects of the surrounding vegetation in terms of at least one of the studied rates.

Conclusions/Significance

We conclude that seed and site limitation jointly determine the species composition of these snowbed plant communities and that constraining site factors include both abiotic conditions and biotic interactions. The traditional focus on abiotic gradients for explaining alpine plant distribution hence appears lopsided. The influence of seed limitation on the current distribution of these plants casts doubt on their ability to readily track shifting habitats under climate change unless seed production is considerably enhanced under a warmer climate.  相似文献   

5.
Populations across the geographical distribution of a species are shaped by different local environments to produce distinctive patterns of variation in plant traits. Among‐population variation is, therefore, important for understanding potential shifts in distributions under changing environments, but is often not included in studies. In particular, critical data on the suitability of local environments for plant traits expressed at different life stages are lacking. To address this we performed two experiments to disentangle the influence of the local environment on multiple plant traits for populations of Actinotus helianthi from across its latitudinal range. A common environment experiment was used to compare early plant traits of germination, early seedling growth and survival for 17 populations of A. helianthi. To examine how biotic interactions vary across populations, we evaluated whether plant traits, including height and number of pseudanthia, influence visitor diversity and abundance, and if insect visitor abundance or diversity was associated with seed set success. We found that populations varied in germination success between 0.2 ± 0.1% and 64.2 ± 2.3%. Seedling growth and early survival varied among populations by as much as a factor of two and 44 respectively. We recorded variation in plant traits across hierarchical spatial scales from the maternal plant to biogeographical regions. The abundance and diversity of insect visitors also varied among populations and seed set was found to be site specific. There was a trend for populations with taller plants and larger floral display sizes to be more frequently visited by pollinators. We also identified a positive linear relationship between the number of visits by flies and seed set success. These results suggest that the local environment has a strong role in directly and indirectly influencing variation in plant traits within populations of A. helianthi, and potentially other perennial species.  相似文献   

6.
Seedling recruitment allows genetic recombination and production of dispersal units. Both the climate experienced by the source populations (seed source effect) and the weather experienced by the seeds during germination and seedling emergence (recruitment site effects) are important for seedling recruitment. Separating these effects in the field is essential to assess potential climate change impacts on plant population. We combine experimental seed transplant and gradient analyses to separate the effects of seed source and recruitment site temperature and precipitation for the seedling emergence of two alpine/lowland species pairs (Viola biflora/Viola palustris, Veronica alpina/Veronica officinalis). Combining these approaches allows us to compare local responses versus responses along environmental gradients, but also tests for local adaptation and/or pre-conditioning effects (adaptive seedling emergence responses). Veronica officinalis emergence increased with increasing seed source temperature in both the experimental and the gradient approaches, and showed adaptive seedling emergence. Viola biflora, Viola palustris and Veronica alpina emergence decreased with recruitment site temperature in both approaches. Both Violas emergences increased with recruitment site precipitation, in both approaches for the alpine violet, and in the gradient approach for lowland one. Emergence was primarily affected by the environment of the recruitment site, whereas seed source climate and adaptive seedling emergence impacted recruitment in only one of our species. The responses to recruitment site temperatures were negative, whereas the response to seed source temperature was positive. Ignoring the distinctions between these different mechanisms can lead to erroneous conclusions regarding potential climate change impacts on plant recruitment.  相似文献   

7.
Large seeds contain more stored resources, and seedlings germinating from large seeds generally cope better with environmental stresses such as shading, competition and thick litter layers, than seedlings germinating from small seeds. A pattern with small‐seeded species being associated with open habitats and large‐seeded species being associated with closed (shaded) habitats has been suggested and supported by comparative studies. However, few studies have assessed the intra‐specific relationship between seed size and recruitment, comparing plant communities differing in canopy cover. Here, seeds from four plant species commonly occurring in ecotones between open and closed habitats (Convallaria majalis, Frangula alnus, Prunus padus and Prunus spinosa) were weighed and sown individually (3200 seeds per species) in open and closed‐canopy sites, and seedling emergence and survival recorded over 3 years. Our results show a generally positive, albeit weak, relationship between seed size and recruitment. In only one of the species, C. majalis, was there an association between closed canopy habitat and a positive seed size effect on recruitment. We conclude that there is a weak selection gradient favouring larger seeds, but that this selection gradient is not clearly related to habitat.  相似文献   

8.
Adaptive traits of wild barley plants of Mediterranean and desert origin   总被引:5,自引:0,他引:5  
Reciprocal introduction of seeds and seedlings was used to test for local adaptation and to identify a set of co-adapted traits of Mediterranean and desert ecotypes of wild barley Hordeum spontaneum. Evidence for local adaptation was found in seedling introductions into intact environments and from ecotype colonization success in the first generation after seed dispersal. Estimates of fitness were obtained at particular stages of the life cycle (seed, seedling and adult). Experiments that manipulated the environment (vegetation removal, different plant density) demonstrated the intensity and direction of natural selection in different life history episodes, but there was no strong evidence for local adaptation under these circumstances. The observed genetically determined differences between Mediterranean and desert ecotypes can be summarized as the following: reproductive output was higher in desert plants, with smaller seeds than in Mediterranean plants. There was a higher competitive ability of Mediterranean than desert plants. Plants of desert origin had significant reductions in yield when grown in mixed stands with Mediterranean plants; no such effect was observed for plants of Mediterranean origin. Seed germination and seedling survival was lower in seeds of desert origin. This was due to both: genetically determined higher dormancy of desert seeds and a trade-off between no. of seeds and their size (directly related to seed/seedling vigour).  相似文献   

9.
This study evaluated whether the herb Ruellia nudiflora is locally adapted to a specialist insect seed predator (SP) and insect folivores, and if plant local adaptation (LA) to the former is more likely. A reciprocal transplant experiment was conducted using three sites in Yucatan (Mexico) (n = 864 plants). A third of the plants of each origin were placed at each site, and we recorded the following during a 9‐month period: fruit number, leaf damage, and fruits attacked by SP. Results indicated lack of plant LA for all the variables measured. Instead, seed predation was c. 100% greater for native plants at one study site, suggesting insect LA or plant maladaptation; folivory was homogeneous across sites/origins. Based on these results, we discuss differences in the potential each herbivore guild has to promote plant LA, as well as divergent evolutionary outcomes of plant–herbivore interactions across sites.  相似文献   

10.
Aristida beyrichiana (wiregrass) is increasingly being planted in restoration projects across the southeastern coastal plain, with little focus on genetic differences among populations across the region. Local and regional population differentiation for establishment and growth traits were examined in common garden and reciprocal transplant experiments. Seeds from up to 20 plants from each of seven populations were collected in northern and central Florida sites that encompassed gradients of soils, hydrology, and temperature. Reciprocal seed transplants using three of the common garden populations were conducted in two consecutive years. In the common garden, significant population differences were seen in seed weight, seedling emergence and survival, tiller height, number of tillers, the relationship between tiller number and tiller height, and flowering. Variation among maternal families was seen in tiller number and in the relationship between tiller number and tiller height. The reciprocal transplant study did not detect either local adaptation to sites of origin or consistent superiority of one source population or planting site in seedling establishment. These results suggest that the probability of seedling establishment is primarily dependent on environmental conditions rather than genetic differences. Genetic variation for traits related to fitness (e.g., tiller number) may be retained within populations because phenotypically plastic growth responses of seedlings to environmental variation buffer genetic variation against the action of selection. But despite the lack of evidence for genetic influences on initial establishment in wiregrass, our common garden study suggests genetic differences among populations. This result, when combined with previous results indicating local adaptation in later life stages of wiregrass, suggests that restoration efforts involving this species should use local seed sources from sites with similar soil and hydrological conditions.  相似文献   

11.
Trait–environment correlations can arise from local adaptation and can identify genetically and environmentally appropriate seeds for restoration projects. However, anthropogenic changes can disrupt the relationships between traits and fitness. Finding the best seed sources for restoration may rely on describing plant traits adaptive in disturbed and invaded environments, recognizing that while traits may differ among species and functional groups, there may be similarities in the strategies that increase seedling establishment. Focusing on three grass genera, two shrub species, and two forb genera, we collected seeds of all taxa from 16 common sites in the sagebrush steppe of the western United States. We measured seed and seedling characteristics, including seed size, emergence timing, and root and shoot traits, and compiled a suite of environmental variables for each collection site. We described trait–environment associations and asked how traits or environment of origin were associated with seedling survival in invaded gardens. Sampling seven taxa from the same sites allowed us to ask how trait–environment–performance associations differ among taxa and whether natural selection favors similar traits across multiple taxa and functional groups. All taxa showed trait–environment associations consistent with local adaptation, and both environment of origin and phenotypes predicted survival in competitive restoration settings, with some commonalities among taxa. Notably, rapid emergence and larger seeds increased survival for multiple taxa. Environmental factors at collection sites, including lower slopes (especially for grasses), greater mean annual temperatures (especially for shrubs and forbs), and greater precipitation seasonality were frequently associated with increased survival. We noted one collection site with high seedling survival across all seven taxa, suggesting that conditions within some sites may result in selection for traits that increase establishment for multiple species. Thus, choosing native plant sources with the most adaptive traits, along with matching climates, will likely improve the restoration of invaded communities.  相似文献   

12.
The recent invasion of clonal grasses to novel habitats poses a threat to biodiversity in various habitats. Elymus athericus, a clonal grass of north-western European salt marshes, is currently increasing in abundance and invading new habitats. In this study, we analyzed controlling factors for seedling establishment of E. athericus in frequently flooded low marsh habitats. Here, biotic and abiotic conditions are very different from the conditions of the parental sites with established populations higher up in the marsh. Hence, we hypothesized that seedling establishment at the expanding low marsh edge would depend on the parental origin (either through maternal effects or heritable local adaptation). We further hypothesized that seedling origin interacts with biotic factors such as herbivory and competition as well as with abiotic factors like inundation frequency. We tested the dependence of seedling survival, growth and vegetative reproduction on these factors in a factorial transplant experiment on Schiermonnikoog. Survival was high, with 77% of the planted seedling surviving until the end of the experiment. Biotic factors had a much stronger effect on seedling growth and mortality than parental origin and were independent of inundation. However, parental origin strongly interacted with herbivory and competition, with seedlings performing better under the conditions that resembled their parental site.We conclude that seedlings of E. athericus, a species that was previously thought to occur only in mid- to high marsh elevation, can establish at a frequently inundated low-marsh sites. Long term survival and further invasion will primarily depend on biotic factors in interaction with seed origin. Our results suggest that next to herbivory, limitation of seeds adapted to colonizing conditions is likely to slow down range expansion.  相似文献   

13.
Knowledge on the limitation of plant species’ distributions is important for preserving alpine biodiversity, particularly when the loss of alpine habitats because of global warming or land use changes is faster than colonization of new habitats. We investigated the potential of the rare alpine plant Campanula thyrsoides L. to colonize grassland sites of different suitability on a small mountain plateau in the Swiss Alps. A total of 15 experimental sites were selected according to their differences in habitat suitability for adult C. thyrsoides, which was measured by the Beals index. At each site we applied a disturbance treatment, added seeds at different densities and monitored the survival of seedlings over two consecutive years. The number of surviving seedlings was not positively related to habitat suitability for adult C. thyrsoides. Furthermore, C. thyrsoides appears to be strongly dispersal limited at the regional scale because seed addition to unoccupied habitats resulted in successful germination and survival of seedlings. Since an increase of seed density in already occupied sites did not affect the number of seedlings, we suggest that C. thyrsoides is microsite limited at the local scale. Microsite limitation is supported by the result that seedling survival of the species was enhanced in vegetation gaps created by disturbance. We conclude that C. thyrsoides may become endangered in the future if environmental changes cause local extinction of populations. An appropriate management, such as a disturbance regime for enhancing recruitment in existing populations, may ensure the long-term survival of this rare alpine plant species.  相似文献   

14.
Eighteen species of the Fabaceae were selected to investigate the relationship between plant seed size and the density of arbuscular mycorrhizal (AM) structures on the roots of young plants. The results demonstrated that seed size showed a strong negative correlation with the density of AM structures: smaller seeds exhibiting higher AM densities, which suggested that seed size may regulate AM symbiosis across leguminous host-plants species in natural habitats. Furthermore, the results also implied that different plant species used specific strategies, such as mycorrhizal symbiosis, to enhance seedling survival at the seedling stage.  相似文献   

15.
16.
Climate niche models project that subalpine forest ranges will extend upslope with climate warming. These projections assume that the climate suitable for adult trees will be adequate for forest regeneration, ignoring climate requirements for seedling recruitment, a potential demographic bottleneck. Moreover, local genetic adaptation is expected to facilitate range expansion, with tree populations at the upper forest edge providing the seed best adapted to the alpine. Here, we test these expectations using a novel combination of common gardens, seeded with two widely distributed subalpine conifers, and climate manipulations replicated at three elevations. Infrared heaters raised temperatures in heated plots, but raised temperatures more in the forest than at or above treeline because strong winds at high elevation reduced heating efficiency. Watering increased season‐average soil moisture similarly across sites. Contrary to expectations, warming reduced Engelmann spruce recruitment at and above treeline, as well as in the forest. Warming reduced limber pine first‐year recruitment in the forest, but had no net effect on fourth‐year recruitment at any site. Watering during the snow‐free season alleviated some negative effects of warming, indicating that warming exacerbated water limitations. Contrary to expectations of local adaptation, low‐elevation seeds of both species initially recruited more strongly than high‐elevation seeds across the elevation gradient, although the low‐provenance advantage diminished by the fourth year for Engelmann spruce, likely due to small sample sizes. High‐ and low‐elevation provenances responded similarly to warming across sites for Engelmann spruce, but differently for limber pine. In the context of increasing tree mortality, lower recruitment at all elevations with warming, combined with lower quality, high‐provenance seed being most available for colonizing the alpine, portends range contraction for Engelmann spruce. The lower sensitivity of limber pine to warming indicates a potential for this species to become more important in subalpine forest communities in the coming centuries.  相似文献   

17.
Aim We aim to: (1) explore thermal habitat preferences in alpine plant species across mosaics of topographically controlled micro‐habitats; (2) test the predictive value of so‐called ‘indicator values’; and (3) quantify the shift in micro‐habitat conditions under the influence of climate warming. Location Alpine vegetation 2200–2800 m a.s.l., Swiss central Alps. Methods High‐resolution infra‐red thermometry and large numbers of small data loggers were used to assess the spatial and temporal variation of plant‐surface and ground temperatures as well as snow‐melt patterns for 889 plots distributed across three alpine slopes of contrasting exposure. These environmental data were then correlated with Landolt indicator values for temperature preferences of different plant species and vegetation units. By simulating a uniform 2 K warming we estimated the changes in abundance of micro‐habitat temperatures within the study area. Results Within the study area we observed a substantial variation between micro‐habitats in seasonal mean soil temperature (ΔT = 7.2 K), surface temperature (ΔT = 10.5 K) and season length (>32 days). Plant species with low indicator values for temperature (plants commonly found in cool habitats) grew in significantly colder micro‐habitats than plants with higher indicator values found on the same slope. A 2 K warming will lead to the loss of the coldest habitats (3% of current area), 75% of the current thermal micro‐habitats will be reduced in abundance (crowding effect) and 22% will become more abundant. Main conclusions Our results demonstrate that the topographically induced mosaics of micro‐climatic conditions in an alpine landscape are associated with local plant species distribution. Semi‐quantitative plant species indicator values based on expert knowledge and aggregated to community means match measured thermal habitat conditions. Metre‐scale thermal contrasts significantly exceed IPCC warming projections for the next 100 years. The data presented here thus indicate a great risk of overestimating alpine habitat losses in isotherm‐based model scenarios. While all but the species depending on the very coldest micro‐habitats will find thermally suitable ‘escape’ habitats within short distances, there will be enhanced competition for those cooler places on a given slope in an alpine climate that is 2 K warmer. Yet, due to their topographic variability, alpine landscapes are likely to be safer places for most species than lowland terrain in a warming world.  相似文献   

18.
熊韫琦  赵彩云  赵相健 《生态学报》2021,41(24):9621-9629
豚草是一种全球性的恶性入侵杂草,给我国生物多样性及经济发展造成了巨大威胁。为研究豚草种子出苗和幼苗生长的影响因素,采用盆栽实验分析了种子大小(L、M、S)与埋深(2、4 cm和6 cm)或播种密度(2、4粒/盆和8粒/盆)对豚草(Ambrosia artemisiifolia)种子的出苗和幼苗生长的影响。研究结果表明,埋深对豚草种子出苗的影响高于播种密度及种子大小的影响,较浅的埋深有利于豚草种子出苗;出苗率在不同播种密度下均具有较高水平,达到67.9%-100%,这种高出苗率是豚草在不同生境成功定植的原因之一。豚草的幼苗生长受埋深或播种密度的影响大于种子大小的影响,且小种子更易受埋深或播种密度的影响。种子大小显著影响豚草幼苗的株高和基径(P<0.05),总体上较大种子的株高和基径高于小种子,此外更小的种子会将生物量更多的分配给根以促进幼苗的生长。幼苗的株高和基径在较浅的埋深下更高,而豚草幼苗的单株生物量、单株地上和地下生物量随埋深的增加而增加。播种密度的增加会加剧豚草幼苗之间对水分、营养、光照等资源的竞争,导致其单株地上、地下及总生物量显著降低(P<0.05)。研究发现豚草在浅埋深、低密度生境中更容易入侵成功,因此可以通过对土壤进行深翻,采取替代控制,种植竞争能力强的本地植物等手段有效管理和防治豚草。  相似文献   

19.
Plant survival in alpine habitats is controlled, in several cases, by pollination and seed dispersal success. We have investigated the genetic structure and mating patterns of the endangered Borderea pyrenaica (Dioscoreaceae), one of the oldest herbaceous Pyrenean mountain plants. Simple sequence repeat‐based genotyping was carried out on all the reproductive female and male individuals and in all the female‐descendent progenies of a population of this plant. Although the offspring sampling (246) was twice the size of the adult sampling (122), the latter group showed higher levels of heterozygosity and approximately 20% more alleles than the offspring. Probabilistic spatial neighbourhood modelling of parentage analysis, based on the exponential‐power type model, showed immigration rates of pollen at 63.3%. The present study also detected a strong spatial clustering; most of the sired seeds of B. pyrenaica (68.83%) occurred at distances of up to 20 m, whereas kinship coefficients of adult plants reached zero at spatial distances (d) < 5 m, and 5 < < 10 m for females and males, respectively. These results support the hypothesis of a terrestrial ant‐mediated, rather than a flying insect‐mediated pollination in B. pyrenaica.  相似文献   

20.
Despite the well‐documented impacts of consumers on seed abundance the link between seed predation and plant population dynamics remains poorly understood because experimental studies linking patterns of predation with seedling establishment are rare. We used experimental manipulations with six woody plant species to elucidate the effects of seed predator type, habitat, and plant species identity on rates of seed predation and seedling recruitment in the Neotropical savannas known as the Cerrado. We found that seed predation rates are consistently high across a diversity of local habitat types, with important inter‐habitat variation in seed predation for three of the six species used in our experiments. We also found that seed predation has a clear demographic signal – experimentally excluding predators resulted in higher rates of seedling establishment over the course of two seasons. Because the intensity of seed predation varied between species and habitats, it may play a role in structuring local patterns of plant abundance and community composition. Finally, our results lend support to the recent hypothesis that herbivores have major and underappreciated impacts in Neotropical savannas, and that top–down factors can influence the demography of plants in this extensive and biodiversity‐rich biome in previously unexplored ways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号