首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dental microwear has long been used as evidence concerning the diets of extinct species. Here, we present a comparative baseline series of dental microwear textures for a sample of 21 anthropoid primate species displaying interspecific and intraspecific dietary variability. Four dental microwear texture variables (complexity, anisotropy, textural fill volume, and heterogeneity) were computed based on scale-sensitive fractal analysis and high-resolution three-dimensional renderings of microwear surfaces collected using a white-light confocal profiler. The purpose of this analysis was to assess the extent to which these variables reflect variation in diet. Significant contrasts between species with diets known to include foods with differing material properties are clearly evident for all four microwear texture variables. In particular, species that consume more tough foods, such as leaves, tended to have high levels of anisotropy and low texture complexity. The converse was true for species including hard and brittle items in their diets either as staples or as fallback foods. These results reaffirm the utility of dental microwear texture analysis as an important tool in making dietary inferences based on fossil primate samples.  相似文献   

2.
Makapansgat Limeworks Cave is a well-known Australopithecus africanus bearing locality that has spawned a considerable amount of paleoecological research because of its hominin component. Most recently, the paleoecology of this Plio-Pleistocene site has been studied by determining the diet and habitat of other extinct taxa, particularly the bovids. The diets of seven bovids (Aepyceros sp., Gazella vanhoepeni, Makapania broomi, Parmularius braini, Redunca darti, Tragelaphus sp. aff. T. angasii, and Tragelaphus pricei) have now been classified using taxonomic uniformitarianism, ecomorphology, stable carbon isotopes, and mesowear analysis. Here, dental microwear is applied to the same bovids for additional comparison and to further elucidate the strengths and weaknesses of each method. The different dietary proxy methods noted provide a temporal continuum, with genetic signals such as ecomorphology and taxonomic uniformitarianism indicating behavioral adaptations over geologic time, while nongenetic data such as stable carbon isotopes and mesowear reflect different aspects of average diet over extended portions of an animal's life, and dental microwear provides dietary snapshots.Microwear separated an extant baseline of ten bovid species into expected dietary categories and the Makapansgat bovids clearly fell into two groups with the same degree of separation as between extant grazers and browsers. The results indicate that a multidisciplinary approach produces a more accurate and robust reconstruction of past diets. In sum, the microwear analysis is in-line with the isotope and mesowear results, which suggest a stronger browsing component than either taxonomic uniformitarianism or ecomorphology imply.  相似文献   

3.
Dental microwear analysts have demonstrated that hard diets leave numerous microscopic pits on occlusal surfaces. The relationship between occlusal pitting and gross macrowear, however, is not well known. The current study seeks to elucidate the relationship between dental microwear and macrowear by determining if microscopically pitted teeth are associated with greater expressions of macrowear. This study examined microwear and macrowear on mandibular second molars from 60 prehistoric adult Native Americans representing three dietary regimes (foraging, mixed economy, and agriculture). Initially, two dental microwear feature variables were studied: percentage of pits and mean scratch width. Standard macrowear scores ranged from 4 to 40. ANOVAs suggested that neither of the microwear variables was affected by age or sex, but age affected macrowear scores. Because of this, the sample had a balanced number of young and old adults (i.e., those below and above skeletal age 35). A Pearson's correlation showed no covariation between scratch width and the percentage of pits. Regression analysis indicated that macrowear was not a function of the percentage of pits. However, a significant positive relationship was found between dental macrowear and scratch width. A post priori test found a significant negative relationship between macrowear and the total number of scratches. It is concluded, then, that wide scratches remove more enamel and dentin than do numerous pits, although both cause dental wear. It is suggested here that the term “abrasive” be used to describe those microwear profiles that lead to heavy macrowear and have relatively wide scratches. Am J Phys Anthropol, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Dental microwear and 3D surface texture analyses are useful in reconstructing herbivore diets, with scratches usually interpreted as indicators of grass dominated diets and pits as indicators of browse. We conducted feeding experiments with four groups of rabbits (Oryctolagus cuniculus) each fed a different uniform, pelleted diet (lucerne, lucerne & oats, grass & oats, grass). The lowest silica content was measured in the lucerne and the highest in the grass diet. After 25 weeks of exposure to the diets, dental castings were made of the rabbit''s lower molars. Occlusal surfaces were then investigated using dental microwear and 3D areal surface texture analysis. In terms of traditional microwear, we found our hypothesis supported, as the grass group showed a high proportion of (long) “scratches” and the lucerne group a high proportion of “pits”. Regardless of the uniform diets, variability of microwear and surface textures was higher when silica content was low. A high variability in microwear and texture analysis thus need not represent dietary diversity, but can also be related to a uniform, low-abrasion diet. The uniformity or variability of microwear/texture analysis results thus might represent varying degrees of abrasion and attrition rather than a variety of diet items per se.  相似文献   

5.
Studies of dental microwear have been used to relate tooth form to function in a variety of recent and extinct mammals. Probably the most important aspect of microwear analysis is the possibility of using it to deduce the diet of extinct animals. Such deductions must be based on comparative studies of modern species with known diets, but to date, only qualitative studies have been attempted and all have been based on small samples. Here we report quantitative differences in dental microwear between primate species that are known to have different diets. Occlusal facets with different functions have previously been shown to exhibit different microwear patterns. However, the differences between facets of one species are shown to be far less than those between homologous facets of different species. Study of seven species of extant primates shows that enamel microwear can be used to distinguish between those with a mainly frugivorous diet and those with a mainly folivorous one. Microwear can also distinguish hard-object feeders from soft-fruit eaters. The microwear of Miocene Sivapithecus indicus cannot be distinguished statistically from that of the chimpanzee, but it is different from that of the other species. On this evidence S. indicus was not a hard-object feeder and the adaptive significance of its thick molar enamel is at present unknown.  相似文献   

6.
Mammalian tooth enamel is often chipped, providing clear evidence for localized contacts with large hard food objects. Here, we apply a simple fracture equation to estimate peak bite forces directly from chip size. Many fossil hominins exhibit antemortem chips on their posterior teeth, indicating their use of high bite forces. The inference that these species must have consumed large hard foods such as seeds is supported by the occurrence of similar chips among known modern-day seed predators such as orangutans and peccaries. The existence of tooth chip signatures also provides a way of identifying the consumption of rarely eaten foods that dental microwear and isotopic analysis are unlikely to detect.  相似文献   

7.
Recent investigations of dental microwear have shown that such analyses may ultimately provide valuable information about the diets of fossil species. However, no background information about intraspecific variability of microwear patterns has been available until now. This study presents the results of an SEM survey of microwear patterns found on occlusal enamel of chimpanzee molars. Methods of pattern analysis are described. Selected sites on the occlusal surface included shearing, grinding, and puncture-crushing surfaces formed by both phases of the power stroke of mastication. The microwear patterns found in this sample of chimpanzees showed a high degree of regularity. However, certain parameters such as relative pit-to-striation frequencies, feature density, striation length, and pit diameter were significantly affected by facet type and molar position. Sex and age of individuals also influenced some microwear parameters, but due to the small sample size these findings are considered to be preliminary. These results show that microwear within a single species may vary because of factors that are due more to biomechanics than to diet. The study also supplies some metrical estimates of “normal” pattern variability due to functional and morphological influences. These estimates should provide a useful baseline for assessing the significance of microwear pattern differences that may be found between species of differing diets.  相似文献   

8.
Previous animal experimental work evaluating the effects of dietary consistency on mastication was generally limited to studies of either mandibular structure or rates and types of tooth wear. Control groups fed hard diets (HD) consistently exhibited increased cortical remodeling and/or bone strength when compared to groups fed soft diets (SD). Results of tooth-wear studies showed faster rates of tooth wear in HD animals. This study evaluates the effects of dietary differences on both mandibular structural morphology and postcanine dental microwear in the same animals. We examined mandibles and dentitions from eight miniature swine, raised from 4 weeks to 9 months of age on HD and SD (n = 4, each group). Mandibular structural properties were calculated from peripheral quantitative computed tomography slices at the dp3-dp4 and dp4-M1 junctions. Dental microwear analysis was performed on mandibular lingual crushing facets of dp4 and M1, using photomicrographs of high-resolution casts taken at 500x magnification in a scanning electron microscope. Our results suggest that between the dp3-dp4 contact, HD animals have mandibles that are stronger and more rigid mediolaterally than SD animals. At the dp4-M1 contact, HD animals have mandibles that are stronger and more rigid mediolaterally, dorsoventrally, and in torsion than SD animals. Dental microwear results indicate that SD pigs have higher incidences of pitting and more overall microwear features on their premolars than do HD pigs, yet there are no significant differences in molar microwear morphology between the dietary groups. Near-significant correlations exist between pit size and dorsoventral bending strength, but only for HD pigs. These results suggest that dietary consistency significantly affects both mandibular structure and dental microwear, yet direct correlations between the two are complicated by a number of factors.  相似文献   

9.
《Comptes Rendus Palevol》2019,18(8):1083-1094
Spy I from the Meuse River Basin of Belgium is among the most recent Neandertals. This adult lived at the terminus of Marine Isotope Stage (MIS) 3 in cold steppe environments at the northern edge of the habitable zone for Neandertals where plants were relatively scarce. The dietary proclivities of Spy I are reconstructed using dental microwear texture analysis and compared to 33 Neandertals from western Eurasia, MIS 5 to MIS 3. Spy I has an elevated enamel surface complexity suggesting the consumption of course dietary items such as wild seeds, acorns, nuts, and underground storage organs laden with particles of grit. Unlike the young and old individuals from Hortus with low values for anisotropy, Spy I is closest to the adults from this site suggesting a common pattern of masticatory behavior typified this life cycle stage. Like many other Neandertals, Spy I probably consumed plant foods at appreciable levels, some of which were hard and brittle or poorly processed.  相似文献   

10.
In vivo and in vitro turnover in dental microwear   总被引:5,自引:0,他引:5  
Given the potential usefulness of dental microwear analyses in interpretations of archaeological and paleontological material, it is surprising how little we know about changes in individual microwear features through time. The purpose of this study was to document the turnover in primate dental microwear through in vivo dental studies of monkeys raised on different diets, and through in vitro studies of the abrasive effects of monkey chow biscuits on isolated monkey teeth. As in previous studies, epoxy replicas were prepared from dental impressions and examined under a scanning electron microscope. Results indicate that, under certain conditions, the turnover in primate dental microwear can be on the order of days, hours, or even minutes. Individual microscopic wear features can be obliterated within 24 hours on the molars of laboratory monkeys, and monkey chow biscuits can easily scratch the enamel of isolated monkey teeth. Monkeys raised on a hard diet showed more rapid turnover in dental microwear than monkeys raised on a soft diet. However, paired-sample tests revealed that, for all animals, the molar shearing facets were being abraded at a significantly slower rate than molar crushing/grinding facets. In light of these results, investigators should make every effort to use large samples in interspecific comparisons of dental microwear involving species with variable diets. Another implication of these results is that changes in dental microwear might be useful indicators of changes in oral behavior over relatively short periods of time.  相似文献   

11.
龚宴欣 《古生物学报》2017,56(1):117-128
通过研究古哺乳动物的食性来探讨哺乳动物演化与古生态环境变化之间的关系是目前古生物学研究领域的一个热点,而牙齿磨痕分析是恢复古食性和重建古生态环境的重要手段。牙齿磨痕(dental wear)分析包括微痕(microwear)分析和中痕(mesowear)分析,两种方法均强调食性与牙齿磨痕模式的严格对应,即不同食性的动物具有不同的牙齿磨痕特征模式。近年来,牙齿磨痕分析方法以其简单、快捷和高效等优点已被广泛应用于奇蹄类、偶蹄类、啮齿类、长鼻类和食肉类等哺乳动物的食性研究。但哺乳动物的食性和摄食习性比较复杂,很可能会影响微痕和中痕分析对食性的分辨率。所以,为了获得更加详细的古食性信息和更高的食性分辨率,一方面要对微痕和中痕分析方法进行改进,增添稳定并具有食性识别意义的观测变量,另一方面,需要同时结合微痕和中痕分析,从而获得更加全面的食性信息。虽然牙齿磨痕分析目前主要应用于植食性哺乳动物的食性研究,但其原理对哺乳动物的其它类群也是适用的,随着磨痕分析方法的不断改进和其它类群磨痕数据库的建立,未来的牙齿磨痕分析将可以恢复更多类群的古食性,从而可以更加全面和准确地揭示古食性与古环境信息。  相似文献   

12.
Recent research demonstrates that silica phytoliths of dietary origin are associated with microwear of human teeth. Previous research has shown that severe enamel microwear and dental wear characterizes Archaic hunter-gatherers in the lower Pecos region of west Texas. Calcium oxalate crystals are especially common in Archaic coprolites. The vast majority are derived from prickly pear and agave, which were the dietary staples in west Texas for 6,000 years. The calcium oxalate phytoliths are harder than enamel. Therefore, calcium oxalate crystals are the most likely source of previously documented dental microwear and wear in the lower Pecos region. Am J Phys Anthropol 107:297–304, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
In order to further evaluate the process of microwear formation on human dental enamel, microwear was experimentally produced by a chewing simulation with an Academic Center for Dentistry Amsterdam (ACTA) device. For this simulation, several cereal species were processed according to historical milling techniques, the experimental results of which were compared with those obtained from cereals processed after modern techniques, and also with natural microwear on early medieval human molars. Comparison of simulated microwear pits with natural microwear pits showed that the simulation led to traces which matched those found on the historical teeth in terms of both size and shape. Experimentally produced microwear pits were especially characteristic for the cereal species used in the simulations, and both pit morphology and enamel loss were a function of cereal phytolith content. Despite the high variability of phytolith size and shape, certain types are characteristic for certain cereals, which in turn are capable of producing cereal-specific microwear. This experimental approach is likely to further define ancient human dietary behavior, including food processing.  相似文献   

14.
Pygmy hunter-gatherers from Central Africa have shared a network of socioeconomic interactions with non-Pygmy Bantu speakers since agropastoral lifestyle spread across sub-Saharan Africa. Ethnographic studies have reported that their diets differ in consumption of both animal proteins and starch grains. Hunted meat and gathered plant foods, especially underground storage organs (USOs), are dietary staples for pygmies. However, scarce information exists about forager–farmer interaction and the agricultural products used by pygmies. Since the effects of dietary preferences on teeth in modern and past pygmies remain unknown, we explored dietary history through quantitative analysis of buccal microwear on cheek teeth in well-documented Baka pygmies. We then determined if microwear patterns differ among other Pygmy groups (Aka, Mbuti, and Babongo) and between Bantu-speaking farmer and pastoralist populations from past centuries. The buccal dental microwear patterns of Pygmy hunter-gatherers and non-Pygmy Bantu pastoralists show lower scratch densities, indicative of diets more intensively based on nonabrasive foodstuffs, compared with Bantu farmers, who consume larger amounts of grit from stoneground foods. The Baka pygmies showed microwear patterns similar to those of ancient Aka and Mbuti, suggesting that the mechanical properties of their preferred diets have not significantly changed through time. In contrast, Babongo pygmies showed scratch densities and lengths similar to those of the farmers, consistent with sociocultural contacts and genetic factors. Our findings support that buccal microwear patterns predict dietary habits independent of ecological conditions and reflect the abrasive properties of preferred or fallback foods such as USOs, which may have contributed to the dietary specializations of ancient human populations.  相似文献   

15.
The analysis of dental microwear is commonly used by paleontologists and anthropologists to clarify the diets of extinct species, including herbivorous and carnivorous mammals. Currently, there are numerous methods employed to quantify dental microwear, varying in the types of microscopes used, magnifications, and the characterization of wear in both two dimensions and three dimensions. Results from dental microwear studies utilizing different methods are not directly comparable and human quantification of wear features (e.g., pits and scratches) introduces interobserver error, with higher error being produced by less experienced individuals. Dental microwear texture analysis (DMTA), which analyzes microwear features in three dimensions, alleviates some of the problems surrounding two-dimensional microwear methods by reducing observer bias. Here, we assess the accuracy and comparability within and between 2D and 3D dental microwear analyses in herbivorous and carnivorous mammals at the same magnification. Specifically, we compare observer-generated 2D microwear data from photosimulations of the identical scanned areas of DMTA in extant African bovids and carnivorans using a scanning white light confocal microscope at 100x magnification. Using this magnification, dental microwear features quantified in 2D were able to separate grazing and frugivorous bovids using scratch frequency; however, DMTA variables were better able to discriminate between disparate dietary niches in both carnivorous and herbivorous mammals. Further, results demonstrate significant interobserver differences in 2D microwear data, with the microwear index remaining the least variable between experienced observers, consistent with prior research. Overall, our results highlight the importance of reducing observer error and analyzing dental microwear in three dimensions in order to consistently interpret diets accurately.  相似文献   

16.
Recent biomechanical analyses examining the feeding adaptations of early hominins have yielded results consistent with the hypothesis that hard foods exerted a selection pressure that influenced the evolution of australopith morphology. However, this hypothesis appears inconsistent with recent reconstructions of early hominin diet based on dental microwear and stable isotopes. Thus, it is likely that either the diets of some australopiths included a high proportion of foods these taxa were poorly adapted to consume (i.e., foods that they would not have processed efficiently), or that aspects of what we thought we knew about the functional morphology of teeth must be wrong. Evaluation of these possibilities requires a recognition that analyses based on microwear, isotopes, finite element modeling, and enamel chips and cracks each test different types of hypotheses and allow different types of inferences. Microwear and isotopic analyses are best suited to reconstructing broad dietary patterns, but are limited in their ability to falsify specific hypotheses about morphological adaptation. Conversely, finite element analysis is a tool for evaluating the mechanical basis of form‐function relationships, but says little about the frequency with which specific behaviors were performed or the particular types of food that were consumed. Enamel chip and crack analyses are means of both reconstructing diet and examining biomechanics. We suggest that current evidence is consistent with the hypothesis that certain derived australopith traits are adaptations for consuming hard foods, but that australopiths had generalized diets that could include high proportions of foods that were both compliant and tough. Am J Phys Anthropol 151:339–355, 2013.© 2013 Wiley Periodicals, Inc.  相似文献   

17.
Mastication of dietary items with different mechanical properties leaves distinctive microscopic marks on the surface of tooth enamel. The inspection of such marks (dental microwear analysis) is informative about the dietary habitus in fossil as well as in modern species. Dental microwear analysis relies on the morphology, abundance, direction, and distribution of these microscopic marks. We present a new freely available software implementation, MicroWeaR, that, compared to traditional dental microwear tools, allows more rapid, observer error free, and inexpensive quantification and classification of all the microscopic marks (also including for the first time different subtypes of scars). Classification parameters and graphical rendering of the output are fully settable by the user. MicroWeaR includes functions to (a) sample the marks, (b) classify features into categories as pits or scratches and then into their respective subcategories (large pits, coarse scratches, etc.), (c) generate an output table with summary information, and (d) obtain a visual surface‐map where marks are highlighted. We provide a tutorial to reproduce the steps required to perform microwear analysis and to test tool functionalities. Then, we present two case studies to illustrate how MicroWeaR works. The first regards a Miocene great ape obtained from through environmental scanning electron microscope, and other a Pleistocene cervid acquired by a stereomicroscope.  相似文献   

18.
Dental microwear texture analysis: technical considerations   总被引:2,自引:0,他引:2  
Dental microwear analysis is commonly used to infer aspects of diet in extinct primates. Conventional methods of microwear analysis have usually been limited to two-dimensional imaging studies using a scanning electron microscope and the identification of apparent individual features. These methods have proved time-consuming and prone to subjectivity and observer error. Here we describe a new methodological approach to microwear: dental microwear texture analysis, based on three-dimensional surface measurements taken using white-light confocal microscopy and scale-sensitive fractal analysis. Surface parameters for complexity, scale of maximum complexity, anisotropy, heterogeneity, and textural fill volume offer repeatable, quantitative characterizations of three-dimensional surfaces, free of observer measurement error. Some results are presented to illustrate how these parameters distinguish extant primates with different diets. In this case, microwear surfaces of Cebus apella and Lophocebus albigena, which consume some harder food items, have higher average values for complexity than do folivores or soft fruit eaters.  相似文献   

19.
Plasticity of tooth shape in mammals is of great adaptive value for the efficient exploitation of specific feeding niches and is a crucial mechanism for ecological diversification. In this study, we aimed to infer chewing effectiveness from the functional shape of different postcanine teeth within bovids, the most diverse extant group of large herbivorous mammals. We consider the postcanine dentition as a masticatory unit and test for differences related to food biomechanical properties, dietary abrasiveness, and chewing dynamics. We compare functional properties of the postcanine tooth row among species with well‐known dietary strategies by integrating digitalization of high‐resolution occlusal surface 3D‐models of upper postcanine dentitions and quantification of the indentation index (D), a structural parameter representing enamel complexity. We test for differences in the occlusal shape among tooth positions in the postcanine dentition using robust, heteroscedastic tests in a one‐way analysis of variance. Our results show three distinct patterns of enamel complexity along the tooth row: (1) D is more homogeneously distributed among tooth positions; (2) D increases gradually in the mesiodistal axis along the tooth row; and (3) D increases abruptly only at the transition between premolars and molars. We interpreted these patterns as different adaptive configurations of the postcanine tooth row relating to diet. Grass‐ and fruit‐eating bovids show the same abrupt increase in enamel complexity at the transition from premolars to molars. Intermediate feeding and leaf‐browsing species show the same gradual, mesiodistal increase in complexity along the tooth row. The absolute physical dietary resistance (biomechanical properties plus abrasiveness) and its relation to mechanical constraints of the chewing stroke are the likely selective factors leading to convergence of enamel complexity patterns along the tooth row among taxa with different diets. J. Morphol. 275:328–341, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
Morphology of the dentofacial complex of early hominins has figured prominently in the inference of their dietary adaptations. Recent theoretical analysis of craniofacial morphology of Australopithecus africanus proposes that skull form in this taxon represents adaptation to feeding on large, hard objects. A modern analog for this specific dietary specialization is provided by the West African sooty mangabey, Cercocebus atys. This species habitually feeds on the large, exceptionally hard nuts of Sacoglottis gabonensis, stereotypically crushing the seed casings using their premolars and molars. This type of behavior has been inferred for A. africanus based on mathematical stress analysis and aspects of dental wear and morphology. While postcanine megadontia, premolar enlargement and thick molar enamel characterize both A. africanus and C. atys, these features are not universally associated with durophagy among living anthropoids. Occlusal microwear analysis reveals complex microwear textures in C. atys unlike those observed in A. africanus, but more closely resembling textures observed in Paranthropus robustus. Since sooty mangabeys process hard objects in a manner similar to that proposed for A. africanus, yet do so without the craniofacial buttressing characteristic of this hominin, it follows that derived features of the australopith skull are sufficient but not necessary for the consumption of large, hard objects. The adaptive significance of australopith craniofacial morphology may instead be related to the toughness, rather than the hardness, of ingested foods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号