首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Climate change is altering spring snowmelt patterns in alpine and arctic ecosystems, and these changes may alter plant phenology, growth and reproduction. To predict how alpine plants respond to shifts in snowmelt timing, we need to understand trait plasticity, its effects on growth and reproduction, and the degree to which plants experience a home-site advantage. We tested how the common, long-lived dwarf shrub Salix herbacea responded to changing spring snowmelt time by reciprocally transplanting turfs of S. herbacea between early-exposure ridge and late-exposure snowbed microhabitats. After the transplant, we monitored phenological, morphological and fitness traits, as well as leaf damage, during two growing seasons. Salix herbacea leafed out earlier, but had a longer development time and produced smaller leaves on ridges relative to snowbeds. Longer phenological development times and smaller leaves were associated with reduced sexual reproduction on ridges. On snowbeds, larger leaves and intermediate development times were associated with increased clonal reproduction. Clonal and sexual reproduction showed no response to altered snowmelt time. We found no home-site advantage in terms of sexual and clonal reproduction. Leaf damage probability depended on snowmelt and thus exposure period, but had no short-term effect on fitness traits. We conclude that the studied populations of S. herbacea can respond to shifts in snowmelt by plastic changes in phenology and leaf size, while maintaining levels of clonal and sexual reproduction. The lack of a home-site advantage suggests that S. herbacea may not be adapted to different microhabitats. The studied populations are thus unlikely to react to climate change by rapid adaptation, but their responses will also not be constrained by small-scale local adaptation. In the short term, snowbed plants may persist due to high stem densities. However, in the long term, reduction in leaf size and flowering, a longer phenological development time and increased exposure to damage may decrease overall performance of S. herbacea under earlier snowmelt.  相似文献   

2.
Current threats to biodiversity, such as climate change, are thought to alter the within-species genetic diversity among microhabitats in highly heterogeneous alpine environments. Assessing the spatial organization and dynamics of genetic diversity within species can help to predict the responses of organisms to environmental change. In this study, we evaluated whether small-scale heterogeneity in snowmelt timing restricts gene flow between microhabitats in the common long-lived dwarf shrub Salix herbacea L. We surveyed 273 genets across 12 early- and late-snowmelt sites (that is, ridges and snowbeds) in the Swiss Alps for phenological variation over 2 years and for genetic variation using seven SSR markers. Phenological differentiation triggered by differences in snowmelt timing did not correlate with genetic differentiation between microhabitats. On the contrary, extensive gene flow appeared to occur between microhabitats and slightly less extensively among adjacent mountains. However, ridges exhibited significantly lower levels of genetic diversity than snowbeds, and patterns of effective population size (Ne) and migration (Nem) between microhabitats were strongly asymmetric, with ridges acting as sources and snowbeds as sinks. As no recent genetic bottlenecks were detected in the studied sites, this asymmetry is likely to reflect current meta-population dynamics of the species dominated by gene flow via seeds rather than ancient re-colonization after the last glacial period. Overall, our results suggest that seed dispersal prevents snowmelt-driven genetic isolation, and snowbeds act as sinks of genetic diversity. We discuss the consequences of such small-scale variation in gene flow and diversity levels for population responses to climate change.  相似文献   

3.
Climate change effects on snow cover and thermic regime in alpine tundra might lead to a longer growing season, but could also increase risks to plants from spring frost events. Alpine snowbeds, i.e. alpine tundra from late snowmelt sites, might be particularly susceptible to such climatic changes. Snowbed communities were grown in large monoliths for two consecutive years, under different manipulated snow cover treatments, to test for effects of early (E) and late (L) snowmelt on dominant species growth, plant functional traits, leaf area index (LAI) and aboveground productivity. Spring snow cover was reduced to assess the sensitivity of snowbed alpine species to severe early frost events, and dominant species freezing temperatures were measured. Aboveground biomass, productivity, LAI and dominant species growth did not increase significantly in E compared to L treatments, indicating inability to respond to an extended growing season. Edapho‐climatic conditions could not account for these results, suggesting that developmental constraints are important in controlling snowbed plant growth. Impaired productivity was only detected when harsher and more frequent frost events were experimentally induced by early snowmelt. These conditions exposed plants to spring frosts, reaching temperatures consistent with the estimated freezing points of the dominant species (~?10 °C). We conclude that weak plasticity in phenological response and potential detrimental effects of early frosts explain why alpine tundra from snowbeds is not expected to benefit from increased growing season length.  相似文献   

4.
Mountain plants may respond to warming climates by migrating along altitudinal gradients or, because climatic conditions on mountain slopes can be locally very heterogeneous, by migrating to different microhabitats at the same altitude. However, in new environments, plants may also encounter novel soil microbial communities, which might affect their establishment success. Thus, biotic interactions could be a key factor in plant responses to climate change. Here, we investigated the role of plant–soil feedback for the establishment success of the alpine dwarf shrub Salix herbacea L. across altitudes and late- and early snowmelt microhabitats. We collected S. herbacea seeds and soil from nine plots on three mountain-slope transects near Davos, Switzerland, and we transplanted seeds and seedlings to substrate inoculated with soil from the same plot or with soils from different microhabitats, altitudes and mountains under greenhouse conditions. We found that, on average, seeds from higher altitudes (2400–2700 m) and late-exposed snowbeds germinated better than seeds from lower altitudes (2200–2300 m) and early-exposed ridges. However, despite these differences in germination, growth was generally higher for plants from low altitudes, and there were no indications for a an home-soil advantage within the current range of S. herbacea. Interestingly, seedlings growing on soil from above the current altitudinal distribution of S. herbacea grew on average less well than on their own soil. Thus, although the lack of a home-soil advantage in the current habitat might be beneficial for S. herbacea in a changing environment, migration to habitats beyond the current altitudinal range might be limited, probably due to missing positive soil-feedback.  相似文献   

5.
Hirao AS  Kudo G 《Heredity》2004,93(3):290-298
The genetic structure of three snowbed-herb species (Peucedanum multivittatum, Veronica stelleri, and Gentiana nipponica) was analyzed using allozymes across nine populations arranged as a matrix of three snowmelt gradients x three geographic locations within 3 km in the Taisetsu Mountains, northern Japan. Phenologically asynchronous populations are packed within a local area in alpine snowbeds, because flowering season of alpine plants depends strongly on the timing of snowmelt. Moderate genetic differentiation was detected among local populations in every species (FST=0.03-0.07). There was a significant correlation between the geographic distance and genetic distance in the P. multivittatum populations, but not in the V. stelleri and G. nipponica populations. On the other hand, a significant correlation between the phenological distance caused by snowmelt timing and genetic distance was detected in the V. stelleri and G. nipponica populations, but not in the P. multivittatum populations. The snowmelt gradient or geographic separation influenced hierarchical genetic structure of these species moderately (FRT <0.04). Restriction of gene flow due to phenological separation and possible differential selection along the snowmelt gradient may produce genetic clines at microgeographic scale in these species.  相似文献   

6.
Sub-arctic willow scrub is an endangered habitat in Britain, and typically occurs on steep crags inaccessible to grazing animals. These willows can reproduce both sexually and asexually, although the relative importance of each is unknown. Knowledge of reproductive mode is important for the design of grazing management and restoration programmes. Accordingly, clonality was assessed in the largest stand of sub-arctic willow scrub in the UK, focusing on Salix lanata and S. lapponum. Little evidence of clonal growth was detected; most individuals possessed distinct multi-locus genotypes. Thus despite the capacity for vegetative reproduction, and seedlings being rarely observed, sexual reproduction is the predominant means of perpetuation and dispersal at this site. We also examined clonal growth in a common willow species (Salix herbacea) that occupies a different habitat type (exposed mountain tops and ridges). Multiple individuals shared identical genotypes up to 7 m apart, suggesting an important role for clonal growth in local patch formation in this species.  相似文献   

7.
The snow cover extent is an important factor for the structure and composition of arctic and alpine tundra communities. Over the last few decades, snowmelt in many arctic and alpine regions has advanced, causing the growing season to start earlier and last longer. In a field experiment in subarctic tundra in Interior Alaska, I manipulated the timing of snowmelt and measured the response in mortality, phenology, growth, and reproduction of the eight dominant plant species. I then tested whether the phenological development of these species was controlled by snowmelt date or by temperature (in particular growing degree days, GDD). In order to expand our understanding of plant sensitivity to snowmelt timing, I explored whether the response patterns can be generalized with regard to the temporal niche of each species. Differences in the phenology between treatments were only found for the first stages of the phenological development (=phenophases). The earlier the temporal niche (i.e., the sooner after snowmelt a species develops) the more its phenology was sensitive to snowmelt. Later phenophases were mostly controlled by GDD, especially in late-developing species. In no species did an earlier snowmelt and a longer growing season directly enhance plant fitness or fecundity, in spite of the changes in the timing of plant development. In conclusion, the temporal niche of a species’ phenological development could be a predictor of its response to snowmelt timing. However, only the first phenophases were susceptible to changes in snowmelt, and no short-term effects on plant fitness were found.  相似文献   

8.
The timing of the snowmelt is a crucial factor in determining the phenological schedule of alpine plants. A long-term monitoring of snowmelt regimes in a Japanese alpine area revealed that the onset of the snowmelt season has been accelerated during the last 17 years in early snowmelt sites but that such a trend has not been detected in late snowmelt sites. This indicates that the global warming effect on the snowmelt pattern may be site-specific. The flowering phenology of fellfield plants in an exposed wind-blown habitat was consistent between an unusually warm year (1998) and a normal year (2001). In contrast, the flowering occurrence of snowbed plants varied greatly between the years depending on the snowmelt time. There was a large number of flowering species in the fellfield community from mid- to late to late June and from mid- to late July. The flowering peak of an early-melt snowbed plant community was in the middle of the flowering season and that of a late-melt snowbed community was in the early flowering season. These habitat-specific phenological patterns were consistent between 1998 and 2001. The effects of the variation in flowering timing on seed-set success were evaluated for an entomophilous snowbed herb, Peucedanum multivittatum, along the snowmelt gradient during a 5-year period. When flowering occurred prior to early August, mean temperature during the flowering season positively influenced the seed set. When flowering occurred later than early August, however, the plants enjoyed high seed-set success irrespective of temperature conditions if frost damage was absent. These observations are probably explained based on the availability of pollinators, which depends not only on ambient temperature but also on seasonal progress. These results suggest that the effects of climate change on biological interaction may vary depending on the specific habitat in the alpine ecosystem in which diverse snowmelt patterns create complicated seasonality for plants within a very localized area.  相似文献   

9.
Alpine snowbeds are characterized by a long-lasting snow cover and low soil temperature during the growing season. Both these key abiotic factors controlling plant life in snowbeds are sensitive to anthropogenic climate change and will alter the environmental conditions in snowbeds to a considerable extent until the end of this century. In order to name winners and losers of climate change among the plant species inhabiting snowbeds, we analyzed the small-scale species distribution along the snowmelt and soil temperature gradients within alpine snowbeds in the Swiss Alps. The results show that the date of snowmelt and soil temperature were relevant abiotic factors for small-scale vegetation patterns within alpine snowbed communities. Species richness in snowbeds was reduced to about 50% along the environmental gradients towards later snowmelt date or lower daily maximum temperature. Furthermore, the occurrence pattern of the species along the snowmelt gradient allowed the establishment of five species categories with different predictions of their distribution in a warmer world. The dominants increased their relative cover with later snowmelt date and will, therefore, lose abundance due to climate change, but resist complete disappearance from the snowbeds. The indifferents and the transients increased in species number and relative cover with higher temperature and will profit from climate warming. The snowbed specialists will be the most suffering species due to the loss of their habitats as a consequence of earlier snowmelt dates in the future and will be replaced by the avoiders of late-snowmelt sites. These forthcoming profiteers will take advantage from an increasing number of suitable habitats due to an earlier start of the growing season and increased temperature. Therefore, the characteristic snowbed vegetation will change to a vegetation unit dominated by alpine grassland species. The study highlights the vulnerability of the established snowbed vegetation to climate change and requires further studies particularly about the role of biotic interactions in the predicted invasion and replacement process.  相似文献   

10.
In alpine environments, flowering phenology can differ within local populations even at the same elevation. We assessed the effects of differences in flowering phenology due to snowmelt timing caused by local geographic heterogeneity on the genetic structure of a population of an alpine plant, Erythronium grandiflorum Pursh. We established a study plot of 250×70 m at 3,340 m above sea level in the Front Range of the Rocky Mountains, CO, USA. The flowering phenology was considerably influenced by snowmelt timing due to local geographic heterogeneity. Twenty-two patches of E. grandiflorum were recognized in the study plot and were classified into three phenological groups: early, middle, and late. To express the differentiation of flowering phenology among the patches, we defined phenological distance and analyzed the relationship between genetic and phenological distances. Additionally, since genetic distance is expected to co-vary with geographic distance, we also analyzed the relationship between genetic distance and geographic distance among patches. The results revealed not only that isolation by distance was present among patches, but also that the differences in snowmelt timing gave rise to phenologically distant patches of E. grandiflorum, which in turn determine the genetic structure caused by the limited pollen flow between patches.  相似文献   

11.
The purpose of this study was to determine the conservation status of a Salix herbacea L. population, located in the N-Apennines (Italy), toward the southern edge of the species’ distribution. A 3 year-long study (1999–2001) was conducted to evaluate the effects of human trampling on Salix herbacea. Two stands, one trampled and one untrampled in the same site, were compared. The measured variables included: total vegetation cover; cover and female catkin number of Salix herbacea. The trampled stand showed a decrease in both Salix cover and sexual reproduction. We suggest possible conservation strategies to preserve the Salix herbacea trampled stand from its local extinction.  相似文献   

12.
Flowering phenology of alpine plants is strongly determined by the timing of snowmelt, and the conditions of pollination of widely distributed plants vary greatly during their flowering season. We examined the reproductive success of the distylous alpine herb, Primula modesta, along the snowmelt gradient under natural conditions, and compared it with the result of artificial pollination experiments. In addition, the compositions and visit frequencies of pollinators to the flower of P. modesta were examined during the flowering period. The pin and thrum plants of P. modesta growing at the same site have an equal ability to produce seeds if a sufficient amount of legitimate pollen grains are deposited on the stigma surface. However, under natural conditions, their seed‐set success was often (even if not always) restricted by pollen limitation, and the functional gender of the pin and thrum plants biased to the female and male, respectively, associated with their growing sites. These variations were not ascribed to resource limitation nor biased morph ratio but to the seasonal changes in pollination situations, a replacement of pollinator types from long‐ to short‐tongued pollinators resulted in unidirectional pollen transfer from long stamens (thrum plants) to long styles (pin plants). The functional gender specialization may enhance the evolution of dioecy from heterostyly, but the severe pollen limitation may cause the breakdown of heterostyly into homostyly. To consider the evolutionary pathway of heterostylous plants, an accumulation of the empirical data is required demonstrating how phenological synchrony between plants and pollinators is decided and to what degree this relationship is stable over years, along with estimates of selection and gene flow in individual plants.  相似文献   

13.
We investigated clonal diversity, genet size structure and genet longevity in populations of four arctic‐alpine plants (Carex curvula, Dryas octopetala, Salix herbacea and Vaccinium uliginosum) to evaluate their persistence under past climatic oscillations and their potential resistance to future climate change. The size and number of genets were determined by an analysis of amplified fragment length polymorphisms and a standardized sampling design in several European arctic‐alpine populations, where these species are dominant in the vegetation. Genet age was estimated by dividing the size by the annual horizontal size increment from in situ growth measurements. Clonal diversity was generally high but differed among species, and the frequency distribution of genet size was strongly left‐skewed. The largest C. curvula genet had an estimated minimum age of c. 4100 years and a maximum age of c. 5000 years, although 84.8% of the genets in this species were <200 years old. The oldest genets of D. octopetala, S. herbacea and V. uliginosum were found to be at least 500, 450 and 1400 years old, respectively. These results indicate that individuals in the studied populations have survived pronounced climatic oscillations, including the Little Ice Age and the postindustrial warming. The presence of genets in all size classes and the dominance of presumably young individuals suggest repeated recruitment over time, a precondition for adaptation to changing environmental conditions. Together, persistence and continuous genet turnover may ensure maximum ecosystem resilience. Thus, our results indicate that long‐lived clonal plants in arctic‐alpine ecosystems can persist, despite considerable climatic change.  相似文献   

14.
The relationship between flowering phenology and abundance of bumble bees (Bombus spp.) was investigated using 2 years of phenological data collected in an alpine region of northern Japan. Abundance of Bombus species was observed along a fixed transect throughout the flowering season. The number of flowering species was closely related to the floral resources for pollinators at the community scale. In the year with typical weather, the first flowering peak corresponded to the emergence time of queen bees from hibernation, while the second flowering peak corresponded to the active period of worker bees. In the year with an unusually warm spring, however, phenological synchrony between plants and bees was disrupted. Estimated emergence of queen bees was 10 days earlier than the first flowering date owing to earlier soil thawing and warming. However, subsequent worker emergence was delayed, indicating slower colony development. The flowering season finished 2 weeks earlier in the warm-spring year in response to earlier snowmelt. A common resident species in the alpine environment, B. hypocrita sapporoensis, flexibly responded to the yearly fluctuation of flowering. In contrast, population dynamics of other Bombus species were out of synchrony with the flowering: their frequencies were highest at the end of the flowering season in the warm-spring year. Therefore, phenological mismatch between flowers and pollinators is evident during warm years, which may become more prevalent in a warmer climate. To understand the mechanism of phenological mismatch in the pollination system of the alpine ecosystem, ground temperature, snowmelt regime, and life cycle of pollinators are key factors.  相似文献   

15.
Abstract. The focus of this study is the response of species to time of snowmelt and altitude in alpine areas and an examination of changes in species response to snowmelt as altitude increases and temperature decreases. Transects (n= 43) were placed evenly along an altitudinal gradient at Finse, Hardanger‐vidda, western Norway, from ridges to late snowbeds. These gradients were systematically sampled (‘Repeated Gradient Analysis, RGA’) and an adjusted F‐test was used to determine repeated trends in species distribution along the transects. Of the 41 taxa analysed 22 showed a significant change in expected occurrence in response to time of snowmelt (when a site becomes free of snow) as altitude increased. Three types of response were observed: (1) no change in response: (2) increased occurrence as altitude increases, i.e. the taxon invades snow‐free sites as altitude increases, and (3) decreased occurrence as altitude increases, i.e. the taxon retreats from snow covered areas. It is suggested that the changes in response are due to both environmental factors (temperature related) and biological interactions. Decreases in expected occurrence are probably due to increased environmental severity as altitude increases (temperature related decreases). These species are represented by taxa preferring intermediate cover of snow. The invasion of earlier snow‐free sites is probably due to reduced competition from lee‐side taxa as altitude increases. A predictive model based on the species‐environmental relationships suggests that a 1°K temperature increase changes the limits of occurrence in response to time of snowmelt from 3 to 20 days for the different taxa.  相似文献   

16.
Many alpine and subalpine plant species exhibit phenological advancements in association with earlier snowmelt. While the phenology of some plant species does not advance beyond a threshold snowmelt date, the prevalence of such threshold phenological responses within plant communities is largely unknown. We therefore examined the shape of flowering phenology responses (linear versus nonlinear) to climate using two long-term datasets from plant communities in snow-dominated environments: Gothic, CO, USA (1974–2011) and Zackenberg, Greenland (1996–2011). For a total of 64 species, we determined whether a linear or nonlinear regression model best explained interannual variation in flowering phenology in response to increasing temperatures and advancing snowmelt dates. The most common nonlinear trend was for species to flower earlier as snowmelt advanced, with either no change or a slower rate of change when snowmelt was early (average 20% of cases). By contrast, some species advanced their flowering at a faster rate over the warmest temperatures relative to cooler temperatures (average 5% of cases). Thus, some species seem to be approaching their limits of phenological change in response to snowmelt but not temperature. Such phenological thresholds could either be a result of minimum springtime photoperiod cues for flowering or a slower rate of adaptive change in flowering time relative to changing climatic conditions.  相似文献   

17.
The main gradient in vascular plant, bryophyte and lichen species composition in alpine areas, structured by the topographic gradient from wind‐exposed ridges to snowbeds, has been extensively studied. Tolerance to environmental stress, resulting from wind abrasion and desiccation towards windswept ridges or reduced growing season due to prolonged snow cover towards snowbeds, is an important ecological mechanism in this gradient. The extent to which belowground fungal communities are structured by the same topographic gradient and the eventual mechanisms involved are less well known. In this study, we analysed variation in fungal diversity and community composition associated with roots of the ectomycorrhizal plant Bistorta vivipara along the ridge‐to‐snowbed gradient. We collected root samples from fifty B. vivipara plants in ten plots in an alpine area in central Norway. The fungal communities were analysed using 454 pyrosequencing analyses of tag‐encoded ITS1 amplicons. A distinct gradient in the fungal community composition was found that coincided with variation from ridge to snowbeds. This gradient was paralleled by change in soil content of carbon, nitrogen and phosphorus. A large proportion (66%) of the detected 801 nonsingleton operational taxonomic units (OTUs) were ascomycetes, while basidiomycetes dominated quantitatively (i.e. with respect to number of reads). Numerous fungal OTUs, many with taxonomic affinity to Sebacinales, Cortinarius and Meliniomyces, showed distinct affinities either to ridge or to snowbed plots, indicating habitat specialization. The compositional turnover of fungal communities along the gradient was not paralleled by a gradient in species richness.  相似文献   

18.
高新月  戴君虎  陶泽兴 《生态学报》2022,42(24):10253-10263
植物物候是植物生活史中的重要性状,也是指示气候与自然环境变化的重要指标,现已成为全球变化领域的研究热点之一。传统物候研究多假设物候由气候因素决定,如气温、降水、光照等,并主要从植物物候的年际变化角度探讨了气候因素对物候特征的影响。然而,不同物种的物候存在较大差异表明植物物候还与自身生物学特性(如系统发育和功能性状)有关,但植物生物学特性如何影响植物物候仍缺乏深入研究。基于北京地区44种木本植物1965-2018年的展叶始期和开花始期观测资料,以展叶始期和开花始期的3类物候特征(平均物候期、物候对温度的响应敏感度和物候期的积温需求)为例,探究植物物候特征与系统发育和功能性状的关系。首先,利用系统发育信号Blomberg’s K和进化模型检验植物物候特征是否具有系统发育保守性,并通过系统发育信号表征曲线直观表达植物物候特征的进化模式;之后,利用广义估计方程分析植物生活型、传粉型与物候特征的关系,以揭示不同植物的资源利用方式及生存策略的差异。研究发现:(1)除展叶始期的温度敏感度外,其余物候特征的进化均受随机遗传漂变和自然选择力的共同作用,可推断物候特征具有系统发育保守性,即亲缘关系越近的物种物候特征越相似。(2)开花始期的系统发育信号强度比展叶始期更大,表明繁殖物候的系统发育可能比生长物候更保守。(3)植物展叶始期及其积温需求与生活型密切相关。灌木比乔木的展叶时间早、积温需求少。植物开花始期与传粉型相关,风媒植物开花显著早于虫媒植物。研究成果有助于深入理解物候变化的生物学机制,对于丰富物候学的理论研究有重要意义,同时对植物保护也具有重要的指导价值。  相似文献   

19.
Alpine dwarf shrub communities are phenologically linked with snowmelt timing, so early spring exposure may increase risk of freezing damage during early development, and consequently reduce seasonal growth. We examined whether environmental factors (duration of snow cover, elevation) influenced size and the vulnerability of shrubs to spring freezing along elevational gradients and snow microhabitats by modelling the past frequency of spring freezing events. We sampled biomass and measured the size of Salix herbacea, Vaccinium myrtillus, Vaccinium uliginosum and Loiseleuria procumbens in late spring. Leaves were exposed to freezing temperatures to determine the temperature at which 50 % of specimens are killed for each species and sampling site. By linking site snowmelt and temperatures to long-term climate measurements, we extrapolated the frequency of spring freezing events at each elevation, snow microhabitat and per species over 37 years. Snowmelt timing was significantly driven by microhabitat effects, but was independent of elevation. Shrub growth was neither enhanced nor reduced by earlier snowmelt, but decreased with elevation. Freezing resistance was strongly species dependent, and did not differ along the elevation or snowmelt gradient. Microclimate extrapolation suggested that potentially lethal freezing events (in May and June) occurred for three of the four species examined. Freezing events never occurred on late snow beds, and increased in frequency with earlier snowmelt and higher elevation. Extrapolated freezing events showed a slight, non-significant increase over the 37-year record. We suggest that earlier snowmelt does not enhance growth in four dominant alpine shrubs, but increases the risk of lethal spring freezing exposure for less freezing-resistant species.  相似文献   

20.
Many factors may affect reproduction of animal-pollinated species. In this study, the effects of pollen limitation, attractive traits (flower number, plant height and flower width) and flowering phenological traits (flowering onset, duration and synchrony) on female reproduction, as well as the patterns of variation in fruit and seed production within plants, were investigated in Paeonia ostii “Feng Dan” over two flowering seasons (2018 and 2019). Fruit set was very high (90%), and pollen supplementation did not increase fruit and seed production in either year, indicating no pollen limitation. Fruit set, ovule number per fruit and mean individual seed weight per fruit were not affected by any of the six attractive and phenological traits in either year, whereas seed number per fruit was related to the three attractive traits in one or both years. Seed number per plant was positively affected by the three attractive traits and best explained by flower number in both years, but the effect of each of the three phenological traits on seed number per plant differed between years. Within plants, the fruit set, ovule number, seed set and seed number per fruit declined from early- to late-opening flowers, presumably because of resource preemption, but the mean individual seed weight did not vary across the flowering sequence. Our study shows that attractive traits of Paeonia ostii “Feng Dan” are more important than flowering phenological traits in the prediction of total seed production per plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号