首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
Numerous studies have reported correlations between the heterozygosity of genetic markers and fitness. These heterozygosity–fitness correlations (HFCs) play a central role in evolutionary and conservation biology, yet their mechanistic basis remains open to debate. For example, fitness associations have been widely reported at both neutral and functional loci, yet few studies have directly compared the two, making it difficult to gauge the relative contributions of genome‐wide inbreeding and specific functional genes to fitness. Here, we compared the effects of neutral and immune gene heterozygosity on death from bacterial infection in Antarctic fur seal (Arctocephalus gazella) pups. We specifically developed a panel of 13 microsatellites from expressed immune genes and genotyped these together with 48 neutral loci in 234 individuals, comprising 39 pups that were classified at necropsy as having most likely died of bacterial infection together with a five times larger matched sample of healthy surviving pups. Identity disequilibrium quantified from the neutral markers was positive and significant, indicative of variance in inbreeding within the study population. However, multilocus heterozygosity did not differ significantly between healthy and infected pups at either class of marker, and little evidence was found for fitness associations at individual loci. These results support a previous study of Antarctic fur seals that found no effects of heterozygosity at nine neutral microsatellites on neonatal survival and thereby help to refine our understanding of how HFCs vary across the life cycle. Given that nonsignificant HFCs are underreported in the literature, we also hope that our study will contribute toward a more balanced understanding of the wider importance of this phenomenon.  相似文献   

2.
The seven donkey breeds recognised by the French studbook are characterised by few coat colours: black, bay and grey. Normand bay donkeys seldom give birth to red foals, a colour more commonly seen and recognised in American miniature donkeys. Red resembles the equine chestnut colour, previously attributed to a mutation in the melanocortin 1 receptor gene (MC1R). We used a panel of 124 donkeys to identify a recessive missense c.629T>C variant in MC1R that showed a perfect association with the red coat colour. This variant leads to a methionine to threonine substitution at position 210 in the protein. We showed that methionine 210 is highly conserved among vertebrate melanocortin receptors. Previous in silico and in vitro analyses predicted this residue to lie within a functional site. Our in vivo results emphasised the pivotal role played by this residue, the alteration of which yielded a phenotype fully compatible with a loss of function of MC1R. We thus propose to name the c.629T>C allele in donkeys the e allele, which further enlarges the panel of recessive MC1R loss‐of‐function alleles described in animals and humans.  相似文献   

3.
We have characterized the biochemical function of the melanocortin 1 receptor (MC1R), a critical regulator of melanin synthesis, from 9 phylogenetically diverse primate species with varying coat colors. There is substantial diversity in melanocyte-stimulating hormone (MSH) binding affinity and basal levels of activity in the cloned MC1Rs. MSH binding was lost independently in lemur and New World monkey lineages, whereas high basal levels of MC1R activity occur in lemurs and some New World monkeys and Old World monkeys. Highest levels of basal activity were found in the MC1R of ruffed lemurs, which have the E94K mutation that leads to constitutive activation in other species. In 3 species (2 lemurs and the howler monkey), we report the novel finding that binding and inhibition of MC1R by agouti signaling protein (ASIP) can occur when MSH binding has been lost, thus enabling continuing regulation of the melanin type via ASIP expression. Together, these findings can explain the previous paradox of a predominantly pheomelanic coat in the red ruffed lemur (Varecia rubra). The presence of a functional, MSH-responsive MC1R in orangutan demonstrates that the mechanism of red hair generation in this ape is different from the prevalent mechanism in European human populations. Overall, we have found unexpected diversity in MC1R function among primates and show that the evolution of the regulatory control of MC1R activity occurs by independent variation of 3 distinct mechanisms: basal MC1R activity, MSH binding and activation, and ASIP binding and inhibition. This diversity of function is broadly associated with primate phylogeny and does not have a simple relation to coat color phenotype within primate clades.  相似文献   

4.
Amber (previously called X-Colour) is a yellow recessive coat colour observed in the Norwegian Forest Cat (NFC) population and apparently absent in other cat breeds. Until now, there has never been any scientific evidence of yellow recessive mutation ( e ) reported in the extension gene in Felidae. We sequenced the complete coding sequence region for the melanocortin 1 receptor in 12 amber, three carriers, two wild-type NFCs, one wild-type European Shorthair and two 'golden' Siberian cats and identified two single nucleotide polymorphisms (SNPs): a non-synonymous (FM180571: c.250G>A) and a synonymous (FM180571: c.840T>C) mutation. The c.250G>A SNP, further genotyped on 56 cats using PCR-RFLP, is associated with amber colour and only present in the amber cat lineages. It replaced an aspartic acid with a neutral polar asparagine in the second transmembrane helix (p.Asp84Asn), a position where e mutations have already been described. Three-dimensional models were built and showed electrostatic potential modification in the mutant receptor. With these results and together with those in the scientific literature, we can conclude that amber colour in NFCs is caused by a single MC1R allele called e , which has never been documented.  相似文献   

5.
6.
7.
Homozygous loss of function of the melanocortin 1 receptor (MC1R) is associated with a pheomelanotic pigment phenotype and increased melanoma risk. MC1R heterozygosity is less well studied, although individuals inheriting one loss‐of‐function MC1R allele are also melanoma‐prone. Using the K14‐Scf C57BL/6J animal model whose skin is characterized by lifelong retention of interfollicular epidermal melanocytes like that of the human, we studied pigmentary, UV responses, and DNA repair capacity in the skin of variant Mc1r background. Topical application of forskolin, a skin‐permeable pharmacologic activator of cAMP induction to mimic native Mc1r signaling, increased epidermal eumelanin levels, increased the capacity of Mc1r‐heterozygous skin to resist UV‐mediated inflammation, and enhanced the skin's ability to clear UV photolesions from DNA. Interestingly, topical cAMP induction also promoted melanin accumulation, UV resistance, and accelerated clearance in Mc1r fully intact skin. Together, our findings suggest that heterozygous Mc1r loss is associated with an intermediately melanized and DNA repair‐proficient epidermal phenotype and that topical cAMP induction enhances UV resistance in Mc1r‐heterozygous or Mc1r‐wild‐type individuals by increasing eumelanin deposition and by improving nucleotide excision repair.  相似文献   

8.
Congenital melanocytic nevi (CMN) are cutaneous malformations whose prevalence is inversely correlated with projected adult size. CMN are caused by somatic mutations, but epidemiological studies suggest that germline genetic factors may influence CMN development. In CMN patients from the U.K., genetic variants in MC1R, such as p.V92M and loss‐of‐function variants, have been previously associated with larger CMN. We analyzed the association of MC1R variants with CMN characteristics in two distinct cohorts of medium‐to‐giant CMN patients from Spain (N = 113) and from France, Norway, Canada, and the United States (N = 53), similar at the clinical and phenotypical level except for the number of nevi per patient. We found that the p.V92M or loss‐of‐function MC1R variants either alone or in combination did not correlate with CMN size, in contrast to the U.K. CMN patients. An additional case–control analysis with 259 unaffected Spanish individuals showed a higher frequency of MC1R compound heterozygous or homozygous variant genotypes in Spanish CMN patients compared to the control population (15.9% vs. 9.3%; p = .075). Altogether, this study suggests that MC1R variants are not associated with CMN size in these non‐UK cohorts. Additional studies are required to define the potential role of MC1R as a risk factor in CMN development.  相似文献   

9.
Background information. The BOR (branchio‐oto‐renal) syndrome is a dominant disorder most commonly caused by mutations in the EYA1 (Eyes Absent 1) gene. Symptoms commonly include deafness and renal anomalies. Results. We have used the embryos of the frog Xenopus laevis as an animal model for early ear development to examine the effects of different EYA1 mutations. Four eya1 mRNAs encoding proteins correlated with congenital anomalies in human were injected into early stage embryos. We show that the expression of mutations associated with BOR, even in the presence of normal levels of endogenous eya1 mRNA, leads to morphologically abnormal ear development as measured by overall otic vesicle size, establishment of sensory tissue and otic innervation. The molecular consequences of mutant eya1 expression were assessed by QPCR (quantitative PCR) analysis and in situ hybridization. Embryos expressing mutant eya1 showed altered levels of multiple genes (six1, dach, neuroD, ngnr‐1 and nt3) important for normal ear development. Conclusions. These studies lend support to the hypothesis that dominant‐negative effects of EYA1 mutations may have a role in the pathogenesis of BOR.  相似文献   

10.
We have examined whether black/yellow coat colour in Labrador retrievers is controlled by allelic variants at the extension locus. As the gene encoding the melanocyte-stimulating hormone receptor (MC1R) has been shown to correspond to the extension locus in several species, we have determined the genomic MC1R sequence in Labrador retrievers with black and with yellow coat colour. Using primers based on the fox (Vulpes vulpes) MC1R sequence we initially isolated and sequenced the innerpart of the canine MC1R. By means of inverse PCR we succeeded in the characterization of both flanking regions of the MC1R gene (Genbank: AF064455). Comparison of the complete MC1R sequences of a yellow and a black Labrador retriever revealed a single C-->T mutation at nucleotide position 916 in the yellow dog. This transition changed the codon for arginine at position 305 into a stop codon, resulting in the elimination of the evolutionary strongly conserved 10 carboxyterminal amino acid residues. With an allele-specific-oligonucleotide (ASO) test it was shown that the mutation cosegregated with the recessively inherited yellow coat colour in the Labrador retriever. Golden retrievers also appeared to be homozygous for the mutation. Seventeen other breeds were all negative for the mutation. Since the Labrador and Golden retriever are closely related, we suggest a common founder for the yellow coat colour in Labrador and Golden retrievers.  相似文献   

11.
The progression of prostate cancer from an organ-confined, androgen-sensitive disease to a metastatic one is associated with dysregulation of androgen receptor (AR)-regulated target genes and with a decrease in insulin-like growth factor-I receptor (IGF1R) expression. DNA methylation of CpG islands is an epigenetic mechanism associated with gene silencing. Recent studies have demonstrated that methylation occurs early in prostate carcinogenesis and, furthermore, may contribute to androgen independence. The methylation status of the AR and IGF1R genes was evaluated in a series of prostate cancer cell lines corresponding to early (benign) and advanced (metastatic) stages of the disease. Results of 5-Aza-2′-deoxycytidine (5-Aza) experiments, methylation-specific PCR, and sodium bisulfite-direct DNA sequencing revealed that the AR promoter is hypermethylated in metastatic M12, but not in benign P69, cells. On the other hand, no methylation was seen in the IGF1R promoter at any stage of the disease. We show, however, that 5-Aza treatment, which caused demethylation of the AR promoter, led to a significant increase in IGF1R mRNA levels, whereas addition of the AR inhibitor flutamide decreased the IGF1R mRNA levels to basal values measured prior to the 5-Aza treatment. Given that the IGF1R gene has been identified as a downstream target for AR action, our data is consistent with a model in which the AR gene undergoes methylation during progression of the disease, leading to dysregulation of AR targets, including the IGF1R gene, at advanced metastatic stages.  相似文献   

12.
The F11 receptor (F11R) (a.k.a. Junctional Adhesion Molecule, JAM) was first identified in human platelets as a 32/35 kDa protein duplex that serves as receptor for a functional monoclonal antibody that activates platelets. We have sequenced and cloned the F11R and determined that it is a member of the immunoglobulin (Ig) superfamily of cell adhesion molecules. The signaling pathways involved in F11R-induced platelet activation were examined in this investigation. The binding of M.Ab.F11 to the platelet F11R resulted in granule secretion and aggregation. These processes were found to be dependent on the crosslinking of F11R with the FcγRII by M.Ab.F11. This crosslinking induced actin filament assembly with the conversion of discoidal platelets to activated shapes, leading to the formation of platelet aggregates. We demonstrate that platelet secretion and aggregation through the F11R involves actin filament assembly that is dependent on phosphoinositide-3 kinase activation, and inhibitable by wortmannin. Furthermore, such activation results in an increase in the level of free intracellular calcium, phosphorylation of the 32 and 35 kDa forms of the F11R, F11R dimerization coincident with a decrease in monomeric F11R, and association of the F11R with the integrin GPIIIa and with CD9. On the other hand, F11R-mediated events resulting from the binding of platelets to an immobilized surface of M.Ab.F11 lead to platelet adhesion and spreading through the development of filopodia and lammelipodia. These adhesive processes are induced directly by interaction of M.Ab.F11 with the platelet F11R and are not dependent on the FcγRII. We also report here that the stimulation of the F11R in the presence of nonaggregating (subthreshold) concentrations of the physiological agonists thrombin and collagen, results in supersensitivity of platelets to natural agonists by a F11R-mediated process independent of the FcγRII. The delineation of the two separate F11R-mediated pathways is anticipated to reveal significant information on the role of this cell adhesion molecule in platelet adhesion, aggregation and secretion, and F11R-dependent potentiation of agonist-induced platelet aggregation. The participation of F11R in the formation and growth of platelet aggregates and plaques in cardiovascular disorders, resulting in enhanced platelet adhesiveness and hyperaggregability, may serve in the generation of novel therapies in the treatment of inflammatory thrombosis, heart attack and stroke, and other cardiovascular disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号