共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Increased water‐use efficiency translates into contrasting growth patterns of Scots pine and sessile oak at their southern distribution limits 下载免费PDF全文
Elisabet Martínez‐Sancho Isabel Dorado‐Liñán Emilia Gutiérrez Merino Michael Matiu Gerhard Helle Ingo Heinrich Annette Menzel 《Global Change Biology》2018,24(3):1012-1028
In forests, the increase in atmospheric CO2 concentrations (Ca) has been related to enhanced tree growth and intrinsic water‐use efficiency (iWUE). However, in drought‐prone areas such as the Mediterranean Basin, it is not yet clear to what extent this “fertilizing” effect may compensate for drought‐induced growth reduction. We investigated tree growth and physiological responses at five Scots pine (Pinus sylvestris L.) and five sessile oak (Quercus petraea (Matt.) Liebl.) sites located at their southernmost distribution limits in Europe for the period 1960–2012 using annually resolved tree‐ring width and δ13C data to track ecophysiological processes. Results indicated that all 10 natural stands significantly increased their leaf intercellular CO2 concentration (Ci), and consequently iWUE. Different trends in the theoretical gas‐exchange scenarios as a response to increasing Ca were found: generally, Ci tended to increase proportionally to Ca, except for trees at the driest sites in which Ci remained constant. Ci from the oak sites displaying higher water availability tended to increase at a comparable rate to Ca. Multiple linear models fitted at site level to predict basal area increment (BAI) using iWUE and climatic variables better explained tree growth in pines (31.9%–71.4%) than in oak stands (15.8%–46.8%). iWUE was negatively linked to pine growth, whereas its effect on growth of oak differed across sites. Tree growth in the western and central oak stands was negatively related to iWUE, whereas BAI from the easternmost stand was positively associated with iWUE. Thus, some Q. petraea stands might have partially benefited from the “fertilizing” effect of rising Ca, whereas P. sylvestris stands due to their strict closure of stomata did not profit from increased iWUE and consequently showed in general growth reductions across sites. Additionally, the inter‐annual variability of BAI and iWUE displayed a geographical polarity in the Mediterranean. 相似文献
3.
Salvato P Battisti A Concato S Masutti L Patarnello T Zane L 《Molecular ecology》2002,11(11):2435-2444
The winter pine processionary moth has become an important pine pest in the last century, as a consequence of the spread of pine cultivation in the Mediterranean region. The pattern of genetic differentiation of this group, that includes two sibling species (Thaumetopoea pityocampa and Th. wilkinsoni), has been studied in nine populations using amplified fragment length polymorphism (AFLP) and single strand conformation polymorphism-sequence analysis (SSCP) of the mitochondrial cytochrome oxidase 1 (COI) and cytochrome oxydase 2 (COII). Results indicate the existence of strong genetic differentiation between the two species that became separated before the Quaternary ice ages. Moreover data indicate that Th. pityocampa has a strong geographical structure, particularly evident at the nuclear level, where all pairwise phiST resulted to be highly significant and individuals from the same population resulted to be strongly clustered when an individual tree was reconstructed. The estimates of the absolute number of migrants between populations (Nm), obtained from mitochondrial and nuclear DNA markers, suggest that gene flow is low and that a gender-related dispersal could occur in this species. The males appear to disperse more than females, contributing to the genetic diversity of populations on a relatively wide range, reducing the risks of inbreeding and the genetic loss associated with bottlenecks occurring in isolated populations. 相似文献
4.
Khaled Bouzar-Essaidi Manuela Branco Andrea Battisti André Garcia Maria Rosário Fernandes Younes Chabane Mourad Bouzemarene Leïla Benfekih 《Agricultural and Forest Entomology》2021,23(2):212-221
- Thaumetopoea pityocampa is the most important pine defoliator in the Mediterranean basin. Despite being attacked by a number of natural enemies, populations occur frequently at high density in several areas.
- Egg parasitism was studied in 27 pine and cedar forests in Algeria, in relation to the host density (tents per tree) and the proportion of forest cover in the landscape.
- Egg parasitism varied from 2% to 25%, accounted by two parasitoid species, the specialist Baryscapus servadeii and the generalist Ooencyrtus pityocampae.
- Tent density was negatively correlated with parasitism by B. servadeii but not with that of O. pityocampae. Conversely, parasitism by O. pityocampae increased with the proportion of forest and agricultural cover, but not in the case of B. servadeii.
- Maximum summer temperature showed no correlation with parasitism rates. Still, temperature frequently exceeded 40 °C during the period of adult parasitoid activity.
- The low performance of the egg parasitoids at the southern edge of the host range could be explained by the reduced fecundity of the host, climate effects, and phenological mismatching between the parasitoids and the egg development. These and other factors potentially involved the need to be further explored with a long-term study of population dynamics.
5.
Rapid identification of the Asian gypsy moth and its related species based on mitochondrial DNA 下载免费PDF全文
Ying Wu Qiuyang Du Haiwen Qin Juan Shi Zhiyi Wu Weidong Shao 《Ecology and evolution》2018,8(4):2320-2325
The gypsy moth—Lymantria dispar (Linnaeus)—is a worldwide forest defoliator and is of two types: the European gypsy moth and the Asian gypsy moth. Because of multiple invasions of the Asian gypsy moth, the North American Plant Protection Organization officially approved Regional Standards for Phytosanitary Measures No. 33. Accordingly, special quarantine measures have been implemented for 30 special focused ports in the epidemic areas of the Asian gypsy moth, including China, which has imposed great inconvenience on export trade. The Asian gypsy moth and its related species (i.e., Lymantria monocha and Lymantria xylina) intercepted at ports are usually at different life stages, making their identification difficult. Furthermore, Port quarantine requires speedy clearance. As such, it is difficult to identify the Asian gypsy moth and its related species only by their morphological characteristics in a speedy measure. Therefore, this study aimed to use molecular biology technology to rapidly identify the Asian gypsy moth and its related species based on the consistency of mitochondrial DNA in different life stages. We designed 10 pairs of specific primers from different fragments of the Asian gypsy moth and its related species, and their detection sensitivity met the need for rapid identification. In addition, we determined the optimal polymerase chain reaction amplification temperature of the 10 pairs of specific primers, including three pairs of specific primers for the Asian gypsy moth (L. dispar asiatic), four pairs of specific primers for the nun moth (L. monocha), and three pairs of specific primers for the casuarina moth (L. xylina). In conclusion, using our designed primers, direct rapid identification of the Asian gypsy moth and its related species is possible, and this advancement can help improve export trade in China. 相似文献
6.
Genetic diversity and phylogeographic structure of Bactrian camels shown by mitochondrial sequence variations 总被引:1,自引:0,他引:1 下载免费PDF全文
The Bactrian camel includes various domestic (Camelus bactrianus) and wild (Camelus ferus) breeds that are important for transportation and for their nutritional value. However, there is a lack of extensive information on their genetic diversity and phylogeographic structure. Here, we studied these parameters by examining an 809‐bp mtDNA fragment from 113 individuals, representing 11 domestic breeds, one wild breed and two hybrid individuals. We found 15 different haplotypes, and the phylogenetic analysis suggests that domestic and wild Bactrian camels have two distinct lineages. The analysis of molecular variance placed most of the genetic variance (90.14%, P < 0.01) between wild and domestic camel lineages, suggesting that domestic and wild Bactrian camel do not have the same maternal origin. The analysis of domestic Bactrian camels from different geographical locations found there was no significant genetic divergence in China, Russia and Mongolia. This suggests a strong gene flow due to wide movement of domestic Bactrian camels. 相似文献
7.
Diversity among peripheral populations: genetic and evolutionary differentiation of Salamandra atra at the southern edge of the Alps 下载免费PDF全文
Lucio Bonato Andrea Corbetta Giovanni Giovine Enrico Romanazzi Emina Šunje Cristiano Vernesi Barbara Crestanello 《Journal of Zoological Systematics and Evolutionary Research》2018,56(4):533-548
Separate populations at the edge of a species range are receiving great attention and have been shown to be often different from populations in the core area. However, it has rarely been tested whether neighboring peripheral populations are genetically and evolutionarily similar to each other, as expected for their geographical proximity and similar ecological conditions, or differ due to historical contingency. We investigated isolation and differentiation, within‐population genetic diversity and evolutionary relationships among multiple peripheral populations of a cold‐adapted terrestrial salamander, Salamandra atra, at the southern edge of the species core range. We carried out population genetic, phylogeographic, and phylogenetic analyses on various molecular markers (10 autosomal microsatellite loci, three mitochondrial loci with total length >2,100 bp, two protein‐coding nuclear genes) sampled from more than 100 individuals from 13 sites along the southern Prealps. We found at least seven isolated peripheral populations, all highly differentiated from the remaining populations and differentiated from each other at various levels. The within‐population genetic diversity was variable in the peripheral populations, but consistently lower than in the remaining populations. All peripheral populations along the southern Prealps belong to an ancient lineage that is also found in the Dinarides but did not contribute to the postglacial recolonization of the inner and northern Alps. All fully melanistic populations from the Orobian mountains to the southern Dinarides represent a single clade, to the exclusion of the two yellow‐patched populations inhabiting the Pasubio massif and the Sette Comuni plateau, which are distinguished as S. atra pasubiensis and S. atra aurorae, respectively. In conclusion, multiple populations of S. atra at the southern edge of the species core area have different levels of differentiation, different amount of within‐population genetic diversity, and different evolutionary origin. Therefore, they should be regarded as complementary conservation targets to preserve the overall genetic and evolutionary diversity of the species. 相似文献
8.
Ullasa Kodandaramaiah Thomas J. Simonsen Sean Bromilow Niklas Wahlberg Felix Sperling 《Ecology and evolution》2013,3(16):5167-5176
The satyrine butterfly Coenonympha tullia (Nymphalidae: Satyrinae) displays a deep split between two mitochondrial clades, one restricted to northern Alberta, Canada, and the other found throughout Alberta and across North America. We confirm this deep divide and test hypotheses explaining its phylogeographic structure. Neither genitalia morphology nor nuclear gene sequence supports cryptic species as an explanation, instead indicating differences between nuclear and mitochondrial genome histories. Sex‐biased dispersal is unlikely to cause such mito‐nuclear differences; however, selective sweeps by reproductive parasites could have led to this conflict. About half of the tested samples were infected by Wolbachia bacteria. Using multilocus strain typing for three Wolbachia genes, we show that the divergent mitochondrial clades are associated with two different Wolbachia strains, supporting the hypothesis that the mito‐nuclear differences resulted from selection on the mitochondrial genome due to selective sweeps by Wolbachia strains. 相似文献
9.
Dale A. Halbritter Caroline G. Storer Akito Y. Kawahara Jaret C. Daniels 《Ecology and evolution》2019,9(23):13389-13401
The sky islands of southeastern Arizona (AZ) mark a major transition zone between tropical and temperate biota and are considered a neglected biodiversity hotspot. Dispersal ability and host plant specificity are thought to impact the history and diversity of insect populations across the sky islands. We aimed to investigate the population structure and phylogeography of two pine‐feeding pierid butterflies, the pine white (Neophasia menapia) and the Mexican pine white (Neophasia terlooii), restricted to these “islands” at this transition zone. Given their dependence on pines as the larval hosts, we hypothesized that habitat connectivity affects population structure and is at least in part responsible for their allopatry. We sampled DNA from freshly collected butterflies from 17 sites in the sky islands and adjacent high‐elevation habitats and sequenced these samples using ddRADSeq. Up to 15,399 SNPs were discovered and analyzed in population genetic and phylogenetic contexts with Stacks and pyRAD pipelines. Low genetic differentiation in N. menapia suggests that it is panmictic. Conversely, there is strong evidence for population structure within N. terlooii. Each sky island likely contains a population of N. terlooii, and clustering is hierarchical, with populations on proximal mountains being more related to each other. The N. menapia habitat, which is largely contiguous, facilitates panmixia, while the N. terlooii habitat, restricted to the higher elevations on each sky island, creates distinct population structure. Phylogenetic results corroborate those from population genetic analyses. The historical climate‐driven fluxes in forest habitat connectivity have implications for understanding the biodiversity of fragmented habitats. 相似文献
10.
Santos H Rousselet J Magnoux E Paiva MR Branco M Kerdelhué C 《Proceedings. Biological sciences / The Royal Society》2007,274(1612):935-941
Allochronic speciation refers to a mode of sympatric speciation in which the differentiation of populations is primarily due to a phenological shift without habitat or host change. However, it has been so far rarely documented. The present paper reports on a plausible case of allochronic differentiation between sympatric populations of the pine processionary moth (PPM), Thaumetopoea pityocampa. The PPM is a Mediterranean insect with winter larval development. A phenologically atypical population with early adult activity and summer larval development was detected 10 years ago in Portugal. Mitochondrial and nuclear sequences strongly suggest that the 'summer' individuals are closely related to the sympatric winter population, while microsatellite data show a reduction in allelic richness, a distortion of allelic frequencies and significant genetic differentiation. Moreover, monitoring of adult flights suggests that reproductive activity does not overlap between the summer and winter populations. We postulate that the summer population appeared after a sudden phenological shift of some individuals of the sympatric winter population, leading to a founder effect and complete reproductive isolation. Given that the individuals showing this new phenology are subject to different selection pressures, the observed allochronic differentiation may rapidly lead to deeper divergence. 相似文献
11.
Molecular markers provide evidence for a broad‐fronted recolonisation of the widespread calcareous grassland species Sanguisorba minor from southern and cryptic northern refugia 下载免费PDF全文
- Calcareous grasslands belong to the most species‐rich and endangered habitats in Europe. However, little is known about the origin of the species typically occurring in these grasslands. In this study we analysed the glacial and post‐glacial history of Sanguisorba minor, a typical plant species frequently occurring in calcareous grasslands.
- The study comprised 38 populations throughout the whole distribution range of the species across Europe. We used molecular markers (AFLP) and applied Bayesian cluster analysis as well as spatial principal components analysis (sPCA) to identify glacial refugia and post‐glacial migration routes to Central Europe.
- Our study revealed significant differences in the level of genetic variation and the occurrence of rare fragments within populations of S. minor and a distinct separation of eastern and western lineages. The analyses uncovered traditional southern but also cryptic northern refugia and point towards a broad fronted post‐glacial recolonisation.
- Based on these results we postulate that incomplete lineage sorting may have contributed to the detected pattern of genetic variation and that S. minor recolonised Central Europe post‐glacially from Iberia and northern glacial refugia in France, Belgium or Germany. Our results highlight the importance of refugial areas for the conservation of intraspecific variation in calcareous grassland species.
12.
Genetic variation in nuclear and mitochondrial markers supports a large sex difference in lifetime reproductive skew in a lekking species 下载免费PDF全文
Yvonne I. Verkuil Cedric Juillet David B. Lank Fredrik Widemo Theunis Piersma 《Ecology and evolution》2014,4(18):3626-3632
Sex differences in skews of vertebrate lifetime reproductive success are difficult to measure directly. Evolutionary histories of differential skew should be detectable in the genome. For example, male‐biased skew should reduce variation in the biparentally inherited genome relative to the maternally inherited genome. We tested this approach in lek‐breeding ruff (Class Aves, Philomachus pugnax) by comparing genetic variation of nuclear microsatellites (θn; biparental) versus mitochondrial D‐loop sequences (θm; maternal), and conversion to comparable nuclear (Ne) and female (Nef) effective population size using published ranges of mutation rates for each marker (μ). We provide a Bayesian method to calculate Ne (θn = 4Neμn) and Nef (θm = 2Nefμm) using 95% credible intervals (CI) of θn and θm as informative priors, and accounting for uncertainty in μ. In 96 male ruffs from one population, Ne was 97% (79–100%) lower than expected under random mating in an ideal population, where Ne:Nef = 2. This substantially lower autosomal variation represents the first genomic support of strong male reproductive skew in a lekking species. 相似文献
13.
Paleobiogeography of an Iberian endemic species,Luciobarbus sclateri (Günther, 1868) (Actinopterygii,Cyprinidae), inferred from mitochondrial and nuclear markers 下载免费PDF全文
Miriam Casal‐López Silvia Perea Carla Sousa‐Santos Joana I. Robalo Mar Torralva Francisco José Oliva‐Paterna Ignacio Doadrio 《Journal of Zoological Systematics and Evolutionary Research》2018,56(2):127-147
Since the Cenozoic Era, the southern Iberian Peninsula has undergone a series of complex geological and climatic changes that have shaped the hydrographic configuration of the freshwater network, influencing the present‐day distribution of primary freshwater species and favoring a high level of local endemicity. The cyprinid species Luciobarbus sclateri (Günther, 1968) is an endemic species confined to the southern Iberian Peninsula and characterized by a complex evolutionary history. Previous studies linked the structure of L. sclateri populations to the effects of climate change during glaciations and were not able to explain the genetic discordance found between nuclear and mitochondrial markers. The results of this study show that the structure of L. sclateri populations is a reflection of diversification processes linked to the geological history of the region. Thus, we found three main mitochondrial phylogroups: the first one corresponding to small basins in southern Iberian Peninsula, a second one in eastern Iberian Peninsula, corresponding to Segura population, and a third one including the rest of the basins where the species is distributed. The southern group began diverging in the Pliocene as result of tectonic dynamics characterized by the emersion of the basins around the Strait of Gibraltar. The other two groups began diverging with the formation of the current Iberian hydrographic system during Pleistocene. So, the isolation of the hydrographic basins was the main factor driving intraspecific differentiation, followed by recent secondary contacts, admixture, and re‐isolation of the populations. 相似文献
14.
15.
Antoinette J. Piaggio Amy L. Russell Ignacio A. Osorio Alejandro Jiménez Ramírez Justin W. Fischer Jennifer L. Neuwald Luis Lecuona Gary F. McCracken 《Ecology and evolution》2017,7(14):5343-5351
The common vampire bat, Desmodus rotundus, ranges from South America into northern Mexico in North America. This sanguivorous species of bat feeds primarily on medium to large‐sized mammals and is known to rely on livestock as primary prey. Each year, there are hotspot areas of D. rotundus‐specific rabies virus outbreaks that lead to the deaths of livestock and economic losses. Based on incidental captures in our study area, which is an area of high cattle mortality from D. rotundus transmitted rabies, it appears that D. rotundus are being caught regularly in areas and elevations where they previously were thought to be uncommon. Our goal was to investigate demographic processes and genetic diversity at the north eastern edge of the range of D. rotundus in Mexico. We generated control region sequences (441 bp) and 12‐locus microsatellite genotypes for 602 individuals of D. rotundus. These data were analyzed using network analyses, Bayesian clustering approaches, and standard population genetic statistical analyses. Our results demonstrate panmixia across our sampling area with low genetic diversity, low population differentiation, loss of intermediate frequency alleles at microsatellite loci, and very low mtDNA haplotype diversity with all haplotypes being very closely related. Our study also revealed strong signals of population expansion. These results follow predictions from the leading‐edge model of expanding populations and supports conclusions from another study that climate change may allow this species to find suitable habitat within the U.S. border. 相似文献
16.
17.
Mathieu Lévesque Matthias Saurer Rolf Siegwolf Britta Eilmann Peter Brang Harald Bugmann Andreas Rigling 《Global Change Biology》2013,19(10):3184-3199
The ability of tree species to cope with anticipated decrease in water availability is still poorly understood. We evaluated the potential of Norway spruce, Scots pine, European larch, black pine, and Douglas‐fir to withstand drought in a drier future climate by analyzing their past growth and physiological responses at a xeric and a mesic site in Central Europe using dendroecological methods. Earlywood, latewood, and total ring width, as well as the δ13C and δ18O in early‐ and latewood were measured and statistically related to a multiscalar soil water deficit index from 1961 to 2009. At the xeric site, δ13C values of all species were strongly linked to water deficits that lasted longer than 11 months, indicating a long‐term cumulative effect on the carbon pool. Trees at the xeric site were particularly sensitive to soil water recharge in the preceding autumn and early spring. The native species European larch and Norway spruce, growing close to their dry distribution limit at the xeric site, were found to be the most vulnerable species to soil water deficits. At the mesic site, summer water availability was critical for all species, whereas water availability prior to the growing season was less important. Trees at the mesic were more vulnerable to water deficits of shorter duration than the xeric site. We conclude that if summers become drier, trees growing on mesic sites will undergo significant growth reductions, whereas at their dry distribution limit in the Alps, tree growth of the highly sensitive spruce and larch may collapse, likely inducing dieback and compromising the provision of ecosystem services. However, the magnitude of these changes will be mediated strongly by soil water recharge in winter and thus water availability at the beginning of the growing season. 相似文献
18.
The origins of the European domestic goose are uncertain. The available information comes from archaeological findings and historical literature, but genetic evidence has hitherto been scarce. The domestic goose in Europe is derived from the greylag goose (Anser anser), but it is not known where the initial domestication took place and which of the two subspecies of greylag goose was ancestral. We aimed to determine the amount and geographical distribution of genetic diversity in modern populations of greylag geese as well as in different breeds of the domestic goose to make inferences about goose domestication. We studied DNA sequence variation in the mitochondrial control region of greylag geese from multiple populations across Europe and western Asia as well as specimens of domestic geese representing 18 modern breeds and individuals not belonging to any recognised breed. Our results show notable differences in genetic diversity between different greylag goose populations and the presence of six mitochondrial haplogroups which show a degree of geographical partitioning. The genetic diversity of the domestic goose is low, with 84% of sampled individuals having one of two major closely related haplotypes, suggesting that modern European domestic geese may derive from a narrow genetic base. The site of domestication remains unresolved, but domestic geese in Turkey were unusually diverse, indicating the importance of further sampling in the vicinity of the eastern Mediterranean and the Near East. There appears to be past or ongoing hybridisation between greylags and domestic geese in particular areas, consistent with field observations. 相似文献
19.
20.
Comparative multilocus phylogeography of two Palaearctic spruce bark beetles: influence of contrasting ecological strategies on genetic variation 下载免费PDF全文
François Mayer Frédéric B. Piel Anna Cassel‐Lundhagen Natalia Kirichenko Laurent Grumiau Bjørn Økland Coralie Bertheau Patrick Mardulyn 《Molecular ecology》2015,24(6):1292-1310
While phylogeographic patterns of organisms are often interpreted through past environmental disturbances, mediated by climate changes, and geographic barriers, they may also be strongly influenced by species‐specific traits. To investigate the impact of such traits, we focused on two Eurasian spruce bark beetles that share a similar geographic distribution, but differ in their ecology and reproduction. Ips typographus is an aggressive tree‐killing species characterized by strong dispersal, whereas Dendroctonus micans is a discrete inbreeding species (sib mating is the rule), parasite of living trees and a poor disperser. We compared genetic variation between the two species over both beetles’ entire range in Eurasia with five independent gene fragments, to evaluate whether their intrinsic differences could have an influence over their phylogeographic patterns. We highlighted widely divergent patterns of genetic variation for the two species and argue that the difference is indeed largely compatible with their contrasting dispersal strategies and modes of reproduction. In addition, genetic structure in I. typographus divides European populations in a northern and a southern group, as was previously observed for its host plant, and suggests past allopatric divergence. A long divergence time was estimated between East Asian and other populations of both species, indicating their long‐standing presence in Eurasia, prior to the last glacial maximum. Finally, the strong population structure observed in D. micans for the mitochondrial locus provides insights into the recent colonization history of this species, from its native European range to regions where it was recently introduced. 相似文献