首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pathogen-driven balancing selection maintains high genetic diversity in many vertebrates, particularly in the major histocompatibility complex (MHC) immune system gene family, which is often associated with disease susceptibility. In large natural populations where subpopulations face different pathogen pressures, the MHC should show greater genetic differentiation within a species than neutral markers. We examined genetic diversity at the MHC-DQB locus and nine putatively neutral microsatellite markers in grey seals (Halichoerus grypus) from eight United Kingdom (UK) colonies, the Faeroe Islands and Sable Island, Canada. Five DQB alleles were identified in grey seals, which varied in prevalence across the grey seal range. Among the seal colonies, significant differences in DQB allele and haplotype frequencies and in average DQB heterozygosity were observed. Additionally, the DQB gene exhibited greater differentiation among colonies compared with neutral markers, yet a weaker pattern of isolation by distance (IBD). After correcting for the underlying IBD pattern, subpopulations breeding in similar habitats were more similar to one another in DQB allele frequencies than populations breeding in different habitats, but the same did not hold true for microsatellites, suggesting that habitat-specific pathogen pressure influences MHC evolution. Overall, the data are consistent with selection at MHC-DQB loci in grey seals with both varying selective pressures and geographic population structure appearing to influence the DQB genetic composition of breeding colonies.  相似文献   

2.
Our understanding of the evolution of genes of the major histocompatibility complex (MHC) is rapidly increasing, but there are still enigmatic questions remaining, particularly regarding the maintenance of high levels of MHC polymorphisms in small, isolated populations. Here, we analyze the genetic variation at eight microsatellite loci and sequence variation at exon 2 of the MHC class IIB (DAB) genes in two wild populations of the Trinidadian guppy, Poecilia reticulata. We compare the genetic variation of a small (Ne, 100) and relatively isolated upland population to that of its much larger (Ne approximately 2400) downstream counterpart. As predicted, microsatellite diversity in the upland population is significantly lower and highly differentiated from the population further downstream. Surprisingly, however, these guppy populations are not differentiated by MHC genetic variation and show very similar levels of allelic richness. Computer simulations indicate that the observed level of genetic variation can be maintained with overdominant selection acting at three DAB loci. The selection coefficients differ dramatically between the upland (s > or = 0.2) and lowland (s < or = 0.01) populations. Parasitological analysis on wild-caught fish shows that parasite load is significantly higher on upland than on lowland fish, which suggests that large differences in selection intensity may indeed exist between populations. Based on the infection intensity, a substantial proportion of the upland fish would have suffered direct or indirect fitness consequences as a result of their high parasite loads. Selection by parasites plays a particularly important role in the evolution of guppies in the upland habitat, which has resulted in high levels of MHC diversity being maintained in this population despite considerable genetic drift.  相似文献   

3.
Evidence for the importance of major histocompatibility complex (MHC) genotype in immunological fitness of chickens continues to accumulate. The MHC B haplotypes contribute resistance to Marek's and other diseases of economic importance. The Rfp-Y, a second cluster of MHC genes in the chicken, may also contribute to disease resistance. Nevertheless, the MHC B and Rfp-Y haplotypes segregating in broiler chickens are poorly documented. The Camperos, free-range broiler chickens developed in Argentina, provide an opportunity to evaluate MHC diversity in a genetically diverse broiler stock. Camperos are derived by cross-breeding parental stocks maintained essentially without selection since their founding. We analysed 51 DNA samples from the Camperos and their parental lines for MHC B and Rfp-Y variability by restriction fragment pattern (rfp) and SSCP typing methods for B-G, B-F (class Ia), B-Lbeta (class II) and Y-F (class Ib) diversity. We found evidence for 38 B-G genotypes. The Camperos B-G patterns were not shared with White Leghorn controls, nor were any of a limited number of Camperos B-G gene sequences identical to published B-G sequences. The SSCP assays provided evidence for the presence of at least 28 B-F and 29 B-Lbeta genotypes. When considered together B-F, B-L, and B-G patterns provide evidence for 40 Camperos B genotypes. We found even greater Rfp-Y diversity. The Rfp-Y class I-specific probe, 163/164f, revealed 44 different rfps among the 51 samples. We conclude that substantial MHC B and Rfp-Y diversity exists within broiler chickens that might be drawn upon in selecting for desirable immunological traits.  相似文献   

4.
With their direct link to individual fitness, genes of the major histocompatibility complex (MHC) are a popular system to study the evolution of adaptive genetic diversity. However, owing to the highly dynamic evolution of the MHC region, the isolation, characterization and genotyping of MHC genes remain a major challenge. While high‐throughput sequencing technologies now provide unprecedented resolution of the high allelic diversity observed at the MHC, in many species, it remains unclear (i) how alleles are distributed among MHC loci, (ii) whether MHC loci are linked or segregate independently and (iii) how much copy number variation (CNV) can be observed for MHC genes in natural populations. Here, we show that the study of allele segregation patterns within families can provide significant insights in this context. We sequenced two MHC class I (MHC‐I) loci in 1267 European barn owls (Tyto alba), including 590 offspring from 130 families using Illumina MiSeq technology. Coupled with a high per‐individual sequencing coverage (~3000×), the study of allele segregation patterns within families provided information on three aspects of the architecture of MHC‐I variation in barn owls: (i) extensive sharing of alleles among loci, (ii) strong linkage of MHC‐I loci indicating tandem architecture and (iii) the presence of CNV in the barn owl MHC‐I. We conclude that the additional information that can be gained from high‐coverage amplicon sequencing by investigating allele segregation patterns in families not only helps improving the accuracy of MHC genotyping, but also contributes towards enhanced analyses in the context of MHC evolutionary ecology.  相似文献   

5.
The major histocompatibility complex (MHC) plays a key role in disease resistance and is the most polymorphic gene region in vertebrates. Although habitat fragmentation is predicted to lead to a loss in MHC variation through drift, the impact of other evolutionary forces may counter this effect. Here we assess the impact of selection, drift, migration, and recombination on MHC class II and microsatellite variability in 14 island populations of the Aegean wall lizard Podarcis erhardii. Lizards were sampled from islands within the Cyclades (Greece) formed by rising sea levels as the last glacial maximum approximately 20,000 before present. Bathymetric data were used to determine the area and age of each island, allowing us to infer the corresponding magnitude and timing of genetic bottlenecks associated with island formation. Both MHC and microsatellite variation were positively associated with island area, supporting the hypothesis that drift governs neutral and adaptive variation in this system. However, MHC but not microsatellite variability declined significantly with island age. This discrepancy is likely due to the fact that microsatellites attain mutation‐drift equilibrium more rapidly than MHC. Although we detected signals of balancing selection, recombination and migration, the effects of these evolutionary processes appeared negligible relative to drift. This study demonstrates how land bridge islands can provide novel insights into the impact of historical fragmentation on genetic diversity as well as help disentangle the effects of different evolutionary forces on neutral and adaptive diversity.  相似文献   

6.
The hispid cotton rat, Sigmodon hispidus, is a common rodent widely distributed across the southern USA and south into South America. To characterize major histocompatibility complex (MHC) diversity in this species and to elucidate large-scale patterns of genetic partitioning, we examined MHC genetic variability within and among 13 localities, including a disjunct population in Arizona and a population from Costa Rica that may represent an undescribed species. We also tested the hypothesis that populations within the USA are at equilibrium with regard to gene flow and genetic drift, resulting in isolation-by-distance. Using single-strand conformation polymorphism (SSCP) analysis we identified 25 alleles from 246 individuals. Gene diversity within populations ranged from 0.000 to 0.908. Analysis of molecular variance (AMOVA) revealed that 83.7% of observed variation was accounted for by within-population diversity and 16.3% was accounted for by among-population divergence. The disjunct population in Arizona was fixed for a single allele. The Costa Rican population was quite divergent based on allelic composition and was the only population with unique alleles. Within the main portion of the geographical distribution of S. hispidus in the USA there was considerable divergence among some populations; however, there was no significant pattern of isolation-by-distance overall (P = 0.090). Based on the significant divergence of the only sampled population to its east, the Mississippi River appears to represent a substantial barrier to gene flow.  相似文献   

7.
In Leghorn (laying) chickens, susceptibility to a number of infectious diseases is strongly associated with the major histocompatibility ( B ) complex. Nucleotide sequence data have been published for six class I ( B-F ) alleles and for class II ( B-Lβ ) alleles or isotypes from 17 Leghorn haplotypes. It is not known if classical B-L or B-F alleles in broilers are identical, at the sequence level, to any Leghorn alleles. This report describes molecular and immunogenetic characterization of two haplotypes from commercial broiler breeder chickens that were originally identified by serology as a single haplotype, but were differentiated serologically in the present work. The two haplotypes, designated B A4 and B A4variant, shared identical B-G restriction fragment length polymorphism patterns, but differed in one B-Lβ fragment that cosegregated with the serological B haplotype. Furthermore, the nucleotide sequences of the highly variable exons of an expressed B-LβII family gene and B-F gene from the two haplotypes were markedly different from each other. Both the B-LβII family and B-F gene sequences from the B A4 haplotype were identical to the sequences obtained from the reference B 21 haplotype in Leghorns; however, in the B A4 haplotype the B-Lβ 21 and B-F 21 alleles were in linkage with B-G alleles that were not G 21. The nucleotide sequences from B A4variant were unique among the reported chicken B-LβII family and B-F alleles.  相似文献   

8.
P. Millot 《Animal genetics》1978,9(2):115-121
Among 11 lymphocyte factors defined in sheep, 9 are the products of multiple alleles at 2 closely linked loci: OLA-A and OLA-B. A tenth factor is the product of a gene at a third locus: OL-X probably on the same chromosome, but in this case very distant from OLA. The last factor is the product of a gene at a fourth locus: OL-Z, independent of OLA-A and B.  相似文献   

9.
In comparison to their close relatives the chimpanzees and humans, very little is known concerning the amount and structure of genetic variation in gorillas. Two species of gorillas are recognized and while the western gorillas number in the tens of thousands, only several hundred representatives of the mountain gorilla subspecies of eastern gorillas survive. To analyse the possible effects of these different population sizes, this study compares the variation observed at microsatellite and major histocompatibility complex (MHC) loci in samples of wild western and mountain gorillas, collected using a sampling scheme that targeted multiple social groups within defined geographical areas. Noninvasive samples proved a viable source of DNA for sequence analysis of the second exon of the DRB loci of the MHC. Observed levels of variation at the MHC locus were similar between the two gorilla species and were comparable to those in other primates. Comparison of results from analysis of variation at multiple microsatellite loci found only a slight reduction in heterozygosity for the mountain gorillas despite the relatively smaller population size.  相似文献   

10.
The major histocompatibility complex (MHC) is one of the most diverse regions of the mammalian genome. Diversity in MHC genes is integral to their function in the immune system, and while pathogens play a key role in shaping this diversity, the contribution of other selective forces remains unclear. The controlled breeding of cattle offers an excellent model for the identification and exploration of these forces. We characterized the MHC class I genes present in a sample of Canadian Holstein A.I. bulls and compared the results with those obtained in an earlier study. No evidence for a reduction in MHC diversity over 20 years was observed, but the relative frequency of some haplotypes had changed: the formerly rare A12 (w12B) haplotype had become the most common, together with A15, while A19, which dominated the earlier sample, had significantly reduced in frequency. Only 7% of bulls in the current study were MHC homozygous compared with the 14% expected under Hardy-Weinberg. To identify the selective forces at work, a gene substitution model was used to calculate the effects of MHC on selection traits using estimated breeding values for each bull. Significant associations between MHC and production, disease and fertility traits were identified, suggesting that MHC diversity is not merely shaped by disease in this controlled breeding system. The decrease in a common haplotype, the reduced number of homozygous bulls and the associations with disease and production traits together indicate that MHC diversity in dairy cattle is maintained by heterozygote advantage.  相似文献   

11.
More than two nucleotide sequences of the second exon of the ELA-DQB region retrieved from a single animal and two different sequences isolated from horses homozygous in the major histocompatibility complex (MHC) region by descent indicated the existence of at least two ELA-DQB loci at the genomic level. New alleles detected by polymerase chain reaction single strand conformation polymorphism (SSCP) and defined by nucleotide sequencing of the second exon of the DQB gene(s) were described. Based on the level of nucleotide sharing, at least two groups of alleles were shown to exist. The newly defined alleles belonged preferentially to one of the groups. However, their specific locus assignment was not possible from the data collected. At least one of these alleles was shown to be transcribed. No frame-shift mutations were identified among the new alleles, although one pseudoallele containing a stop codon was identified at the genomic DNA level.  相似文献   

12.
Eklund  Amy 《Behavioral ecology》1997,8(6):630-634
This study examined the relationship between the major histocompatibilitycomplex (MHC) genes and mate choice by wild house mice in acontrolled laboratory setting in an attempt to understand themechanisms maintaining natural MHC diversity. Three rearinggroups of wild test mice were produced: nonfostered controlmice, mice fostered into families of an inbred laboratory mousestrain, and mice fostered into families of a second mouse straindiffering genetically from the first only within the MHC region.At maturity, test mice were given a choice of two opposite-sexstimulus mice of the two MHC-congenic strains used for fostering.Test mice were scored for several measures of preference includingamount of time spent with either stimulus mouse, and ejaculationwith a stimulus mouse. Females in two of three rearing groupsspent more time with one MHC type regardless of rearing environment,suggesting that females did not prefer mates dissimilar fromfamily MHC type. Time preferences tended to be stronger in femalesthan in males. Male test mice ejaculated indiscriminantly. Femalewild mice mated to ejaculation more often in longer trials,but these matings were still too infrequent to assess preferences.Fostering had little or no effect on MHC-based mate preferencesof wild house mice, and no evidence suggested that MHC was usedto avoid inbreeding. Wild female mice may still choose matesbased on MHC haplotypes (but do not necessarily prefer MHC-dissimilarmates); other cues are probably also used. Based on these results,inbreeding avoidance does not seem a strong mechanism for maintainingnatural MHC diversity  相似文献   

13.
The fragmentation of populations typically enhances depletion of genetic variation, but highly polymorphic major histocompatibility complex (MHC) genes are thought to be under balancing selection and therefore retain polymorphism despite population bottlenecks. In this study, we investigate MHC DRB (class II) exon 2 variation in 14 spotted suslik populations from two regions differing in their degree of habitat fragmentation and gene flow. We found 16 alleles that segregated in a sample of 248 individuals. The alleles were highly divergent and revealed the hallmark signs of positive selection acting on them in the past, showing a significant excess of nonsynonymous substitutions. This excess was concentrated in putative antigen‐binding sites, which suggests that past selection was driven by pathogens. MHC diversity was significantly lower in fragmented western populations than in the eastern populations, characterized by significant gene flow. In contrast to neutral variation, amova did not reveal genetic differentiation between the two regions. This may indicate similar selective pressures shaping MHC variation in both regions until the recent past. However, MHC allelic richness within a population was correlated with that for microsatellites. FST outlier analyses have shown that population differentiation at DRB was neither higher nor lower than expected under neutrality. The results suggest that selection on MHC is not strong enough to counteract drift that results from recent fragmentation of spotted suslik populations.  相似文献   

14.
The major histocompatibility complex (MHC) is a group of genetic loci coding for haplotypes that have been associated with fitness traits in mammals and birds. Such associations suggest that MHC diversity may be an indicator of overall genetic fitness of endangered or threatened species. The MHC haplotypes of a captive population of 12 families of northern bobwhites (Colinus virginianus) were identified using a combination of immunogenetic and molecular techniques. Alloantisera were produced within families of northern bobwhites and were then tested for differential agglutination of erythrocytes of all members of each family. The pattern of reactions determined from testing these alloantisera identified a single genetic system of alloantigens in the northern bobwhites, resulting in the assignment of a tentative genotype to each individual within the quail families. Restriction fragment patterns of the DNA of each bird were determined using the chicken MHC B‐G cDNA probe bg11. The concordance between the restriction fragment patterns and the alloantisera reactions showed that the alloantisera had identified the MHC of the northern bobwhite and supported the tentative genotype assignments, identifying at least 12 northern bobwhite MHC haplotypes. Eighteen northern bobwhite alloantisera were then used to detect a minimum of 17 masked bobwhite MHC haplotypes. Subsequent restriction fragment pattern analyses using cDNA probes for chicken MHC genes were in agreement with agglutination patterns displayed by the antisera, showing that the immunogenetically identified alloantigen system constituted the MHC of the masked bobwhite. These data demonstrate that a non‐endangered species may be used to provide antisera for differentiating MHC haplotypes in a closely related endangered species, thus providing a practical basis for long‐range monitoring of MHC haplotypes of birds surviving in their native habitats. Zoo Biol 18:279–294, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

15.
DQ alpha, DQ beta, DR alpha and DR beta class II genes of the bovine major histocompatibility complex (MHC) were investigated by Southern blot hybridizations using human probes. Hybridizations of these probes to genomic DNA, digested with PvuII or TaqI, revealed extensive restriction fragment length polymorphisms (RFLPs). The polymorphisms were interpreted genetically by analysing a family material, comprising five sires, 48 dams and 50 offspring, and a population sample comprising 197 breeding bulls. The analysis resolved 20 DQ alpha, 17 DQ beta, 5 DR alpha and 25 DR beta RFLP types. The segregation data were consistent with simple Mendelian inheritance of the RFLPs. The analysis of the bull sample showed that it is possible to apply the RFLP method for routine typing of class II polymorphism in population samples. The linkage disequilibrium in the DQ-DR region was found to be extremely strong as only about 20 DQ and about 30 DQ-DR haplotypes were observed despite the large number of possible haplotypes. Close linkage to the blood group locus M was also found; the M' allele occurred in strong linkage disequilibrium with the class II haplotype DQ1BDR alpha 4DR beta 1B. A population genetic analysis of the DQ data in the sample of breeding bulls revealed that the frequency of homozygotes was significantly lower than Hardy-Weinberg expectation and that the allele frequency distribution deviated significantly from the one expected for selectively neutral alleles.  相似文献   

16.
Founder effect in an island population of bighorn sheep   总被引:1,自引:0,他引:1  
The Tiburon Island population of desert bighorn sheep has increased in size from 20 founders in 1975 to approximately 650 in 1999. This population is now the only population being used as the source stock for transplantations throughout northern Mexico. To evaluate the genetic variation in this population, we examined 10 microsatellite loci and a major histocompatibility complex (MHC) locus. The genetic variation was significantly less than found in other populations of the same subspecies in Arizona. Using a model that takes into account the effects of genetic drift on genetic distance, most of the genetic distance observed between the Tiburon population and Arizona samples could be explained. Because of the low genetic variation found in the Tiburon population, it is suggested that the Tiburon population should be supplemented with additional unrelated animals or that the transplant populations should be supplemented with unrelated animals.  相似文献   

17.
Class II major histocompatibility complex (MHC) beta genes were isolated from 12 species of rockfish (genus Sebastes ). Multiple sequences were found in each of the species. The majority of sequences displayed the characteristics of functional MHC genes, with a small group of sequences that were possibly pseudogenes.  相似文献   

18.
Polymorphism in DQB sequences of the bovine major histocompatibility complex was investigated in 22 British Friesian cattle. The first domain exon was amplified, cloned and sequenced. Eight different sequences were identified, six of which had not been identified previously. The high proportion of novel sequences suggests that additional polymorphisms within the DQB loci remain to be discovered in this breed. One sequence was present in at least 21 of the 22 cattle. This sequence, or a closely related sequence, has also been found in American Holstein Friesian, Swedish Red and White and Japanese Black cattle. The remarkably high sequence conservation suggests that the bovine DQB region may contain a locus with a low level of polymorphism and be more similar to the human DQB region than previously supposed. One sequence with three widely spaced frameshift insertions appeared to be a pseudogene.  相似文献   

19.
The major histocompatibility complex (MHC) contains genes important for immune response in mammals, and these genes exhibit high polymorphism and diversity. The DRA gene, a member of the MHC class II family, is highly conserved across a large number of mammalian species, but it displays exceptionally rich sequence variations in Equidae members. We analyzed allelic polymorphism of the DRA locus in 248 donkeys sampled across the Balkan Peninsula (Albania, Bulgaria, Croatia, Macedonia, Greece and Montenegro). Five known alleles and two new alleles were identified. The new allele Eqas‐DRA*0601 was found to carry a synonymous mutation, and new allele Eqas‐DRA*0701, a non‐synonymous mutation. We further analyzed the historical selection and allele genealogy at the DRA locus in equids. Signals of positive selection obtained by various tests were ambiguous. A conservative conclusion is that DRA polymorphism occurred relatively recently and that positive selection has been acting on the DRA locus for a relatively brief period.  相似文献   

20.
Patterns of spatio-temporal genetic variation at a class II major histocompatibility complex (MHC) locus and multiple microsatellite loci were analysed within and between three water vole metapopulations in Scotland, UK. Comparisons of MHC and microsatellite spatial genetic differentiation, based on standardised tests between two demographically asynchronous zones within a metapopulation, suggested that spatial MHC variation was affected by balancing selection, directional selection and random genetic drift, but that the relative effects of these microevolutionary forces vary temporally. At the metapopulation level, between-year differentiation for MHC loci was significantly correlated with that of microsatellites, signifying that neutral factors such as migration and drift were primarily responsible for overall temporal genetic change at the metapopulation scale. Between metapopulations, patterns of genetic differentiation implied that, at large spatial scales, MHC variation was primarily affected by directional selection and drift. Levels of MHC heterozygosity in excess of Hardy–Weinberg expectations were consistent with overdominant balancing selection operating on MHC variation within metapopulations. However, this effect was not constant among all samples, indicating temporal variation in the strength of selection relative to other factors. The results highlight the benefit of contrasting variation at MHC with neutral markers to separate the effects of stochastic and deterministic microevolutionary forces, and add to a growing body of evidence showing that the mode and relative strength of selection acting on MHC diversity varies both spatially and temporally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号