首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two types of transgenic mice were generated to evaluate the role of hydrogen peroxide in the formation of nuclear DNA damage. One set of lines overexpresses wild-type human catalase cDNA, which is localized to peroxisomes. The other set overexpresses a human catalase construct that is targeted to the nucleus. Expression of the wild-type human catalase transgene was found in liver, kidney, skeletal muscle, heart, spleen, and brain with muscle and heart exhibiting the highest levels. Animals containing the nuclear-targeted construct had a similar pattern of expression with the highest levels in muscle and heart, but with lower levels in liver and spleen. In these animals, immunofluorescence detected catalase present in the nuclei of kidney, muscle, heart, and brain. Both types of transgenic animals had significant increases of catalase activities compared to littermate controls in most tissues examined. Despite enhanced activities of catalase, and its presence in the nucleus, there were no changes in levels of 8OHdG, a marker of oxidative damage to DNA. Nor were there differences in mutant frequencies at a Lac Z reporter transgene. This result suggests that in vivo levels of H(2)O(2) may not generate 8OHdG or other types of DNA damage. Alternatively, antioxidant defenses may be optimized such that additional catalase is unable to further protect nuclear DNA against oxidative damage.  相似文献   

2.
3.
We investigated whether habitual exercise (HE) modulates levels of oxidative DNA damage and responsiveness to oxidative stress induced by renal carcinogen Fe-nitrilotriacetic acid (Fe-NTA). During a ten week protocol, two groups of rats either remained sedentary or underwent swimming for 15-60 min per day, 5 days per week, with or without a weight equivalent to 5% of their body weight. Then we injected Fe-NTA and sacrificed the rats 1 h after the injection. We determined the activity of superoxide dismutase (SOD) in diaphragm and kidney, evaluated levels of 8-hydroxydeoxyguanosine (8OHdG), catalase, and glutathione peroxidase, and assayed OGG1 protein levels in kidney. SOD activity in the diaphragm and kidney was increased in HE rats. By itself, HE had no effect on the level of 8OHdG, but it did significantly suppress induction of 8OHdG by Fe-NTA, and the amount of suppression correlated with intensity of exercise. These results suggest that HE induces resistance to oxidative stress and, at least at the initiation stage, inhibits carcinogenesis.  相似文献   

4.
We investigated whether habitual exercise (HE) modulates levels of oxidative DNA damage and responsiveness to oxidative stress induced by renal carcinogen Fe-nitrilotriacetic acid (Fe-NTA). During a ten week protocol, two groups of rats either remained sedentary or underwent swimming for 15–60?min per day, 5 days per week, with or without a weight equivalent to 5% of their body weight. Then we injected Fe-NTA and sacrificed the rats 1?h after the injection. We determined the activity of superoxide dismutase (SOD) in diaphragm and kidney, evaluated levels of 8-hydroxydeoxyguanosine (8OHdG), catalase, and glutathione peroxidase, and assayed OGG1 protein levels in kidney. SOD activity in the diaphragm and kidney was increased in HE rats. By itself, HE had no effect on the level of 8OHdG, but it did significantly suppress induction of 8OHdG by Fe-NTA, and the amount of suppression correlated with intensity of exercise. These results suggest that HE induces resistance to oxidative stress and, at least at the initiation stage, inhibits carcinogenesis.  相似文献   

5.
We investigated through which mechanisms ceramide increased oxidative damage to induce leukemia HL-60 cell apoptosis. When 5 microm N-acetylsphingosine (C(2)-ceramide) or 20 microm H(2)O(2) alone induced little increase of reactive oxygen species (ROS) generation as judged by the 2'-7'-dichlorofluorescin diacetate method, 20 microm H(2)O(2) enhanced oxidative damage as judged by ROS accumulation, and thiobarbituric acid-reactive substance production after pretreatment with 5 microm C(2)-ceramide at least for 12 h. The treatment with a catalase inhibitor, 3-amino-1h-1,2,4-triazole, increased oxidative damage and apoptosis induced by H(2)O(2), and in contrast, purified catalase inhibited the enhancement of oxidative damage by H(2)O(2) in ceramide-pretreated cells, suggesting that the oxidative effect of ceramide is involved in catalase regulation. Indeed, C(2)-ceramide inhibited the activity of immunoprecipitated catalase and decreased the levels of catalase protein in a time-dependent manner. Moreover, acetyl-Asp-Met-Gln-Asp-aldehyde, which dominantly inhibited caspase-3 and blocked the increase of oxidative damage and apoptosis due to C(2)-ceramide-induced catalase depletion at protein and activity levels. In vitro, active and purified caspase-3, but not caspase-6, -8, and -9, inhibited catalase activity and induced the proteolysis of catalase protein whereas these in vitro effects of caspase-3 were blocked by acetyl-Asp-Met-Gln-Asp-aldehyde. Taken together, it is suggested that H(2)O(2) enhances apoptosis in ceramide-pretreated cells, because ceramide increases oxidative damage by inhibition of ROS scavenging ability through caspase-3-dependent proteolysis of catalase.  相似文献   

6.
Extremely low frequency (ELF) electromagnetic field (EMF) is thought to prolong the life of free radicals and can act as a promoter or co-promoter of cancer. 8-hydroxy-2'-deoxyguanosine (8OHdG) is one of the predominant forms of radical-induced lesions to DNA and is a potential tool to asses the cancer risk. We examined the effects of extremely low frequency electro magnetic field (ELF-EMF) (50 Hz, 0.97 mT) on 8OHdG levels in DNA and thiobarbituric acid reactive substances (TBARS) in plasma. To examine the possible time-dependent changes resulting from magnetic field, 8OHdG and TBARS were quantitated at 50 and 100 days. Our results showed that the exposure to ELF-EMF induced oxidative DNA damage and lipid peroxidation (LPO). The 8OHdG levels of exposed group (4.39+/-0.88 and 5.29+/-1.16 8OHdG/dG.10(5), respectively) were significantly higher than sham group at 50 and 100 days (3.02+/-0.63 and 3.46+/-0.38 8OHdG/dG.10(5)) (p<0.001, p<0.001). The higher TBARS levels were also detected in the exposure group both on 50 and 100 days (p<0.001, p<0.001). In addition, the extent of DNA damage and LPO would depend on the exposure time (p<0.05 and p<0.05). Our data may have important implications for the long-term exposure to ELF-EMF which may cause oxidative DNA damage.  相似文献   

7.
Ethylbenzene, widely used in human life, is a non-mutagenic carcinogen. Sunlight-irradiated ethylbenzene caused DNA damage in the presence of Cu2+, but unirradiated ethylbenzene did not. A Cu+ -specific chelator bathocuproine inhibited DNA damage and catalase showed a little inhibitory effect. The scopoletin assay revealed that peroxides and H(2)O(2) were formed in ethylbenzene exposed to sunlight. These results suggest that Cu+ and alkoxyl radical mainly participate in DNA damage, and H(2)O(2) partially does. When catalase was added, DNA damage at thymine and cytosine was inhibited. Ethylbenzenehydroperoxide, identified by GC/MS analysis, induced the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine and caused DNA damage at consecutive guanines, as observed with cumenehydroperoxide. Equimolar concentrations of H(2)O(2) and acetophenone were produced by the sunlight-irradiation of 1-phenylethanol, a further degraded product of ethylbenzene. These results indicate a novel pathway that oxidative DNA damage induced by the peroxide and H(2)O(2) derived from sunlight-irradiated ethylbenzene may lead to expression of the carcinogenicity.  相似文献   

8.
Propyl gallate (PG), widely used as an antioxidant in foods, is carcinogenic to mice and rats. PG increased the amount of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a characteristic oxidative DNA lesion, in human leukemia cell line HL-60, but not in HP100, which is hydrogen peroxide (H2O2)-resistant cell line derived from HL-60. Although PG induced no or little damage to 32P-5'-end-labeled DNA fragments obtained from genes that are relevant to human cancer, DNA damage was observed with treatment of esterase. HPLC analysis of the products generated from PG incubated with esterase revealed that PG converted into gallic acid (GA). GA induced DNA damage in a dose-dependent manner in the presence of Fe(III)EDTA or Cu(II). In the presence of Fe(III) complex such as Fe(III)EDTA or Fe(III)ADP, GA caused DNA damage at every nucleotide. Fe(III) complex-mediated DNA damage by GA was inhibited by free hydroxy radical (*OH) scavengers, catalase and an iron chelating agent. These results suggested that the Fe(III) complex-mediated DNA damage caused by GA is mainly due to *OH generated via the Fenton reaction. In the presence of Cu(II), DNA damage induced by GA occurred at thymine and cytosine. Although *OH scavengers did not prevent the DNA damage, methional inhibited the DNA damage. Cu(II)-mediated DNA damage was inhibited by catalase and a Cu(I) chelator. These results indicated that reactive oxygen species formed by the interaction of Cu(I) and H2O2 participates in the DNA damage. GA increased 8-oxodG content in calf thymus DNA in the presence of Cu(II), Fe(III)EDTA or Fe(III)ADP. This study suggested that metal-mediated DNA damage caused by GA plays an important role in the carcinogenicity of PG.  相似文献   

9.
Humans are exposed to many carcinogens, but the most significant may be the reactive species derived from metabolism of oxygen and nitrogen. Nitric oxide seems unlikely to damage DNA directly, but nitrous acid produces deamination and peroxynitrite leads to both deamination and nitration. Scavenging of reactive nitrogen species generated in the stomach may be an important role of flavonoids, flavonoids and other plant-derived phenolic compounds. Different reactive oxygen species produce different patterns of damage to DNA bases, e.g., such patterns have been used to implicate hydroxyl radical as the ultimate agent in H(2)O(2)-induced DNA damage. Levels of steady-state DNA damage in vivo are consistent with the concept that such damage is a major contributor to the age-related development of cancer and so such damage can be used as a biomarker to study the effects of diet or dietary supplements on risk of cancer development, provided that reliable assays are available. Methodological questions addressed in this article include the validity of measuring 8-hydroxydeoxyguanosine (8OHdG) in cellular DNA or in urine as a biomarker of DNA damage, the extent of artifact formation during analysis of oxidative DNA damage by gas chromatography-mass spectrometry and the levels of oxidative damage in mitochondrial DNA.  相似文献   

10.
Hinton A  Hume ME 《Anaerobe》1995,1(2):121-127
A Veillonella species and Bacteroides fragilis were isolated from the cecal contents of adult chickens. When growth on an agar medium supplemented with 0.4% glucose and adjusted to pH 6.5, mixed cultures containing Veillonella and B. fragilis inhibited the growth of Salmonella typhimurium; Salmonella enteritidis, Escherichia coli 0157:H7 and Pseudomonas aeruginosa. Decreasing the glucose concentration of the agar decreased the inhibitory activity of the mixed culture. Mixed cultures grown on agar media supplemented with 0.5% glucose and adjusted to pH 6.5, 7.0 or 7.5 also inhibited the growth of S. typhimurium, S. enteritidis, E. coli 0157:H7 and P. aeruginosa. However, increasing the pH of the agar decreased the inhibitory activity of the mixed culture. Pure cultures of Veillonella or B. fragilis did not inhibit the growth of S. typhimurium, S. enteritidis, E. coli 0157:H7 or P. aeruginosa on any of the agar supplemented with different concentrations of glucose or on any of the agar adjusted to different pH levels. The inhibitory activity of the mixed culture was correlated with the concentration of volatile fatty acids that were formed as B. fragilis metabolized glucose to produce succinate and acetate and as the succinate produced by B. fragilis was decarboxylated by Veillonella to produce propionate.  相似文献   

11.
Eugenol used as a flavor has potential carcinogenicity. DNA adduct formation via 2,3-epoxidation pathway has been thought to be a major mechanism of DNA damage by carcinogenic allylbenzene analogs including eugenol. We examined whether eugenol can induce oxidative DNA damage in the presence of cytochrome P450 using [32P]-5'-end-labeled DNA fragments obtained from human genes relevant to cancer. Eugenol induced Cu(II)-mediated DNA damage in the presence of cytochrome P450 (CYP)1A1, 1A2, 2C9, 2D6, or 2E1. CYP2D6 mediated eugenol-dependent DNA damage most efficiently. Piperidine and formamidopyrimidine-DNA glycosylase treatment induced cleavage sites mainly at T and G residues of the 5'-TG-3' sequence, respectively. Interestingly, CYP2D6-treated eugenol strongly damaged C and G of the 5'-ACG-3' sequence complementary to codon 273 of the p53 gene. These results suggest that CYP2D6-treated eugenol can cause double base lesions. DNA damage was inhibited by both catalase and bathocuproine, suggesting that H2O2 and Cu(I) are involved. These results suggest that Cu(I)-hydroperoxo complex is primary reactive species causing DNA damage. Formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine was significantly increased by CYP2D6-treated eugenol in the presence of Cu(II). Time-of-flight-mass spectrometry demonstrated that CYP2D6 catalyzed O-demethylation of eugenol to produce hydroxychavicol, capable of causing DNA damage. Therefore, it is concluded that eugenol may express carcinogenicity through oxidative DNA damage by its metabolite.  相似文献   

12.
The hypothesis that glucose deprivation-induced cytotoxicity in transformed human cells is mediated by mitochondrial O2*- and H2O2 was first tested by exposing glucose-deprived SV40-transformed human fibroblasts (GM00637G) to electron transport chain blockers (ETCBs) known to increase mitochondrial O2*- and H2O2 production (antimycin A (AntA), myxothiazol (Myx), or rotenone (Rot)). Glucose deprivation (2-8 h) in the presence of ETCBs enhanced parameters indicative of oxidative stress (i.e. GSSG and steady-state levels of oxygen-centered radicals) as well as cytotoxicity. Glucose deprivation in the presence of AntA also significantly enhanced cytotoxicity and parameters indicative of oxidative stress in several different human cancer cell lines (PC-3, DU145, MDA-MB231, and HT-29). In addition, human osteosarcoma cells lacking functional mitochondrial electron transport chains (rho0) were resistant to glucose deprivation-induced cytotoxicity and oxidative stress in the presence of AntA. In the absence of ETCBs, aminotriazole-mediated inactivation of catalase in PC-3 cells demonstrated increases in intracellular steady-state levels of H2O2 during glucose deprivation. Finally, in the absence of ETCBs, overexpression of manganese containing superoxide dismutase and/or mitochondrial targeted catalase using adenoviral vectors significantly protected PC-3 cells from toxicity and oxidative stress induced by glucose deprivation with expression of both enzymes providing greater protection than was seen with either alone. Overall, these findings strongly support the hypothesis that mitochondrial O2*- and H2O2 significantly contribute to glucose deprivation-induced cytotoxicity and metabolic oxidative stress in human cancer cells.  相似文献   

13.
The protective effects of resveratrol and 4-hexylresorcinol against oxidative DNA damage in human lymphocytes induced by hydrogen peroxide were investigated. Resveratrol and 4-hexylresorcinol showed no cytotoxicity to human lymphocytes at the tested concentration (10-100 μM). In addition, DNA damage in human lymphocytes induced by H 2 O 2 was inhibited by resveratrol and 4-hexylresorcinol. Resveratrol and 4-hexylresorcinol at concentrations of 10-100 μM induced an increase in glutathione (GSH) levels in a concentration-dependent manner. Moreover, these two compounds also induced activity of glutathione peroxidase (GPX) and glutathione reductase (GR). The activity of glutathione-S-transferase (GST) in human lymphocytes was induced by resveratrol. Resveratrol and 4-hexylresorcinol inhibited the activity of catalase (CAT). These data indicate that the inhibition of resveratrol and 4-hexylresorcinol on oxidative DNA damage in human lymphocytes induced by H 2 O 2 might be attributed to increase levels of GSH and modulation of antioxidant enzymes (GPX, GR and GST).  相似文献   

14.
The main anticancer action of doxorubicin (DOX) is believed to be due to topoisomerase II inhibition and free radical generation. Our previous study has demonstrated that TAS-103, a topoisomerase inhibitor, induces apoptosis through DNA cleavage and subsequent H(2)O(2) generation mediated by NAD(P)H oxidase activation [H. Mizutani et al. J. Biol. Chem. 277 (2002) 30684-30689]. Therefore, to clarify whether DOX functions as an anticancer drug through the same mechanism or not, we investigated the mechanism of apoptosis induced by DOX in the human leukemia cell line HL-60 and the H(2)O(2)-resistant sub-clone, HP100. DOX-induced DNA ladder formation could be detected in HL-60 cells after a 7 h incubation, whereas it could not be detected under the same condition in HP100 cells, suggesting the involvement of H(2)O(2)-mediated pathways in apoptosis. Flow cytometry revealed that H(2)O(2) formation preceded the increase in Delta Psi m and caspase-3 activation. Poly(ADP-ribose) polymerase (PARP) and NAD(P)H oxidase inhibitors prevented DOX-induced DNA ladder formation in HL-60 cells. Moreover, DOX significantly induced formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine, an indicator of oxidative DNA damage, in HL-60 cells at 1 h, but not in HP100 cells. DOX-induced apoptosis was mainly initiated by oxidative DNA damage in comparison with the ability of other topoisomerase inhibitors (TAS-103, amrubicin and amrubicinol) to cause DNA cleavage and apoptosis. These results suggest that the critical apoptotic trigger of DOX is considered to be oxidative DNA damage by the DOX-induced direct H(2)O(2) generation, although DOX-induced apoptosis may involve topoisomerase II inhibition. This oxidative DNA damage causes indirect H(2)O(2) generation through PARP and NAD(P)H oxidase activation, leading to the Delta Psi m increase and subsequent caspase-3 activation in DOX-induced apoptosis.  相似文献   

15.
Pregnancy termination consecutively for three or more times during the first trimester is termed as Recurrent pregnancy loss (RPL). In addition to the abnormal karyotype, heavy metal induced oxidative damage may contribute as prominent etiological factor in pregnancy termination. Oxidative stress is considered crucial in etiology underlying RPL with altered antioxidant status and subsequent DNA damage. The current case controlled study investigated Total antioxidant capacity (TAC), DNA damage (8OHdG) and heavy metals in RPL group (n = 30) and the women with successful pregnancies and no cases of miscarriage as control group (30 women). Heavy metals -Antimony (Sb) and Arsenic (As) were measured by Inductively Coupled Plasma Mass spectrophotometry (ICP-MS). There was significant decrease in levels of TAC in RPL group compared to healthy pregnant women (P < 0.05). On contrary, elevated levels of As and Sb were observed in RPL group with subsequent increase in the levels of 8OHdG (P < 0.001); indicating extensive DNA damage in these patients. Furthermore, increased levels of As and Sb in RPL group were positively correlated with 8OHdG and negatively with total antioxidant capacity. The outcome of the study provides clear insight of the role of metal induced oxidative stress that plays a vital role in the pathophysiology underlying RPL.  相似文献   

16.
Increased risks of cancers and oxidative DNA damage have been observed in diabetic patients. Many endogenous aldehydes such as 3-deoxyglucosone and glyceraldehyde (GA) increase under hyperglycemic conditions. We showed that these aldehydes induced Cu(II)-mediated DNA damage, including 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation. GA had the strongest ability to damage DNA, and addition of low concentrations of H2O2 markedly enhanced the DNA damage. GA significantly increased 8-oxodG formation in human cultured cells (HL-60), and H2O2 enhanced it. We conclude that oxidative DNA damage by hyperglycemia-related aldehydes, especially GA, and marked enhancement of DNA damage by H2O2 may participate in diabetes-associated carcinogenesis.  相似文献   

17.
We examined time-dependent changes in antioxidant vitamins and oxidative damage to DNA and lipids in the bone marrow, liver, and plasma of rats given total body irradiation (TBI) with X-rays at 3 Gy. The oxidative damage to DNA and lipids was evaluated by measuring increases of 8-hydroxydeoxyguanosine (8OHdG) in DNA and 4-hydroxy-2-nonenal (HNE), respectively. After the TBI, marked increases in 8OHdG and HNE were detected at 3 to 5 h in the bone marrow, while gradual increases in these parameters were detected after a few days in the liver. These changes in 8OHdG and HNE were well correlated within each tissue. In the bone marrow, levels of both vitamin C and vitamin E were decreased by the TBI; however, the changes in vitamin C were earlier and greater than those in vitamin E. In the liver, the level of vitamin C did not decrease, but that of vitamin E decreased due to the TBI. Changes in HNE, vitamin C, and vitamin E in the plasma were similar to those in the liver. Within each tissue, the time of decrease in antioxidants was almost the same as that of the increase in oxidative damage. An increase in total iron due to the TBI was also detected in these tissues. In particular, the total iron in the bone marrow was markedly increased at a few hours after the TBI, with a slight increase in transferrin and no increase in ferritin. Exposure studies performed on cells or isolated DNA showed that an increase in 8OHdG was detected immediately after irradiation at more than 100 Gy in bone marrow cells and at less than 10 Gy in isolated DNA, suggesting that an increase in 8OHdG is undetectable even in bone marrow immediately after the TBI at 3 Gy. These results indicate that the onset of oxidative damage to DNA and lipids was delayed after TBI at 3 Gy, that it was quite different in the bone marrow and the liver, and that an increase in iron and decrease in antioxidant vitamins were involved in the mechanism of oxidative damage.  相似文献   

18.
Although curcumin is known to exhibit antitumor activity, carcinogenic properties have also been reported. To clarify the potentiality of carcinogenesis by curcumin, we have examined whether curcumin can induce DNA damage in the presence of cytochrome P450 (CYP) using [32P]-5(')-end-labeled DNA fragments obtained from genes relevant to human cancer. Curcumin treated with CYP 2D6, CYP1A1, or CYP1A2 induced DNA damage in the presence of Cu(II). CYP2D6-treated curcumin caused base damage, especially at 5(')-TG-3('), 5(')-GC-3('), and GG sequences. The DNA damage was inhibited by both catalase and bathocuproine, suggesting that reactive species derived from the reaction of H(2)O(2) with Cu(I) participate in DNA damage. Formation of 8-oxo-7,8-dihydro-2(')-deoxyguanosine was significantly increased by CYP2D6-treated curcumin in the presence of Cu(II). Time-of- flight mass spectrometry demonstrated that CYP2D6 catalyzed the conversion of curcumin to O-demethyl curcumin. Therefore, it is concluded that curcumin may exhibit carcinogenic potential through oxidative DNA damage by its metabolite.  相似文献   

19.
Gao M  Li Y  Long J  Shah W  Fu L  Lai B  Wang Y 《Mutation research》2011,719(1-2):52-59
Benzo[a]pyrene [B(a)P] is one of the most prevalent environmental carcinogens and genotoxic agents. However, the mechanisms of B(a)P-induced oxidative damage in cervical tissue are still not clear. The present study was to investigate the oxidative stress and DNA damage in cervix of ICR female mice induced by acute treatment with B(a)P. Oxidative stress was assayed by analysis of malondialdehyde (MDA), superoxide anion and H(2)O(2), and antioxidant enzymes. The alkaline single-cell electrophoresis (SCGE) was used to measure DNA damage. The contents of MDA and glutathione (GSH), and the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferase (GST) were significantly increased in cervix 24, 48 and 72h after B(a)P treatment of a single dose of 12.5 and 25mg/kg, while GSH, CAT, SOD and GST had no significant difference with the dose of 50mg/kg B(a)P at post-treatment time 48 and 72h except for SOD activity at 48h which was significant. The maximum values of SOD, CAT, GST and GSH were peaked at 24h and then decreased gradually while GPx activities and MDA levels persisted for up to 72h. Superoxide anion, H(2)O(2) and DNA damage changed similarly as the activity of SOD, CAT or GST. Additionally, increases of formamidopyrimidine DNA glycosylase (FPG) specific DNA damage were observed and can be greatly rescued by vitamin C pretreatment. Overall, B(a)P demonstrated a time- and dose- related oxidative stress and DNA damage in cervix.  相似文献   

20.
We examined the effects of dietary vitamin E (VE) on oxidative damage to DNA and lipids in the liver a few days after total body irradiation (TBI). ODS rats, which lack vitamin C synthesis, were fed either a low VE diet (4.3 λmg λVE/kg) or a basal VE diet (75.6 λmg λVE/kg) for 5 weeks while vitamin C was supplied in the drinking water. The VE level in the liver of the low VE group was lower and the levels of lipid peroxides were higher compared to those of the basal VE group: the relative levels in the two groups were 1:30 for VE, 18:1 for 4-hydroxynonenal (HNE), and 10:1 for hexanal (HA). The level of 8-hydroxydeoxyguanosine (8OHdG), a marker of oxidative DNA damage, did not differ between the low VE and the basal VE groups. When the rats received TBI at the dose of 3 λGy and were killed on day 6, the levels of HNE, HA and 8OHdG increased by 2.2-, 2-, and 1.5-times, respectively, in the low VE group, but TBI did not cause such increases in the basal VE group. Changes in antioxidative enzymes (glutathione peroxidase, catalase, and Cu/Zn-SOD) in the liver could not explain the different responses of the two diet groups to TBI-induced oxidative damage. The concentrations of vitamin C and glutathione in the liver did not differ between the two groups. These results suggest that dietary VE can prevent the oxidative damage to DNA and lipids in the liver which appear a few days after TBI at dose of 3 λGy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号