首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mastore M  Kohler L  Nappi AJ 《The FEBS journal》2005,272(10):2407-2415
The synthesis and involvement of H(2)O(2) during the early stages of melanogenesis involving the oxidations of DOPA and dopamine (diphenolase activity) were established by two sensitive and specific electrochemical detection systems. Catalase-treated reaction mixtures showed diminished rates of H(2)O(2) production during the autoxidation and tyrosinase-mediated oxidation of both diphenols. Inhibition studies with the radical scavenger resveratrol revealed the involvement in these reactions of additional reactive intermediate of oxygen (ROI), one of which appears to be superoxide anion. There was no evidence to suggest that H(2)O(2) or any other ROI was produced during the tyrosinase-mediated conversion of tyrosine to DOPA (monophenolase activity). Establishing by electrochemical methods the endogenous production H(2)O(2) in real time confirms recent reports, based in large part on the use of exogenous H(2)O(2), that tyrosinase can manifest both catalase and peroxidase activities. The detection of ROI in tyrosinase-mediated in vitro reactions provides evidence for sequential univalent reductions of O(2), most likely occurring at the enzyme active site copper. Collectively, these observations focus attention on the possible involvement of peroxidase-H(2)O(2) systems and related ROI-mediated reactions in promoting melanocytotoxic and melanoprotective processes.  相似文献   

2.
Endothelial NO synthase (eNOS) is critically modulated by kinases via the phosphorylation of its Ser(1179) (bovine) or Ser(1177) (human) residue. Reactive oxygen species such as H(2)O(2) was reported to activate Akt, leading to increased eNOS Ser(1179) phosphorylation and activity. But reactive oxygen species are also known to attenuate eNOS function in cardiovascular diseases. Prior studies showing H(2)O(2)-stimulated eNOS phosphorylation were performed on serum-starved cells, and only the short term effect of H(2)O(2) was examined. Here we found that the effects of H(2)O(2) on eNOS Ser(1179) phosphorylation and function were bidirectional. With endothelial cells cultured with serum, H(2)O(2) initially raised eNOS Ser(1179) phosphorylation and activity. However, after the peak increase at 30 min, eNOS Ser(1179) phosphorylation dramatically declined. Parallel to the alterations of eNOS Ser(1179) phosphorylation, Akt was transiently activated by H(2)O(2) and subsequently became dormant. In contrast, AMP-activated protein kinase (AMPK) was progressively activated in H(2)O(2)-treated cells. Blocking Akt activation abolished the initial rise of eNOS Ser(1179) phosphorylation after H(2)O(2) treatment. In long term H(2)O(2)-treated cells where Akt was deactivated, significant amounts of Ser(1179)-phosphorylated eNOS remained. AMPK inhibition eradicated the remaining eNOS Ser(1179) phosphorylation. Taken together, these studies revealed that Akt and AMPK orchestrated a bidirectional action on eNOS Ser(1179) phosphorylation in H(2)O(2)-treated cells. Long term H(2)O(2) exposure decreased eNOS Ser(1179) phosphorylation, and this might account for the loss of eNOS function in cardiovascular diseases where chronic oxidative injury occurs.  相似文献   

3.
From the mixture of 4(2)-O-beta-D-galactosyl-maltose (Gal-G2) and beta-cyclodextrin (betaCD), novel heterobranched betaCDs, (Gal-G2)-betaCD and (Gal-G2)2-betaCDs, were synthesized by the reverse action of debranching enzyme. The optimum conditions for the production of (Gal-G2)2-betaCDs were examined. A mixture of (Gal-G2)2-betaCDs was produced in about 4% yield when Aerobacter aerogenes pullulanase (64 units per 1 g of Gal-G2) was incubated with 1.6 M Gal-G2 and 0.16 M betaCD at 50 degrees C for 4 days. The reaction products, (Gal-G2)2-betaCDs, were separated into three peaks by HPLC analysis on a Hypercarb S column. Their structures were analyzed by fast atom bombardment mass spectroscopy and NMR spectroscopies, and confirmed by comparison of their hydrolyzates by beta-galactosidase with the authentic (G2)2 -betaCDs. The structures of (Gal-G2)-betaCD and three components of (Gal-G2)2-betaCDs were identified as 6-O-(GalG2)-betaCD, 6(1),6(2)-, 6(1),6(3)- and 6(1),6(4)-di-O-(Gal-G2)2-betaCD, respectively.  相似文献   

4.
A model of ligand-induced intracellular calcium (Ca2+) responses incorporating phospholipase C (PLC) and protein kinase C (PKC) is developed for the purpose of understanding the mechanisms underlying the observed temporal patterns of intracellular calcium (Ca(i)2+) under sustained agonist stimulation. Some studies have suggested that inhibition of ligand receptors and PLC by PKC could generate sinusoidal Ca2+ oscillations, while PKC-independent Ca2+-induced Ca2+ release (CICR) via IP(3)-gated Ca2+ channels on the endoplasmic reticulum (ER) is believed to be responsible for baseline spiking. However, some evidence also indicates that baseline spiking can be observed under high-PKC activity, or under low-PKC activity with low agonist stimulus, as well. Insight into the basis of these observations regarding the role of PKC in Ca(i)2+ response patterns can be gained by developing and analyzing a mathematical model of Ca(i)2+ responses. We do this herein and find that (1) interaction of CICR and the sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) pump is enough to generate both types of Ca(i)2+ oscillations, (2) there exist four possible Ca(i)2+ response patterns under sustained agonist stimulus: a sub-threshold response (SR), baseline spiking, sinusoidal oscillations (SO) and transient with plateau, and (3) the IP(3) concentration, which is controlled by the strength of the interaction between PKC and PLC, can be used to predict the Ca(i)2+ response patterns. From this analysis we conclude that the different patterns of Ca(i)2+ oscillations can be understood as a generic consequence of the interactions between CICR via the IP(3)-gated Ca(2+) channels in response to changes in the level of IP(3), and re-uptake into the ER/SR via the SERCA pump. PKC, in conjunction with PLC, can act as a switch between different Ca(i)2+ response patterns by modulating the cytosolic IP(3) level, which determines the Ca(i)2+ patterns.  相似文献   

5.
The promoting activity of polyamine analogs (IV approximately XV) on staphylococcal nuclease with DNA as the substrate was compared with that of natural polyamines (I APPROXIMATELY III): I. NH2(CH2)3NH(CH2)4NH(CH2)3NH2(spermine); II. NH2(CH2)3NH(CH2)3NH(CH2)3NH2(thermine); III. NH2(CH2)4NH2 (putrescine); IV. CN(CH2)2NH(CH2)4NH(CH2)2CN; V. HOOC(CH2)2NH(CH2)4NH(CH2)2COOH; VI. C2H5OOC(CH2)2NH(CH2)4NH(CH2)2COOC2H5; VII. HO(CH2)3NH(CH2)4HH(CH2)3OH; VIII. CH3COHH(CH2)3NH(CH2)4NH(CH2)3NHCOCH3; IX. C2H5NH(CH2)3NH(CH2)4NH(CH2)3NHC2H5; X. NH2(CH2)3S(CH2)4S(CH2)3NH2; XI. NH2(CH2)3NH(CH2)2O(CH2)2NH(CH2)3NH2; XII. NH2(CH2)3NCH3(CH2)4HCH3(CH2)3NH2; XIII. CN(CH2)2NCH3(CH2)4NCH3(CH2)2CN; XIV. (CH3)2N(CH2)3NCH3(CH2)4NCH3(CH2)3N(CH3)2; XV. NH2(CH2)2O(CH2)2NH2 Replacement of the terminal groups by CN, COOH, COOEt, NHAc, NHEt, or N(CH3)2 remarkably decreased the activity. The compound VII with terminal hydroxyl groups had a lower promoting activity at low concentrations, but revealed higher activity at higher concentrations and, in contrast to spermine, no inhibition at all even at very high concentrations. Replacement of both internal amino groups by sulfur or NCH3 decreased the activity. The introduction of an ether bond into the internal methylene groups (compound XI) highly decreased the activity. Based upon these findings the possible relationship between structure and activity is discussed.  相似文献   

6.
Series of phenoxypyrimidines and phenoxytriazines were prepared to be evaluated as herbicides. Among them, 2-(2,6-dichlorophenoxy)-pyrimidine (XV), 2-phenoxy-4,6-dimethyl- pyrimidine (XVII), 2-(3-methyl-4-chlorophenoxy)-4,6-bis(ethylamino)-5-triazine (LIV), 2-(2,4-dichlorophenoxy)-4,6-bis(ethylamino)-s-triazine (LVIII), and 2-(2,6-dichlorophenoxy)-4,6-bis(ethylamino)-s-triazine (LX) showed high pre-emergent herbicidai activity to radish. On the other hand, 2-chloro-4-(2,6-dichlorophenoxy)-6-methylpyrimidine (XXX) revealed high efficiency to millet. Some structure-activity relationship is discussed.  相似文献   

7.
Using a mass-spectrometric disequilibrium technique, net uptake of HCO(3)(-) and CO(2) during steady-state photosynthesis was studied in whole cells and chloroplasts from the green algae Tetraedron minimum and Chlamydomonas noctigama, grown in air enriched with 5% (v/v) CO(2) (high-CO(2) cells) or in air [0.035% (v/v) CO(2); low-CO(2) cells]. High- and low-CO(2) cells of both species were able to take up CO(2) and HCO(3)(-), with maximum rates being largely unaffected by the growth conditions. High- and low-CO(2) cells of T. minimum showed a pronounced preference for HCO(3)(-) while the rates of net HCO(3)(-) and CO(2) uptake were similar in C. noctigama. The most significant differences between high- and low-CO(2) cells of the two species were the 5- to 6-fold increase in the apparent affinities of net HCO(3)(-) uptake and CO(2) uptake after acclimation to air. The high-affinity uptake systems for inorganic carbon were almost completely induced within 4 h in both algae. Photosynthetically active chloroplasts isolated from both species were also able to take up CO(2) and HCO(3)(-). As in whole cells, HCO(3)(-) was the dominant carbon species taken up by chloroplasts from T. minimum while CO(2) and HCO(3)(-) were taken up at similar rates in plastids from C. noctigama. In addition, high-affinity uptake systems for CO(2) and HCO(3)(-) were detected in chloroplasts preparations after acclimation of the parent cells to air. Isolation of ribulose-1,5-bisphosphate carboxylase/oxygenase revealed K(m) values of 13 and 42 micro M CO(2) for the enzymes from T. minimum and C. noctigama, respectively. These results are consistent with the presence of inducible and energy-dependent high-affinity HCO(3)(-) and CO(2) uptake systems associated with chloroplasts, indicating that these organelles play an important role in the CO(2)-concentrating mechanism.  相似文献   

8.
Yamazaki S  Morioka C  Itoh S 《Biochemistry》2004,43(36):11546-11553
Tyrosinase is a copper monooxygenase containing a coupled dinuclear copper active site (type-3 copper), which catalyzes oxygenation of phenols (phenolase activity) as well as dehydrogenation of catechols (catecholase activity) using O(2) as the oxidant. In this study, catalase activity (conversion of H(2)O(2) to (1/2)O(2) and H(2)O) and peroxygenase activity (H(2)O(2)-dependent oxygenation of substrates) of mushroom tyrosinase have been examined kinetically by using amperometric O(2) and H(2)O(2) sensors. The catalase activity has been examined by monitoring the initial rate of O(2) production from H(2)O(2) in the presence of a catalytic amount of tyrosinase in 0.1 M phosphate buffer (pH 7.0) at 25 degrees C under initially anaerobic conditions. It has been found that the catalase activity of mushroom tyrosinase is three-order of magnitude greater than that of mollusk hemocyanin. The higher catalase activity of tyrosinase could be attributed to easier accessibility of H(2)O(2) to the dinuclear copper site of tyrosinase. Mushroom tyrosinase has also been demonstrated for the first time to catalyze oxygenation reaction of phenols with H(2)O(2) (peroxygenase activity). The reaction has been investigated kinetically by monitoring the H(2)O(2) consumption rate in 0.5 M borate buffer (pH 7.0) under aerobic conditions. Similarity of the substituent effects of a series of p-substituted phenols in the peroxygenase reaction with H(2)O(2) to those in the phenolase reaction with O(2) as well as the absence of kinetic deuterium isotope effect with a perdeuterated substrate (p-Cl-C(6)D(4)OH vs p-Cl-C(6)H(4)OH) clearly demonstrated that the oxygenation mechanisms of phenols in both systems are the same, that is, the electrophilic aromatic substitution reaction by a (micro-eta(2):eta(2)-peroxo)dicopper(II) intermediate of oxy-tyrosinase.  相似文献   

9.
Glycolato and S-lactato complexes containing the dioxomolybdenum(VI) moiety have been synthesized for studies on the role of the alpha-hydroxycarboxylato anion in the iron molybdenum cofactor of nitrogenase. The ligands in these complexes, vis K2[MoO2(glyc)2].H2O (H2glyc=glycolic acid, C2H4O3) (1) and (Na2[MoO2(S-lact)2])3.13H2O (H2lact=lactic acid, C3H6O3) (2) chelate through their alpha-alkoxyl and alpha-carboxyl oxygen atoms. In contrast, octanuclear K6[(MoO2)8(glyc)6(Hglyc)2].10H2O (3) formed by the reduction of the glycolato complex (1), features three different ligand binding modes: (i) non-bridging and bridging bidentate coordination of alpha-alkoxyl and alpha-carboxyl groups, and (ii) bidentate bridging using alpha-carboxyl group, leaving the alpha-alkoxyl group free. The octanuclear skeleton shows strong metal-metal interactions. The coordination modes in (1) and (2) mimic that of homocitrate to the iron molybdenum cofactor (FeMo-co) of nitrogenase. The bidentate coordination of alpha-alkoxyl and alpha-carboxyl groups shows that bond of alpha-carboxyl group to Mo is less susceptible to the oxidation state of molybdenum compared with the Mo-alpha-alkoxyl bond. This is supported by the dinuclear coordination of alpha-carboxyl group with free alpha-alkoxyl group in glycolato molybdate(V) (3).  相似文献   

10.
Oxidation of the anticancer anthracyclines doxorubicin (DXR) and daunorubicin (DNR) by lactoperoxidase(LPO)/H(2)O(2) and horseradish peroxidase(HRP)/H(2)O(2) systems in the presence and absence of nitrite (NO(2)(-)) has been investigated using spectrophotometric and EPR techniques. We report that LPO/H(2)O(2)/NO(2)(-) causes rapid and irreversible loss of anthracyclines' absorption bands, suggesting oxidative degradation of their chromophores. Both the initial rate and the extent of oxidation are dependent on both NO(2)(-) concentration and pH. The initial rate decreases when the pH is changed from 7 to 5, and the reaction virtually stops at pH 5. Oxidation of a model hydroquinone compound, 2,5-di-tert-butylhydroquinone, by LPO/H(2)O(2) is also dependent on NO(2)(-); however, in contrast to DNR and DXR, this oxidation is most efficient at pH 5, indicating that LPO/H(2)O(2)/NO(2)(-) is capable of efficiently oxidizing simple hydroquinones even in the neutral form. Oxidation of anthracyclines by HRP/H(2)O(2)/NO(2)(-) is substantially less efficient relative to that by LPO/H(2)O(2)/NO(2)(-) at either pH 5 or pH 7, most likely due to the lower rate of NO(2)(-) metabolism by HRP/H(2)O(2). EPR measurements show that interaction of anthracyclines and 2,5-di-tert-butylhydroquinone with LPO/H(2)O(2)/NO(2)(-) generates the corresponding semiquinone radicals presumably via one-electron oxidation of their hydroquinone moieties. The possible role of the (*)NO(2) radical, a putative LPO metabolite of NO(2)(-), in oxidation of these compounds is discussed. Because in vivo the anthracyclines may co-localize with peroxidases, H(2)O(2), and NO(2)(-) in tissues, their oxidation via the proposed mechanism is likely. These observations reveal a novel, peroxidase- and nitrite-dependent mechanism for the oxidative transformation of the anticancer anthracyclines, which may be pertinent to their biological activities in vivo.  相似文献   

11.
A kinetic and thermodynamic study was made of the formation of the hybrid (R(2)Y(2)) glyceraldehyde 3-phosphate dehydrogenase from the yeast (Y(4)) and rabbit (R(4)) enzymes. The values of the thermodynamic parameters for the equilibrium between R(4), Y(4) and R(2)Y(2) suggest that the R(2)-R(2) and Y(2)-Y(2) interactions are similar. However, the failure to observe the RY(3) and R(3)Y hybrids is interpreted in terms of differences at the interfaces of the R-R and Y-Y interactions (the glyceraldehyde 3-phosphate dehydrogenase molecule being regarded as a dimer of dimers). The kinetics of formation of the R(2)Y(2) hybrid were studied and a model was proposed to account for the results. Best-fit values for the rate constants of the individual steps were evaluated by computer simulation, and the rate-limiting steps were identified as the dissociation of tetramers to dimers. It is proposed that the cleavage plane for dissociation of the tetramers corresponds to the region of low electron density through the centre of the molecule in the X-ray-crystallographic structure for human glyceraldehyde 3-phosphate dehydrogenase (Watson et al., 1972), which is probably the plane containing the Q and R axes in the lobster enzyme (Buehner et al., 1974). The R(2)Y(2) hybrid was isolated in milligram amounts by ion-exchange chromatography and its rate of reversion to the native enzyme was shown to be consistent with the kinetic model proposed from the hybrid-formation experiments.  相似文献   

12.
Kopper BJ  Lindroth RL 《Oecologia》2003,134(1):95-103
The purpose of this study was to assess the independent and interactive effects of CO(2), O(3), and plant genotype on the foliar quality of a deciduous tree and the performance of a herbivorous insect. Two trembling aspen (Populus tremuloides Michaux) genotypes differing in response to CO(2) and O(3) were grown at the Aspen FACE (Free Air CO(2) Enrichment) site located in northern Wisconsin, USA. Trees were exposed to one of four atmospheric treatments: ambient air (control), elevated carbon dioxide (+CO(2); 560 microl/l), elevated ozone (+O(3); ambient x1.5), and elevated CO(2)+O(3). We measured the effects of CO(2) and O(3) on aspen phytochemistry and on performance of forest tent caterpillar (Malacosoma disstria Hübner) larvae. CO(2) and O(3) treatments influenced foliar quality for both genotypes, with the most notable effects being that elevated CO(2) reduced nitrogen and increased tremulacin levels, whereas elevated O(3) increased early season nitrogen and reduced tremulacin levels, relative to controls. With respect to insects, the +CO(2) treatment had little or no effect on larval performance. Larval performance improved in the +O(3) treatment, but this response was negated by the addition of elevated CO(2) (i.e., +CO(2)+O(3) treatment). We conclude that tent caterpillars will have the greatest impact on aspen under current CO(2) and high O(3) levels, due to increases in insect performance and decreases in tree growth, whereas tent caterpillars will have the least impact on aspen under high CO(2) and low O(3) levels, due to moderate changes in insect performance and increases in tree growth.  相似文献   

13.
Low concentrations of inhaled hydrogen sulfide (H(2)S) induce hypometabolism in mice. Biological effects of H(2)S in in vitro systems are augmented by lowering O(2) tension. Based on this, we hypothesized that reduced O(2) tension would increase H(2)S-mediated hypometabolism in vivo. To test this, male Sprague-Dawley rats were exposed to 80 ppm H(2)S at 21% O(2) or 10.5% O(2) for 6 h followed by 1 h recovery at room air. Rats exposed to H(2)S in 10.5% O(2) had significantly decreased body temperature and respiration compared with preexposure levels. Heart rate was decreased by H(2)S administered under both O(2) levels and did not return to preexposure levels after 1 h recovery. Inhaled H(2)S caused epithelial exfoliation in the lungs and increased plasma creatine kinase-MB activity. The effect of inhaled H(2)S on prosurvival signaling was also measured in heart and liver. H(2)S in 21% O(2) increased Akt-P(Ser473) and GSK-3β-P(Ser9) in the heart whereas phosphorylation was decreased by H(2)S in 10.5% O(2), indicating O(2) dependence in regulating cardiac signaling pathways. Inhaled H(2)S and low O(2) had no effect on liver Akt. In summary, we found that lower O(2) was needed for H(2)S-dependent hypometabolism in rats compared with previous findings in mice. This highlights the possibility of species differences in physiological responses to H(2)S. Inhaled H(2)S exposure also caused tissue injury to the lung and heart, which raises concerns about the therapeutic safety of inhaled H(2)S. In conclusion, these findings demonstrate the importance of O(2) in influencing physiological and signaling effects of H(2)S in mammalian systems.  相似文献   

14.
Guanine (Gua) modification by nitrating and hydroxylating systems was investigated in DNA. In isolated calf thymus DNA, 8-NO(2)-Gua and 8-oxo-Gua were dose-dependently formed with peroxynitrite, and 8-NO(2)-Gua was released in substantial amounts. Myeloperoxidase (MPO) with H(2)O(2) and NO(2)(-) reacted with calf thymus DNA to form 8-NO(2)-Gua dose dependently without release of 8-NO(2)-Gua. The frequency of strand breaks was higher than the sum of 8-NO(2)-Gua and 8-oxo-Gua, particularly in the MPO-treated DNA, indicating the importance of other types of damage. The activation of human neutrophils and lymphocytes with phorbol ester did not induce 8-NO(2)-Gua and 8-oxo-Gua in their nuclear DNA. However, 8-NO(2)-Gua was found in calf thymus DNA co-incubated with activated neutrophils in the presence of NO(2)(-). No significant formation of 8-NO(2)-Gua was found in liver DNA from mice treated with Escherichia coli lipopolysaccharide. The incubation of peroxynitrite or MPO-H(2)O(2)-NO(2)(-)-treated DNA with formamidopyrimidine glycosylase (Fpg) released 8-oxo-Gua, but not 8-NO(2)-Gua, indicating that 8-NO(2)-Gua is not a substrate for Fpg. Although 8-NO(2)-Gua was generated in isolated DNA by different nitrating systems, other types of damage were formed in abundance, and the lesion could not be found reliably in nuclear DNA, suggesting that the biological importance is limited.  相似文献   

15.
Nitrite and SCN(-) in saliva can mixes with H(2)O(2) in the stomach. The mixing can result in the formation of ONOOH. It is not yet known how salivary SCN(-) reacts with ONOOH. An objective of the present study was to elucidate the reaction between ONOOH and SCN(-). In nitrite/H(2)O(2) systems at pH 2, SCN(-) inhibited the consumption of nitrite and the formation of O(3)(-). SCN(-) enhanced the decomposition of ONOOH and H(2)O(2) in HNO(2)/H(2)O(2) systems. Accompanying the reactions, sulfate was formed, suggesting that ONOOH oxidized SCN(-). SCN(-) inhibited the nitration of phenolics induced by HNO(2)/H(2)O(2). The inhibition is discussed taking SCN(-)-dependent reduction of ONOOH to HNO(2) into consideration. SCN(-) also inhibited H(2)O(2)-induced consumption of nitrite and nitration of phenolics in acidified saliva. The result obtained in this study suggests that salivary SCN(-) can reduce ONOOH to O(2)(-)/HNO(2) inhibiting nitrating reactions in the stomach.  相似文献   

16.
Hemoglobin A(2) (alpha(2)delta(2)) is an important hemoglobin variant which is a minor component (2-3%) in the circulating red blood cells, and its elevated concentration in beta-thalassemia is a useful clinical diagnostic. In beta-thalassemia major, where there is beta-chain production failure, HbA(2) acts as the predominant oxygen deliverer. HbA(2) has two more important features. (1) It is more resistant to thermal denaturation than HbA, and (2) it inhibits the polymerization of deoxy sickle hemoglobin (HbS). Hemoglobin E (E26K(beta)), formed as a result of the splice site mutation on exon 1 of the beta-globin gene, is another important hemoglobin variant which is known to be unstable at high temperatures. Both heterozygous HbE (HbAE) and homozygous HbE (HbEE) are benign disorders, but when HbE combines with beta-thalassemia, it causes E/beta-thalassemia which has severe clinical consequences. In this paper, we present the crystal structures of HbA(2) and HbE at 2.20 and 1.74 A resolution, respectively, in their R2 states, which have been used here to provide the probable explanations of the thermal stability and instability of HbA(2) and HbE. Using the coordinates of R2 state HbA(2), we modeled the structure of T state HbA(2) which allowed us to address the structural basis of the antisickling property of HbA(2). Using the coordinates of the delta-chain of HbA(2) (R2 state), we also modeled the structure of hemoglobin homotetramer delta(4) that occurs in the case of rare HbH disease. From the differences in intersubunit contacts among beta(4), gamma(4), and delta(4), we formed a hypothesis regarding the possible tetramerization pathway of delta(4). The crystal structure of a ferrocyanide-bound HbA(2) at 1.88 A resolution is also presented here, which throws light on the location and the mode of binding of ferrocyanide anion with hemoglobin, predominantly using the residues involved in DPG binding. The pH dependence of ferrocyanide binding with hemoglobin has also been investigated.  相似文献   

17.
Hydrolysis of isoligustroside (1) and isooleuropein (2), secoiridoid glucosides, in the presence of β-glucosidase provided 2-(4-hydroxyphenyl)methyl (2R,3S,4S)-3-formyl-3,4-dihydro-4-(2-methoxy-2-oxoethyl)-2-methyl-2H-pyran-5-carboxylate (3) and 2-(3,4-dihydroxyphenyl)methyl (2R,3S,4S)-3-formyl-3,4-dihydro-4-(2-methoxy-2-oxoethyl)-2-methyl-2H-pyran-5-carboxylate (4), respectively. The structures of 3 and 4 were elucidated on the basis of extensive spectral analyses, including 2D-NMR experiments. Compounds 3 and 4 were found to be new rearrangement products of the aglycones of 1 and 2. The cytotoxic activities of 3 and 4 were evaluated using a disease-oriented panel of 39 human cancer cell lines and showed moderate cytotoxic activity for 4, while 3 exhibited weaker activity compared to that of 4.  相似文献   

18.
Complexes of the platinum(II) tetrachlorodianion with positively charged nuclear dyes have been prepared in an effort to produce neutral molecules which could gain ready access to the nuclear DNA where the platinum(II) tetrachlorodianion could function as a radiosensitizing and a bifunctional alkylating agent. The thiazin dyes Thionin, Azure B, and Methylene Blue, the aminoxanthene dye Pyronin Y, and the thiazole dye Thioflavin have each been complexed to the platinum(II) tetrachlorodianion(PtCl4) in a ratio of 2:1(dye:PtCl4). Studies of the interaction of these complexes and of the dyes with the pBR322 plasmid superhelical DNA demonstrated that while each complex and dye readily associated with the DNA in a dose-dependent manner, only Pt(Thioflavin)2 and Thioflavin produced irreversible DNA changes (single-strand breaks). In exponentially growing EMT6 cells the cytotoxicity of these drugs was assessed in normally oxygenated and hypoxic cells at both pH 7.4 and 6.45. At concentrations ranging from 1 to 500 microM, Pt(Methylene Blue)2 was significantly more cytotoxic than the other thiazin dye complexes Pt(Thionin)2 and Pt(Azure B)2. The cytotoxicity of Pt(Thionin)2 and Pt(Methylene Blue)2 was increased in normally oxygenated and hypoxic cells at low pH. Both Pt(Pyronin Y)2 and Pt(Thioflavin)2 were more toxic than the thiazin complexes. Pt(Pyronin Y)2 was most cytotoxic to normally oxygenated cells at normal pH and hypoxic cells at low pH, while Pt(Thioflavin)2 was most cytotoxic to cells at low pH under both oxygenation conditions. In vitro studies of the radiosensitizing properties of these agents in EMT6 cells demonstrated that exposure to 100 microM for 1 h before and during irradiation (except for Pt[Thioflavin]2, which was assayed at 25 microM) resulted in enhancement rations of 2.5, 1.9, 1.5, and 1.5 for Pt(Azure B)2, Pt(Thionin)2, Pt(Pyronin Y)2, and Pt(Thioflavin)2, respectively, in hypoxic cells. In contrast, Pt(Methylene Blue)2 (and Methylene Blue) proved to be a radioprotector of normally oxygenated cells and did not sensitize hypoxic cells to the cytotoxic effects of radiation. In the FSaIIC fibrosarcoma in vivo administration of each drug at 100 mg/kg intraperitoneally (ip) 15 min prior to irradiation (except for Pt[Thioflavin]2, which was given at 1 mg/kg ip) showed that, with single radiation fractions of 10 and 20 Gy, dose-modifying factors of 2.1, 1.8, 1.5, and 1.2 were produced by Pt(Azure B)2, Pt(Thionin)2, Pt(Pyronin Y), and Pt(Methylene Blue)2, respectively, after correcting for growth delays induced by the drug alone. In comparison, misonidazole at 1 g/kg ip produced a dose-modifying factor of 1.4.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Endomorphin-2 (1; H-Tyr-Pro-Phe-Phe-NH2; EM2) and its novel cyclic asparagine (cycloAsn) analogues, H-Tyr-cAsn(CHPh)-Phe-Phe-NH2 (2) and H-Tyr-cAsn(CHMe2)-Phe-Phe-NH2 (3), were synthesized via liquid-phase synthesis. The structures of the products and intermediates were characterized by IR, 1H-NMR, MS, and HR-MS analyses. The antinociceptive activity of EM2 and its cyclic asparagine analogues were assessed in AcOH-induced abdominal constriction tests in mice with i.p. injection. The results show that the antinociceptive activities of EM2 and its cyclic asparagine analogue 2 were higher than those of aspirine and meperidine. Analogue 2 was observed to be a stronger analgesic with dose-dependence than EM2. The test mice did not show any tendency to be addicted while administrated of analogue 2 repeatedly and regularly.  相似文献   

20.
Improved non-viral vector systems are needed for efficient delivery of DNA to target cell nuclei in gene therapy. A series of linear polyamine poly(ethylene glycol) (PEG) constructs has been synthesised by reaction of appropriately Boc-protected thermine derivatives with omega-methoxyPEG oxiranylmethyl ethers. Constructs carrying 1-3 MeOPEG units and 0, 2 or 4 N-methyl groups have been prepared by this method. H2N(CH2)3NBoc(CH2)3NBoc(CH2)3NHBoc was prepared efficiently by mono-trifluoroacetylation of thermine, attachment of Boc and removal of the trifluoroacetyl group in one pot. A similar process gave H2N(CH2)3NBoc(CH2)3NBoc(CH2)3NH2. BocMeN(CH2)3NHMe was alkylated by 1,3-dibromopropane to give BocMeN(CH2)3NMe(CH2)3NMe(CH2)3NMeBoc. A cyanoethylation/reduction sequence extended H2N(CH2)3NBoc(CH2)3NBoc(CH2)3NH2 to give H2N(CH2)3NBoc(CH2)3NBoc(CH2)3NBoc(CH2)3NBoc(CH2) 3NH2, which was converted to its mono- and di-MeOPEG550 derivatives. Deprotection gave the linear polyamine MeOPEG constructs. A branched triamine-poly(ethylene glycol) construct was prepared by acylation of (BocHN(CH2)3)2N(CH2)3NH2 with omega-methoxyPEG 550 chloroformate, followed by deprotection. A cyanoethylation/reduction/protection sequence from (H2N(CH2)3)2 N(CH2)3NHBoc gave a protected pentamine. Alkylation with Br(CH2)5CONH(CH2)2NHBoc, deprotection, acylation with MeOPEG chloroformate and deprotection gave a pentamine MeOPEG construct in which the MeOPEG is attached through a linker to the central amine. The linear hexamine construct carrying MeOPEG550 at only one terminus was the most effective DNA-interactive member of the two series in an ethidium displacement assay and was effective in delivering a reporter gene to RIF-1 tumours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号