首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using SRAP (sequence-related amplified polymorphism) markers a genetic linkage map of cucumber was constructed with a population consisting of 138 F2 individuals derived from a cross of the two cucumber lines, S06 and S52. In the survey of parental polymorphisms with 182 primer combinations, 64 polymorphism-revealing primer pairs were screened out, which generated totally 108 polymorphic bands with an average of 1.7 bands per primer pair and at most 6 bands from one primer pair. The constructed molecular linkage map included 92 loci, distributed in seven linkage groups and spanning 1164.2 cM in length with an average genetic distance of 12.6 cM between two neighboring loci. Based on this linkage map, the quantitative trait loci (QTL) for the lateral branch number (lbn) and the lateral branch average length (lbl) in cucumber were identified by QTLMapper1.6. A major QTL lbn1 located between ME11SA4B and ME5EM5 in LG2 could explain 10.63% of the total variation with its positively effecting allele from S06. A major QTL lbl1 located between DC1OD3 and DC1EM14 in LG2 could account for 10.38% of the total variation with its positively effecting allele from S06.  相似文献   

2.
Cucumber (Cucumis sativus L. 2n = 2x = 14), thatbelongs to Cucurbitaceae family, is one of majorvegetables with a planting area second to that of to-mato in the world[1]. Due to its economical importanceplant breeders and geneticists have paid much atten-tion to the genetic study on this important vegetablecrop, but the research progress in cucumber is muchless than that in tomato. In 1990, Pierce[2] reviewed allthe reported genes of cucumber that had been geneti-cally analyzed since the 1930…  相似文献   

3.
Late leaf spot (LLS) and rust have the greatest impact on yield losses worldwide in groundnut (Arachis hypogaea L.). With the objective of identifying tightly linked markers to these diseases, a total of 3,097 simple sequence repeats (SSRs) were screened on the parents of two recombinant inbred line (RIL) populations, namely TAG 24?×?GPBD 4 (RIL-4) and TG 26?×?GPBD 4 (RIL-5), and segregation data were obtained for 209 marker loci for each of the mapping populations. Linkage map analysis of the 209 loci resulted in the mapping of 188 and 181 loci in RIL-4 and RIL-5 respectively. Using 143 markers common to the two maps, a consensus map with 225 SSR loci and total map distance of 1,152.9?cM was developed. Comprehensive quantitative trait locus (QTL) analysis detected a total of 28 QTL for LLS and 15 QTL for rust. A major QTL for LLS, namely QTL(LLS)01 (GM1573/GM1009-pPGPseq8D09), with 10.27-62.34% phenotypic variance explained (PVE) was detected in all the six environments in the RIL-4 population. In the case of rust resistance, in addition to marker IPAHM103 identified earlier, four new markers (GM2009, GM1536, GM2301 and GM2079) showed significant association with the major QTL (82.96% PVE). Localization of 42 QTL for LLS and rust on the consensus map identified two candidate genomic regions conferring resistance to LLS and rust. One region present on linkage group AhXV contained three QTL each for LLS (up to 67.98% PVE) and rust (up to 82.96% PVE). The second candidate genomic region contained the major QTL with up to 62.34% PVE for LLS. Molecular markers associated with the major QTL for resistance to LLS and rust can be deployed in molecular breeding for developing groundnut varieties with enhanced resistance to foliar diseases. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11032-011-9661-z) contains supplementary material, which is available to authorized users.  相似文献   

4.
RAPD markers were employed for construction of a linkage map and localization of QTLs for oleic acid level using a set of 94 recombinant inbred lines (RILs) of mustard (Brassica juncea L.) as a mapping population. Only 30% of the 235 random primers used were useful in terms of polymorphism detected and the reproducibility of those patterns. Normal Mendelian segregation was observed for the majority of the 130 markers obtained with 71 informative primers; only 13.1% deviated (P < 0.01) from the expected 1:1 ratio. One-hundred and fourteen markers were assigned to 21 linkage groups (LGs) covering a total length of 790.4 cM with an average distance of 6.93 cM between markers. Two quantitative trait loci (QTL) for oleic acid level were mapped to 14- and 10.6-cM marker intervals on two different LGs. Both loci together explained 32.2% of phenotypic variance. One major QTL explained 28.5% of the trait variance observed in this species.  相似文献   

5.
Groundnut (Arachis hypogaea L.) is an important food and cash crop grown mainly in semi-arid tropics (SAT) regions of the world where drought is the major constraint on productivity. With the aim of understanding the genetic basis and identification of quantitative trait loci (QTL) for drought tolerance, two new recombinant inbred line (RIL) mapping populations, namely ICGS 76?×?CSMG 84-1 (RIL-2) and ICGS 44?×?ICGS 76 (RIL-3), were used. After screening of 3,215 simple sequence repeat (SSR) markers on the parental genotypes of these populations, two new genetic maps were developed with 119 (RIL-2) and 82 (RIL-3) SSR loci. Together with these maps and the reference map with 191 SSR loci based on TAG 24?×?ICGV 86031 (RIL-1), a consensus map was constructed with 293 SSR loci distributed over 20 linkage groups, spanning 2,840.8?cM. As all these three populations segregate for drought-tolerance-related traits, a comprehensive QTL analysis identified 153 main effect QTL (M-QTL) and 25 epistatic QTL (E-QTL) for drought-tolerance-related traits. Localization of these QTL on the consensus map provided 16 genomic regions that contained 125 QTL. A few key genomic regions were selected on the basis of the QTL identified in each region, and their expected role in drought adaptation is also discussed. Given that no major QTL for drought adaptation were identified, novel breeding approaches such as marker-assisted recurrent selection (MARS) and genomic selection (GS) approaches are likely to be the preferred approaches for introgression of a larger number of QTL in order to breed drought-tolerant groundnut genotypes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11032-011-9660-0) contains supplementary material, which is available to authorized users.  相似文献   

6.
甘蓝型油菜花瓣缺失基因的图谱定位   总被引:4,自引:1,他引:3  
在无花瓣品系APT02和正常有花瓣品种中双4号构建的的F2分离群体中,运用AFLP和SRAP两种标记技术对甘蓝型油菜花瓣缺失基因进行分子标记和图谱定位。在两亲本间筛选20对AFLP引物和170对SRAP 引物,进一步通过BSA法筛选,获得了与甘蓝型油菜花瓣缺失基因WHB连锁的1个SRAP标记e8m3_4(600bp)和1个AFLP标记E3247_15(150bp),标记与基因WHB之间的遗传距离分别为5 cM和13.5cM;构建了一个甘蓝型油菜(Brassica napus.L )的分子标记遗传连锁图谱,该图谱共包含213个AFLP标记、56个SRAP标记和1个形态标记,分布于17个主要连锁群、两个三联体和4个连锁对中,遗传图距总长2487.1cM,标记间平均距离为10.09 cM。通过图谱定位,控制花瓣缺失性状的基因WHB被定位到第4连锁群(LG4)上。  相似文献   

7.
Parental and consensus genetic maps of Vitis vinifera L. (2n = 38) were constructed using a F1 progeny of 139 individuals from a cross between two partially seedless genotypes. The consensus map contained 301 markers [250 amplification fragment length polymorphisms (AFLPs), 44 simple sequence repeats (SSRs), three isozymes, two random amplified polymorphic DNAs (RAPDs), one sequence-characterized amplified region (SCAR), and one phenotypic marker, berry color] mapped onto 20 linkage groups, and covered 1,002 cM. The maternal map consisted of 157 markers covering 767 cM (22 groups). The paternal map consisted of 144 markers covering 816 cM (23 groups). Differences in recombination rates between these maps and another unpublished map are discussed. The major gene for berry color was mapped on both the paternal and consensus maps. Quantitative trait loci (QTLs) for several quantitative subtraits of seedlessness in 3 successive years were searched for, based on parental maps: berry weight, seed number, seed total fresh and dry weights, seed percent dry matter, and seed mean fresh and dry weights. QTLs with large effects (R2 up to 51%) were detected for all traits and years at the same location on one linkage group, with some evidence for the existence of a second linked major QTL for some of them. For these major QTLs, differences in relative parental effects were observed between traits. Three QTLs with small effects (R2 from 6% to 11%) were also found on three other linkage groups, for berry weight and seed number in a single year, and for seed dry matter in 2 different years.  相似文献   

8.
St. Augustinegrass [Stenotaphrum secundatum (Walt.) Kuntze] is a warm-season turfgrass commonly grown in the southern USA. In this study, the first linkage map for all nine haploid chromosomes of the species was constructed for cultivar ‘Raleigh’ and cultivar ‘Seville’ using a pseudo-F2 mapping strategy. A total of 160 simple sequence repeat markers were mapped to nine linkage groups (LGs) covering a total distance of 1176.24 cM. To demonstrate the usefulness of the map, quantitative trait loci (QTL) were mapped controlling field winter survival, laboratory-based freeze tolerance, and turf quality traits. Multiple genomic regions associated with these traits were identified. Moreover, overlapping QTL were found for winterkill and spring green up on LG 3 (99.21 cM); turf quality, turf density, and leaf texture on LG 3 (68.57–69.50 cM); and surviving green tissue and regrowth on LGs 1 (38.31 cM), 3 (77.70 cM), 6 (49.51 cM), and 9 (34.20 cM). Additional regions, where QTL identified in both field and laboratory-based/controlled environment freeze testing co-located, provided strong support that these regions are good candidates for true gene locations. These results present the first complete linkage map produced for St. Augustinegrass, providing a template for further genetic mapping. Additionally, markers linked to the QTL identified may be useful to breeders for transferring these traits into new breeding lines and cultivars.  相似文献   

9.
Leaf area is an important parameter in oil palm breeding as it is positively correlated with oil yield. However, measurement of leaf area is tedious and also destructive. In the present study, a breeding population with 145 palms derived from a cross between Deli Dura and Avros Pisifera was used to construct a high-density linkage map and identify quantitative trait loci (QTL) for leaf area in oil palm. Using genotyping by sequencing, a linkage map containing 2413 SNPs was constructed. The total length of the linkage map was 1161.89 cM, with an average marker spacing of 0.48 cM. Based on the continuous phenotyping of leaf area from 2010 to 2015, two suggestive QTL for leaf area were mapped on chromosomes (Chr) 3 and 9. The allelic effects of the QTL associated with leaf area in the mapping population were estimated by linear regression using ordinary least squares method. The QTL on Chr 9 explained 13.3% of phenotypic variation for leaf area. A candidate gene, ARC5, within the narrow interval of QTL on Chr 9 was identified. The gene was significantly higher expressed in leaf than root and fruit of oil palm. This high-quality and SNP-based map supplies a base to fine map QTL for agronomic traits in oil palm, and the markers closely linked to the stable QTL may be used in marker-assisted selection in oil palm breeding.  相似文献   

10.
In the absence of a complete and annotated bovine genome sequence, detailed human-bovine comparative maps are one of the most effective tools for identification of positional candidate genes contributing to quantitative trait loci (QTL) in cattle. In the present study, eight genes from human chromosome 8 were selected for mapping in cattle to improve breakpoint resolution and confirm gene order on the comparative map near the 40 cM region of the BTA27 linkage map where a QTL affecting dairy form had previously been identified. The resulting map identified ADRB3 as a positional candidate gene for the QTL contributing to the dairy form trait based on its estimated position between 40 and 45 cM on the linkage map. It is also a functional candidate gene due to its role in fat metabolism, and polymorphisms in the ADRB3 gene associated with obesity and metabolic disease in humans, as well as, carcass fat in sheep. Further studies are underway to investigate the existence of polymorphisms in the bovine ADRB3 gene and their association with traits related to fat deposition in cattle.  相似文献   

11.
Cadmium (Cd) is a widespread soil pollutant and poses a significant threat to human health via the food chain. Large phenotypic variations in Cd concentration of radish roots and shoots have been observed. However, the genetic and molecular mechanisms of Cd accumulation in radish remain to be elucidated. In this study, a genetic linkage map was constructed using an F(2) mapping population derived from a cross between a high Cd-accumulating cultivar NAU-Dysx and a low Cd-accumulating cultivar NAU-Yh. The linkage map consisted of 523 SRAP, RAPD, SSR, ISSR, RAMP, and RGA markers and had a total length of 1,678.2 cM with a mean distance of 3.4 cM between two markers. All mapped markers distributed on nine linkage groups (LGs) having sizes between 134.7 and 236.8 cM. Four quantitative trait loci (QTLs) for root Cd accumulation were mapped on LGs 1, 4, 6, and 9, which accounted for 9.86 to 48.64 % of all phenotypic variance. Two QTLs associated with shoot Cd accumulation were detected on LG1 and 3, which accounted for 17.08 and 29.53 % of phenotypic variance, respectively. A major-effect QTL, qRCd9 (QTL for root Cd accumulation on LG9), was identified on LG 9 flanked by NAUrp011_754 and EM5me6_286 markers with a high LOD value of 23.6, which accounted for 48.64 % of the total phenotypic variance in Cd accumulation of F(2) lines. The results indicated that qRCd9 is a novel QTL responsible for controlling root Cd accumulation in radish, and the identification of specific molecular markers tightly linked to the major QTL could be further applied for marker-assisted selection (MAS) in low-Cd content radish breeding program.  相似文献   

12.
利用三倍体胚乳遗传模型定位玉米籽粒淀粉含量QTL   总被引:2,自引:0,他引:2  
董永彬  李玉玲  牛素贞 《遗传》2006,28(11):1401-1406
在两种环境条件下种植以普通玉米自交系丹232和爆裂玉米自交系N04为亲本构建的259个F2:3家系群体, 采用SSR标记构建了包含183个标记的玉米遗传连锁图谱, 覆盖玉米基因组1 762.2 cM, 标记间平均距离为9.6 cM。利用三倍体胚乳遗传模型和区间作图方法对籽粒淀粉含量进行了QTL定位和遗传效应分析, 春、夏播条件下共检测到10个QTL, 春播条件下检测到的QTL在夏播均被检测到, 分别位于第1、3、4、5、7染色体上,可解释淀粉的表型总变异分别为36.84%和72.65%, 单个QTL解释表型变异介于4.74%~11.26%。在检测到的 QTL中, 有2个QTL的遗传作用方式在春播均表现为超显性, 而夏播分别为加性和部分显性; 其他2个为加性, 1个为部分显性, 5个为超显性。3个QTL的增效基因来自丹232, 其余QTL的增效基因均来自N04。  相似文献   

13.
An RFLP genetic linkage joinmap was constructed from four different mapping populations of cotton (Gossypium hirsutum L.). Genetic maps from two of the four populations have been previously reported. The third genetic map was constructed from 199 bulk-sampled plots of an F2.3 (HQ95–6×’MD51ne’) population. The map comprises 83 loci mapped to 24 linkage groups with an average distance between markers of 10.0 centiMorgan (cM), covering 830.1 cM or approximately 18% of the genome. The fourth genetic map was developed from 155 bulk-sampled plots of an F2.3 (119– 5 sub-okra×’MD51ne’) population. This map comprises 56 loci mapped to 16 linkage groups with an average distance between markers of 9.3 cM, covering 520.4 cM or approximately 11% of the cotton genome. A core of 104 cDNA probes was shared between populations, yielding 111 RFLP loci. The constructed genetic linkage joinmap from the above four populations comprises 284 loci mapped to 47 linkage groups with the average distance between markers of 5.3 cM, covering 1,502.6 cM or approximately 31% of the total recombinational length of the cotton genome. The linkage groups contained from 2 to 54 loci each and ranged in distance from 1.0 to 142.6 cM. The joinmap provided further knowledge of competitive chromosome arrangement, parental relationships, gene order, and increased the potential to map genes for the improvement of the cotton crop. This is the first genetic linkage joinmap assembled in G. hirsutum with a core of RFLP markers assayed on different genetic backgrounds of cotton populations (Acala, Delta, and Texas plain). Research is ongoing for the identification of quantitative trait loci for agronomic, physiological and fiber quality traits on these maps, and the identification of RFLP loci lineage for G. hirsutum from its diploid progenitors (the A and D genomes). Received: 23 February 2001 / Accepted: 8 June 2001  相似文献   

14.
千粒重是油菜重要的产量相关性状之一,构建油菜遗传连锁图谱是研究其产量性状基因的前提。本研究利用小孢子培养技术,选育出了甘蓝型油菜大粒品系(G-42)和小粒品系(7-9)的纯合DH系DH-G-42和DH-7-9,其千粒重分别为6.24 g和2.42 g,二者比值达2.58。以DH-G-42为母本、DH-7-9为父本,构建了含190个单株的F2遗传作图群体,利用SSR和SRAP标记技术绘制遗传连锁图谱,该图谱共包含20个连锁群,涉及128个SSR标记和100个SRAP标记,图谱总长1546.6cM,标记间平均图距为6.78cM。本研究共检测到3个与千粒重性状相关的QTL,分别位于A9和C1连锁群,其中qSW-A9-1和qSW-A9-2贡献率分别达到10.98%和27.45%,均可视为控制粒重的主效QTL。本研究为后续进行油菜千粒重性状QTL的精细定位分析、分子标记辅助选择育种及新基因的克隆等奠定了基础。  相似文献   

15.
The European hazelnut (Corylus avellana L.) is the most economically important nut species in the Betulaceae family. Despite the need for new improved hazelnut cultivars, few breeding programs are carried out because of the large plant size, the long lifecycle of the plant, and the expense and time required. To date, there are no reports of maps with quantitative trait loci (QTL) in hazelnut. Our objective in the present study was to identify QTL associated with vegetative traits to allow marker-assisted selection (MAS). An F1 progeny (275 plants) of Tonda Gentile delle Langhe × Merveille de Bollwiller obtained in 2009 was used to develop a QTL linkage map for vigour, sucker habit, and time of bud burst, after three years of observations. A set of 163 plants were analysed with 152 microsatellite markers. A map of 11 linkage groups was obtained, covering 663.1 cM, and 15 QTLs were identified and mapped for the traits examined. Of them, 10 were ‘major’ QTL, including a stably expressed region on LG_02 for leaf bud burst. At least one major QTL for each year underlies the variation in each trait and a clustering of QTL for trunk circumference and suckers/trunk circumference ratio with high inter-trait correlations was observed on LG_05, suggesting a single pleiotropic locus. This research represents an initial step in the future identification of chromosomal regions carrying genes of interest, important for breeding programs and MAS.  相似文献   

16.
Genetic maps of Vitis (2n = 38) have been constructed from an interspecific hybrid population of 58 seedlings of the cross 'Horizon' ('Seyval' x 'Schuyler') x Illinois 547-1 (V. cinerea B9 x V. rupestris B38). The maps were initially constructed based on 277 RAPD (random amplified polymorphic DNA) markers using a double-pseudotestcross strategy. Subsequently, 25 microsatellites, 4 CAPS (cleaved amplified polymorphic sequence), and 12 AFLP (amplified fragment length polymorphism) markers were added to the maps. Another 120 markers, mostly those segregating 3:1, were also assigned but not positioned on the linkage groups in the two maps. The 'Horizon' map consisted of 153 markers covering 1199 cM, with an average map distance of 7.6 cM between markers. The Illinois 547-1 map had 179 markers covering 1470 cM, with an average map distance of 8.1 cM. There were 20 linkage groups in each map, one more than the basic number of chromosomes in grapes. Ten linkage groups in each map were identified as homologous using 16 microsatellite and 2 CAPS markers polymorphic in both parents. A single locus controlling sex in grapes mapped close to a microsatellite marker. These maps provide enough coverage of the genome for QTL (quantitative trait loci) analysis and as a starting point for positional gene cloning in grapes.  相似文献   

17.
Recent studies have revealed that the major genes of the mammalian sex determination pathway are also involved in sex determination of fish. Several studies have reported QTL in various species and strains of tilapia, regions contributing to sex determination have been identified on linkage groups 1, 3, and 23. Genes contributing to sex-specific mortality have been detected on linkage groups 2, 6, and 23. To test whether the same genes might control sex determination in mammals and fishes, we mapped 11 genes that are considered putative master key regulators of sex determination: Amh, Cyp19, Dax1, Dmrt2, Dmrta2, Fhl3l, Foxl2, Ixl, Lhx9, Sf1, and Sox8. We identified polymorphisms in noncoding regions of these genes and genotyped these sites for 90 individuals of an F2 mapping family. Mapping of Dax1 joined LG16 and LG21 into a single linkage group. The Amh and Dmrta2 genes were mapped to two distinct regions of LG23. The Amh gene was mapped 5 cM from UNH879 within a QTL region for sex determination and 2 cM from UNH216 within a QTL region for sex-specific mortality. Dmrta2 was mapped 4 cM from UNH848 within another QTL region for sex determination. Cyp19 was mapped to LG1 far from a previously reported QTL region for sex determination on this chromosome. Seven other candidate genes mapped to LG4, -11, -12, -14, and -17.  相似文献   

18.
甘蓝型黄籽油菜种皮色泽QTL作图   总被引:8,自引:0,他引:8  
甘蓝型黄籽油菜具有低纤维、高蛋白及高含油量的优点,因而己成为广大油菜育种工作者研究的重点之一。利用甘蓝型黑籽品系油研2号作父本,计蓝型黄籽品系GH06为母本,获得132个单株的F2群体;以AFLP和SSR为主要分析方法,构建了包括164个标记的甘蓝型油菜遗传连锁图谱,其中包括125个AFLP标记、37个SSR标记及一个RAPD和一个SCAR标记,分布在19个连锁群上,覆盖油菜基因组2549.8cM,标记间平均距离15.55cM。利用多区间作图法,对种皮色泽QTL进行分析,在第5及第19连锁群上各检测到一个QTL位点,分别解释表型变异46%及30.9%。  相似文献   

19.
The availability of genomic resources such as expressed sequence tag-derived simple sequence repeat (EST-SSR) markers in adaptive genes with high transferability across related species allows the construction of genetic maps and the comparison of genome structure and quantitative trait loci (QTL) positions. In the present study, genetic linkage maps were constructed for both parents of a Quercus robur × Q. robur ssp. slavonica full-sib pedigree. A total of 182 markers (61 AFLPs, 23 nuclear SSRs, 98 EST-SSRs) and 172 markers (49 AFLPs, 21 nSSRs, 101 EST-SSRs, 1 isozyme) were mapped on the female and male linkage maps, respectively. The total map length and average marker spacing were 1,038 and 5.7 cM for the female map and 998.5 and 5.8 cM for the male map. A total of 68 nuclear SSRs and EST-SSRs segregating in both parents allowed to define homologous linkage groups (LG) between both parental maps. QTL for leaf morphological traits were mapped on all 12 LG at a chromosome-wide level and on 6 LG at a genome-wide level. The phenotypic effects explained by each single QTL ranged from 4.0 % for leaf area to 15.8 % for the number of intercalary veins. QTL clusters for leaf characters that discriminate between Q. robur and Quercus petraea were mapped reproducibly on three LG, and some putative candidate genes among potentially many others were identified on LG3 and LG5. Genetic linkage maps based on EST-SSRs can be valuable tools for the identification of genes involved in adaptive trait variation and for comparative mapping.  相似文献   

20.
大豆遗传图谱的构建和若干农艺性状的QTL定位分析   总被引:14,自引:1,他引:14  
大豆许多重要农艺性状都是由微效多基因控制的数量性状,对这些数量性状进行QTL定位是大豆数量性状遗传研究领域的一个重要内容.本研究利用栽培大豆科新3号为父本、中黄20为母本杂交得到含192个单株的F2分离群体,构建了含122 个SSR标记、覆盖1719.6cM、由33个连锁群组成的连锁遗传图谱.利用复合区间作图法,对该群体的株高、主茎节数、单株粒重和蛋白质含量等农艺性状的调查数据进行QTL分析,共找到两个株高QTL,贡献率分别为9.15%和6.08%;两个主茎节数QTL,贡献率分别为10. 1%和8.6%;一个蛋白质含量QTL,贡献率为9.8%;一个单株粒重QTL,贡献率为11.4% .通过遗传作图共找到与所定位的4个农艺性状QTL连锁的6个SSR标记,这些标记可以应用于大豆种质资源的分子标记辅助选择,从而为大豆分子标记辅助育种提供理论依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号