首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nuclear LSm2-8 (like Sm) complex and the cytoplasmic LSm1-7 complex play a central role in mRNA splicing and degradation, respectively. The LSm proteins are related to the spliceosomal Sm proteins that form a heteroheptameric ring around small nuclear RNA. The assembly process of the heptameric Sm complex is well established and involves several smaller Sm assembly intermediates. The assembly of the LSm complex, however, is less well studied. Here, we solved the 2.5 Å-resolution structure of the LSm assembly intermediate that contains LSm5, LSm6, and LSm7. The three monomers display the canonical Sm fold and arrange into a hexameric LSm657-657 ring. We show that the order of the LSm proteins within the ring is consistent with the order of the related SmE, SmF, and SmG proteins in the heptameric Sm ring. Nonetheless, differences in RNA binding pockets prevent the prediction of the nucleotide binding preferences of the LSm complexes. Using high-resolution NMR spectroscopy, we confirm that LSm5, LSm6, and LSm7 also assemble into a  60-kDa hexameric ring in solution. With a combination of pull-down and NMR experiments, we show that the LSm657 complex can incorporate LSm23 in order to assemble further towards native LSm rings. Interestingly, we find that the NMR spectra of the LSm57, LSm657-657, and LSm23-657 complexes differ significantly, suggesting that the angles between the LSm building blocks change depending on the ring size of the complex. In summary, our results identify LSm657 as a plastic and functional building block on the assembly route towards the LSm1-7 and LSm2-8 complexes.  相似文献   

2.
Sm and Sm-like (LSm) proteins form heptameric complexes that are involved in various steps of RNA metabolism. In yeast, the Lsm1-7 complex functions in mRNA degradation and is associated with several enzymes of this pathway, while the complex LSm2-8, the composition of which largely overlaps with that of LSm1-7, has a role in pre-mRNA splicing. A human gene encoding an LSm1 homolog has been identified, but its role in mRNA degradation has yet to be elucidated. We performed subcellular localization studies and found hLSm1 predominantly in the cytoplasm. However, it is not distributed evenly; rather, it is highly enriched in small, discrete foci. The endogenous hLSm4 is similarly localized, as are the overexpressed proteins hLSm1-7, but not hLSm8. The foci also contain two key factors in mRNA degradation, namely the decapping enzyme hDcp1/2 and the exonuclease hXrn1. Moreover, coexpression of wild-type and mutant LSm proteins, as well as fluorescence resonance energy transfer (FRET) studies, indicate that the mammalian proteins hLSm1-7 form a complex similar to the one found in yeast, and that complex formation is required for enrichment of the proteins in the cytoplasmic foci. Therefore, the foci contain a partially or fully assembled machinery for the degradation of mRNA.  相似文献   

3.
T Achsel  H Brahms  B Kastner  A Bachi  M Wilm    R Lührmann 《The EMBO journal》1999,18(20):5789-5802
We describe the isolation and molecular characterization of seven distinct proteins present in human [U4/U6.U5] tri-snRNPs. These proteins exhibit clear homology to the Sm proteins and are thus denoted LSm (like Sm) proteins. Purified LSm proteins form a heteromer that is stable even in the absence of RNA and exhibits a doughnut shape under the electron microscope, with striking similarity to the Sm core RNP structure. The purified LSm heteromer binds specifically to U6 snRNA, requiring the 3'-terminal U-tract for complex formation. The 3'-end of U6 snRNA was also co-precipitated with LSm proteins after digestion of isolated tri-snRNPs with RNaseT(1). Importantly, the LSm proteins did not bind to the U-rich Sm sites of intact U1, U2, U4 or U5 snRNAs, indicating that they can only interact with a 3'-terminal U-tract. Finally, we show that the LSm proteins facilitate the formation of U4/U6 RNA duplices in vitro, suggesting that the LSm proteins may play a role in U4/U6 snRNP formation.  相似文献   

4.
U8 snoRNA plays a unique role in ribosome biogenesis: it is the only snoRNA essential for maturation of the large ribosomal subunit RNAs, 5.8S and 28S. To learn the mechanisms behind the in vivo role of U8 snoRNA, we have purified to near homogeneity and characterized a set of proteins responsible for the formation of a specific U8 RNA-binding complex. This 75-kDa complex is stable in the absence of added RNA and binds U8 with high specificity, requiring the conserved octamer sequence present in all U8 homologues. At least two proteins in this complex can be cross-linked directly to U8 RNA. We have identified the proteins as Xenopus homologues of the LSm (like Sm) proteins, which were previously reported to be involved in cytoplasmic degradation of mRNA and nuclear stabilization of U6 snRNA. We have identified LSm2, -3, -4, -6, -7, and -8 in our purified complex and found that this complex associates with U8 RNA in vivo. This purified complex can bind U6 snRNA in vitro but does not bind U3 or U14 snoRNA in vitro, demonstrating that the LSm complex specifically recognizes U8 RNA.  相似文献   

5.
LSm1-7 complexes promote cellular mRNA degradation, in addition to translation and replication of positive-strand RNA viruses such as the Brome mosaic virus (BMV). Yet, how LSm1-7 complexes act on their targets remains elusive. Here, we report that reconstituted recombinant LSm1-7 complexes directly bind to two distinct RNA-target sequences in the BMV genome, a tRNA-like structure at the 3′-untranslated region and two internal A-rich single-stranded regions. Importantly, in vivo analysis shows that these sequences regulate the translation and replication of the BMV genome. Furthermore, both RNA-target sequences resemble those found for Hfq, the LSm counterpart in bacteria, suggesting conservation through evolution. Our results provide the first evidence that LSm1-7 complexes interact directly with viral RNA genomes and open new perspectives in the understanding of LSm1-7 functions.  相似文献   

6.
Hfq, a bacterial RNA-binding protein, was recently shown to contain the Sm1 motif, a characteristic of Sm and LSm proteins that function in RNA processing events in archaea and eukaryotes. In this report, comparative structural modeling was used to predict a three-dimensional structure of the Hfq core sequence. The predicted structure aligns with most major features of the Methanobacterium thermoautotrophicum LSm protein structure. Conserved residues in Hfq are positioned at the same structural locations responsible for subunit assembly and RNA interaction in Sm proteins. A highly conserved portion of Hfq assumes a structural fold similar to the Sm2 motif of Sm proteins. The evolution of the Hfq protein was explored by conducting a BLAST search of microbial genomes followed by phylogenetic analysis. Approximately half of the 140 complete or nearly complete genomes examined contain at least one gene coding for Hfq. The presence or absence of Hfq closely followed major bacterial clades. It is absent from high-level clades and present in the ancient Thermotogales-Aquificales clade and all proteobacteria except for those that have undergone major reduction in genome size. Residues at three positions in Hfq form signatures for the beta/gamma proteobacteria, alpha proteobacteria and low GC Gram-positive bacteria groups.  相似文献   

7.
The survival motor neuron (SMN) protein is the product of the spinal muscular atrophy disease gene. SMN and Gemin2-7 proteins form a large macromolecular complex that localizes in the cytoplasm as well as in the nucleoplasm and in nuclear Gems. The SMN complex interacts with several additional proteins and likely functions in multiple cellular pathways. In the cytoplasm, a subset of SMN complexes containing unrip and Sm proteins mediates the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs). Here, by mass spectrometry analysis of SMN complexes purified from HeLa cells, we identified a novel protein that is evolutionarily conserved in metazoans, and we named it Gemin8. Co-immunoprecipitation and immunolocalization experiments demonstrated that Gemin8 is associated with the SMN complex and is localized in the cytoplasm and in the nucleus, where it is highly concentrated in Gems. Gemin8 interacts directly with the Gemin6-Gemin7 heterodimer and, together with unrip, these proteins form a heteromeric subunit of the SMN complex. Gemin8 is also associated with Sm proteins, and Gemin8-containing SMN complexes are competent to carry out snRNP assembly. Importantly, RNA interference experiments indicate that Gemin8 knock-down impairs snRNP assembly, and Gemin8 expression is down-regulated in cells with low levels of SMN. These results demonstrate that Gemin8 is a novel integral component of the SMN complex and extend the repertoire of cellular proteins involved in the pathway of snRNP biogenesis.  相似文献   

8.
Spliceosomal small nuclear ribonucleoproteins (snRNPs) in trypanosomes contain either the canonical heptameric Sm ring or variant Sm cores with snRNA-specific Sm subunits. Here we show biochemically by a combination of RNase H cleavage and tandem affinity purification that the U4 snRNP contains a variant Sm heteroheptamer core in which only SmD3 is replaced by SSm4. This U4-specific, nuclear-localized Sm core protein is essential for growth and splicing. As shown by RNA interference (RNAi) knockdown, SSm4 is specifically required for the integrity of the U4 snRNA and the U4/U6 di-snRNP in trypanosomes. In addition, we demonstrate by in vitro reconstitution of Sm cores that under stringent conditions, the SSm4 protein suffices to specify the assembly of U4 Sm cores. Together, these data indicate that the assembly of the U4-specific Sm core provides an essential step in U4/U6 di-snRNP biogenesis and splicing in trypanosomes.The excision of intronic sequences from precursor mRNAs is a critical step during eukaryotic gene expression. This reaction is catalyzed by the spliceosome, a macromolecular complex composed of small nuclear ribonucleoproteins (snRNPs) and many additional proteins. Spliceosome assembly and splicing catalysis occur in an ordered multistep process, which includes multiple conformational rearrangements (35). Spliceosomal snRNPs are assembled from snRNAs and protein components, the latter of which fall into two classes: snRNP-specific and common proteins. The common or canonical core proteins are also termed Sm proteins, specifically SmB, SmD1, SmD2, SmD3, SmE, SmF, and SmG (10; reviewed in reference 9), which all share an evolutionarily conserved bipartite sequence motif (Sm1 and Sm2) required for Sm protein interactions and the formation of the heteroheptameric Sm core complex around the Sm sites of the snRNAs (3, 7, 29). Prior to this, the Sm proteins form three heteromeric subcomplexes: SmD3/SmB, SmD1/SmD2, and SmE/SmF/SmG (23; reviewed in reference 34). Individual Sm proteins or Sm subcomplexes cannot stably interact with the snRNA. Instead, a stable subcore forms by an association of the subcomplexes SmD1/SmD2 and SmE/SmF/SmG with the Sm site on the snRNA; the subsequent integration of the SmD3/SmB heterodimer completes Sm core assembly.In addition to the canonical Sm proteins, other proteins carrying the Sm motif have been identified for many eukaryotes. Those proteins, termed LSm (like Sm) proteins, exist in distinct heptameric complexes that differ in function and localization. For example, a complex composed of LSm1 to LSm7 (LSm1-7) accumulates in cytoplasmic foci and participates in mRNA turnover (4, 8, 31). Another complex, LSm2-8, binds to the 3′ oligo(U) tract of the U6 snRNA in the nucleus (1, 15, 24). Finally, in the U7 snRNP, which is involved in histone mRNA 3′-end processing, the Sm proteins SmD1 and SmD2 are replaced by U7-specific LSm10 and LSm11 proteins, respectively (20, 21; reviewed in reference 28).This knowledge is based primarily on the mammalian system, where spliceosomal snRNPs are biochemically well characterized (34). In contrast, for trypanosomes, comparatively little is known about the components of the splicing machinery and their assembly and biogenesis. In trypanosomes, the expression of all protein-encoding genes, which are arranged in long polycistronic units, requires trans splicing. Only a small number of genes are additionally processed by cis splicing (reviewed in reference 11). During trans splicing, a short noncoding miniexon, derived from the spliced leader (SL) RNA, is added to each protein-encoding exon. Regarding the trypanosomal splicing machinery, the U2, U4/U6, and U5 snRNPs are considered to be general splicing factors, whereas the U1 and SL snRNPs represent cis- and trans-splicing-specific components, respectively. In addition to the snRNAs, many protein splicing factors in trypanosomes have been identified based on sequence homology (for example, see references 14 and 19).Recent studies revealed variations in the Sm core compositions of spliceosomal snRNPs from Trypanosoma brucei. Specifically, in the U2 snRNP, two of the canonical Sm proteins, SmD3 and SmB, are replaced by two novel, U2 snRNP-specific proteins, Sm16.5K and Sm15K (33). In this case, an unusual purine nucleotide, interrupting the central uridine stretch of the U2 snRNA Sm site, discriminates between the U2-specific and the canonical Sm cores. A second case of Sm core variation was reported for the U4 snRNP, in which a single protein, SmD3, was suggested to be replaced by the U4-specific LSm protein initially called LSm2, and later called SSm4, based on a U4-specific destabilization after SSm4 knockdown (30). A U4-specific Sm core variation was also previously suggested and discussed by Wang et al. (33), based on the inefficient pulldown of U4 snRNA through tagged SmD3 protein. However, neither of these two studies conclusively demonstrated by biochemical criteria that the specific Sm protein resides in the U4 Sm core; a copurification of other snRNPs could not be unequivocally ruled out.By using a combination of RNase H cleavage, tandem affinity purification, and mass spectrometry, we provide here direct biochemical evidence that in the variant Sm core of the U4 snRNP, only SmD3 is replaced by the U4-specific SSm4. SSm4 is nuclear localized, and the silencing of SSm4 leads to a characteristic phenotype: dramatic growth inhibition, general trans- and cis-splicing defects, a loss of the integrity of the U4 snRNA, as well as a destabilization of the U4/U6 di-snRNP. Furthermore, in vitro reconstitution assays revealed that under stringent conditions, SSm4 is sufficient to specify U4-specific Sm core assembly. In sum, our data establish SSm4 as a specific component of the U4 Sm core and demonstrate its importance in U4/U6 di-snRNP biogenesis, splicing function, and cell viability.  相似文献   

9.
The biogenesis of spliceosomal small nuclear ribonucleoproteins (snRNPs) in higher eukaryotes requires the functions of several cellular proteins and includes nuclear as well as cytoplasmic phases. In the cytoplasm, a macromolecular complex containing the survival motor neuron (SMN) protein, Gemin2-8 and Unrip mediates the ATP-dependent assembly of Sm proteins and snRNAs into snRNPs. To carry out snRNP assembly, the SMN complex binds directly to both Sm proteins and snRNAs; however, the contribution of the individual components of the SMN complex to its composition, interactions, and function is poorly characterized. Here, we have investigated the functional role of Gemin8 using novel monoclonal antibodies against components of the SMN complex and RNA interference experiments. We show that Gemin6, Gemin7, and Unrip form a stable cytoplasmic complex whose association with SMN requires Gemin8. Gemin8 binds directly to SMN and mediates its interaction with the Gemin6/Gemin7 heterodimer. Importantly, loss of Gemin6, Gemin7, and Unrip interaction with SMN as a result of Gemin8 knockdown affects snRNP assembly by impairing the SMN complex association with Sm proteins but not with snRNAs. These results reveal the essential role of Gemin8 for the proper structural organization of the SMN complex and the involvement of the heteromeric subunit containing Gemin6, Gemin7, Gemin8, and Unrip in the recruitment of Sm proteins to the snRNP assembly pathway.  相似文献   

10.
Members of the (L)Sm (Sm and Sm-like) protein family are found across all kingdoms of life and play crucial roles in RNA metabolism. The P-body component EDC3 (enhancer of decapping 3) is a divergent member of this family that functions in mRNA decapping. EDC3 is composed of a N-terminal LSm domain, a central FDF domain, and a C-terminal YjeF-N domain. We show that this modular architecture enables EDC3 to interact with multiple components of the decapping machinery, including DCP1, DCP2, and Me31B. The LSm domain mediates DCP1 binding and P-body localization. We determined the three-dimensional structures of the LSm domains of Drosophila melanogaster and human EDC3 and show that the domain adopts a divergent Sm fold that lacks the characteristic N-terminal α-helix and has a disrupted β4-strand. This domain remains monomeric in solution and lacks several features that canonical (L)Sm domains require for binding RNA. The structures also revealed a conserved patch of surface residues that are required for the interaction with DCP1 but not for P-body localization. The conservation of surface and of critical structural residues indicates that LSm domains in EDC3 proteins adopt a similar fold that has separable novel functions that are absent in canonical (L)Sm proteins.  相似文献   

11.
Arginine residues in RG-rich proteins are frequently dimethylated posttranslationally by protein arginine methyltransferases (PRMTs). The most common methylation pattern is asymmetrical dimethylation, a modification important for protein shuttling and signal transduction. Symmetrically dimethylated arginines (sDMA) have until now been confined to the myelin basic protein MBP and the Sm proteins D1 and D3. We show here by mass spectrometry and protein sequencing that also the human Sm protein B/B' and, for the first time, one of the Sm-like proteins, LSm4, contain sDMA in vivo. The symmetrical dimethylation of B/B', LSm4, D1, and D3 decisively influences their binding to the Tudor domain of the "survival of motor neurons" protein (SMN): inhibition of dimethylation by S-adenosylhomocysteine (SAH) abolished the binding of D1, D3, B/B', and LSm4 to this domain. A synthetic peptide containing nine sDMA-glycine dipeptides, but not asymmetrically modified or nonmodified peptides, specifically inhibited the interaction of D1, D3, B/B', LSm4, and UsnRNPs with SMN-Tudor. Recombinant D1 and a synthetic peptide could be methylated in vitro by both HeLa cytosolic S100 extract and nuclear extract; however, only the cytosolic extract produced symmetrical dimethylarginines. Thus, the Sm-modifying PRMT is cytoplasmic, and symmetrical dimethylation of B/B', D1, and D3 is a prerequisite for the SMN-dependent cytoplasmic core-UsnRNP assembly. Our demonstration of sDMAs in LSm4 suggests additional functions of sDMAs in tri-UsnRNP biogenesis and mRNA decay. Our findings also have interesting implications for the understanding of the aetiology of spinal muscular atrophy (SMA).  相似文献   

12.
The survival of motor neurons (SMN) complex mediates the assembly of small nuclear ribonucleoproteins (snRNPs) involved in splicing and histone RNA processing. A crucial step in this process is the binding of Sm proteins onto the SMN protein. For Sm B/B', D1, and D3, efficient binding to SMN depends on symmetrical dimethyl arginine (sDMA) modifications of their RG-rich tails. This methylation is achieved by another entity, the PRMT5 complex. Its pICln subunit binds Sm proteins whereas the PRMT5 subunit catalyzes the methylation reaction. Here, we provide evidence that Lsm10 and Lsm11, which replace the Sm proteins D1 and D2 in the histone RNA processing U7 snRNPs, associate with pICln in vitro and in vivo without receiving sDMA modifications. This implies that the PRMT5 complex is involved in an early stage of U7 snRNP assembly and hence may have a second snRNP assembly function unrelated to sDMA modification. We also show that the binding of Lsm10 and Lsm11 to SMN is independent of any methylation activity. Furthermore, we present evidence for two separate binding sites in SMN for Sm/Lsm proteins. One recognizes Sm domains and the second one, the sDMA-modified RG-tails, which are present only in a subset of these proteins.  相似文献   

13.
The biosynthesis of U1, U2, U4 and U5 spliceosomal small nuclear RNAs (snRNAs) involves the nuclear export of precursor molecules extended at their 3' ends, followed by a cytoplasmic phase during which the pre-snRNAs assemble into ribonucleoprotein particles and undergo hypermethylation of their 5' caps and 3' end processing prior to nuclear import. Previous studies have demonstrated that the assembly of pre-snRNAs into ribonucleoprotein particles containing the Sm core proteins is essential for nuclear import in mammalian cells but that 5' cap hypermethylation is not. In the present investigation we have asked whether or not 3' end processing is required for nuclear import of U2 RNA. We designed human pre-U2 RNAs that carried modified 3' tails, and identified one that was stalled (or greatly slowed) in 3' end processing, leading to its accumulation in the cytoplasm of human cells. Nonetheless, this 3' processing arrested pre-U2 RNA molecule was found to undergo cytoplasmic assembly into Sm protein-containing complexes to the same extent as normal pre-U2 RNA. The Sm protein-associated, unprocessed mutant pre-U2 RNA was not observed in the nuclear fraction. Using an assay based on suppression of a genetically blocked SV40 pre-mRNA splicing pathway, we found that the 3' processing deficient U2 RNA was significantly reduced in its ability to rescue splicing, consistent with its impaired nuclear import.  相似文献   

14.
Members of the LSm family of proteins share the Sm fold--a closed barrel comprising five anti-parallel beta strands with an alpha helix stacked on the top. The fold forms a subunit of hexameric or heptameric rings of approximately 7nm in diameter. Interactions between neighboring subunits center on an anti-parallel interaction of the fourth and fifth beta strands. In the lumen of the ring, the subunits have the same spacing as nucleotides in RNA, enabling the rings to bind to single-stranded RNA via a repeating motif. Eubacteria and archaea build homohexamers and homoheptamers, respectively, whereas eukaryotes use >18 LSm paralogs to build at least six different heteroheptameric rings. The four different rings in the nucleus that permanently bind small nuclear RNAs and function in pre-mRNA maturation are called Sm rings. The two different rings that transiently bind to RNAs and, thereby, assist in the degradation of mRNA in the cytoplasm and the maturation of a wide spectrum of RNAs in the nucleus are called LSm rings.  相似文献   

15.
Assembly of the Sm-class of U-rich small nuclear ribonucleoprotein particles (U snRNPs) is a process facilitated by the macromolecular survival of motor neuron (SMN) complex. This entity promotes the binding of a set of factors, termed LSm/Sm proteins, onto snRNA to form the core structure of these particles. Nine factors, including the SMN protein, the product of the spinal muscular atrophy (SMA) disease gene, Gemins 2-8 and unrip have been identified as the major components of the SMN complex. So far, however, only little is known about the architecture of this complex and the contribution of individual components to its function. Here, we present a comprehensive interaction map of all core components of the SMN complex based upon in vivo and in vitro methods. Our studies reveal a modular composition of the SMN complex with the three proteins SMN, Gemin8, and Gemin7 in its center. Onto this central building block the other components are bound via multiple interactions. Furthermore, by employing a novel assay, we were able to reconstitute the SMN complex from individual components and confirm the interaction map. Interestingly, SMN protein carrying an SMA-causing mutation was severely impaired in formation of the SMN complex. Finally, we show that the peripheral component Gemin5 contributes an essential activity to the SMN complex, most likely the transfer of Sm proteins onto the U snRNA. Collectively, the data presented here provide a basis for the detailed mechanistic and structural analysis of the assembly machinery of U snRNPs.  相似文献   

16.
17.
Processing bodies (P-bodies) are dynamic cytoplasmic structures involved in mRNA degradation, but the mechanism that governs their formation is poorly understood. In this paper, we address a role of Like-Sm (LSm) proteins in formation of P-bodies and provide evidence that depletion of nuclear LSm8 increases the number of P-bodies, while LSm8 overexpression leads to P-body loss. We show that LSm8 knockdown causes relocalization of LSm4 and LSm6 proteins to the cytoplasm and suggest that LSm8 controls nuclear accumulation of all LSm2–7 proteins. We propose a model in which redistribution of LSm2–7 to the cytoplasm creates new binding sites for other P-body components and nucleates new, microscopically visible structures. The model is supported by prolonged residence of two P-body proteins, DDX6 and Ago2, in P-bodies after LSm8 depletion, which indicates stronger interactions between these proteins and P-bodies. Finally, an increased number of P-bodies has negligible effects on microRNA-mediated translation repression and nonsense mediated decay, further supporting the view that the function of proteins localized in P-bodies is independent of visible P-bodies.  相似文献   

18.
Nucleotide analog interference mapping (NAIM) is a powerful method for identifying RNA functional groups involved in protein-RNA interactions. We examined particles assembled on modified U1 small nuclear RNAs (snRNAs) in vitro and detected two categories of interferences. The first class affects the stability of two higher-order complexes and comprises changes in two adenosines, A65 and A70, in the loop region previously identified as the binding site for the U1 small nuclear ribonucleoprotein (snRNP)-specific U1A protein. Addition of an exocyclic amine to position 2 of A65 interferes strongly with protein binding, whereas removal or modification of the exocyclic amine at position 6 makes little difference. Modifications of A70 exhibit the opposite effects: Additions at position 2 are permitted, but modification of the exocyclic amine at position 6 significantly inhibits protein binding. These interactions, critical for U1A-U1 snRNA recognition in the context of in vitro snRNP assembly, are consistent with previous structural studies of the isolated protein with the RNA hairpin containing the U1A binding site. The second category of interferences affects all partially assembled U1-protein complexes by decreasing the stability of Sm core protein associations. Interestingly, most strong interferences occur at phosphates in the terminal stem-loop region of U1, rather than in the Sm binding site. These data argue that interactions with the phosphate backbone of the terminal stem loop are essential for the stable association of Sm core proteins with the U1 snRNA. We suggest that the stem loop of all Sm snRNAs may act as a clamp to hold the ring of Sm proteins in place.  相似文献   

19.
A macromolecular complex containing survival of motor neurons (SMN), the spinal muscular atrophy protein, and Gemin2-7 interacts with Sm proteins and snRNAs to carry out the assembly of these components into spliceosomal small nuclear ribonucleoproteins (snRNPs). Here we report the characterization of unr-interacting protein (unrip), a GH-WD protein of unknown function, as a component of the SMN complex that interacts directly with Gemin6 and Gemin7. Unrip also binds a subset of Sm proteins, and unrip-containing SMN complexes are necessary and sufficient to mediate the assembly of spliceosomal snRNPs. These results demonstrate that unrip functions in the pathway of snRNP biogenesis and is a marker of cellular SMN complexes active in snRNP assembly.  相似文献   

20.
Trailer Hitch (Tral or LSm15) and enhancer of decapping-3 (EDC3 or LSm16) are conserved eukaryotic members of the (L)Sm (Sm and Like-Sm) protein family. They have a similar domain organization, characterized by an N-terminal LSm domain and a central FDF motif; however, in Tral, the FDF motif is flanked by regions rich in charged residues, whereas in EDC3 the FDF motif is followed by a YjeF_N domain. We show that in Drosophila cells, Tral and EDC3 specifically interact with the decapping activator DCP1 and the DEAD-box helicase Me31B. Nevertheless, only Tral associates with the translational repressor CUP, whereas EDC3 associates with the decapping enzyme DCP2. Like EDC3, Tral interacts with DCP1 and localizes to mRNA processing bodies (P bodies) via the LSm domain. This domain remains monomeric in solution and adopts a divergent Sm fold that lacks the characteristic N-terminal α-helix, as determined by nuclear magnetic resonance analyses. Mutational analysis revealed that the structural integrity of the LSm domain is required for Tral both to interact with DCP1 and CUP and to localize to P-bodies. Furthermore, both Tral and EDC3 interact with the C-terminal RecA-like domain of Me31B through their FDF motifs. Together with previous studies, our results show that Tral and EDC3 are structurally related and use a similar mode to associate with common partners in distinct protein complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号