首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Mutations in the presenilin-1 (PS-1) and presenilin-2 (PS-2) genes account for the majority of cases of early-onset familial Alzheimer's disease (AD). Alternative splicing forms of the PS-1 and PS-2 gene products have previously been reported in fibroblast and brain tissue from both familial and sporadic AD patients, as well as from normal tissues and cell lines. We demonstrate here unusual alternative splicing of the PS-2 gene that leads to the generation of mRNA lacking exon 5 in human brain tissue. This product was more frequently detected in brain tissue from sporadic AD patients (70.0%; 21 of 30) than from normal age-matched controls (17.6%; three of 17). In cultured neuroblastoma cells, this splice variant was generated in hypoxia but not under other forms of cellular stress. Hypoxia-mediated induction of this splice variant was blocked by pretreatment of neuroblastoma cells with the protein synthesis inhibitor cycloheximide or antioxidants such as N-acetylcysteine and diphenyl iodonium, suggesting that hypoxia-mediated oxidant stress might, at least in part, underlie the alternative splicing of PS-2 mRNA through de novo protein synthesis. Furthermore, the stable transfectants of this splice variant produced the N-terminal part of PS-2 protein (15 kDa) and were more susceptible to cellular stresses than control transfectants. These results suggest the possibility that altered presenilin gene products in stress conditions may also participate in the pathogenesis of AD.  相似文献   

6.
Cellular responses to increased oxidative stress appear to be a mechanism that contributes to the varied cytopathology of Alzheimer's disease (AD). In this regard, we suspect that c-Jun N-terminal kinase/Stress activated protein kinase (JNK/SAPK), a major cellular stress response protein induced by oxidative stress, plays an important role in Alzheimer disease in susceptible neurons facing the dilemma of proliferation or death. We found that JNK2/SAPK-alpha and JNK3/SAPK-beta were related to neurofibrillary pathology and JNK1/SAP-Kgamma related to Hirano bodies in cases of AD but were only weakly diffuse in the cytoplasm in all neurons in control cases and in non-involved neurons in diseased brain. In this regard, in hippocampal and cortical regions of individuals with severe AD, the activated phospho-JNK/SAPK was localized exclusively in association with neurofibrillar alterations including neurofibrillary tangles, senile plaque neurites, neuropil threads and granulovacuolar degeneration structures (GVD), completely overlapping with tau-positive neurofibrillary pathology, but was virtually absent in these brain regions in younger and age-matched controls without pathology. However, in control patients with some pathology, as well as in mild AD cases, there was nuclear phospho-JNK/SAPK and translocation of phospho-JNK/SAPK from nuclei to cytoplasm, respectively, indicating that the activation and re-distribution of JNK/SAPK correlates with the progress of the disease. By immunoblot analysis, phospho-JNK/SAPK is significantly increased in AD over control cases. Together, these findings suggest that JNK/SAPK dysregulation, probably resulting from oxidative stress, plays an important role in the increased phosphorylation of cytoskeletal proteins found in AD.  相似文献   

7.
Quantitative western blot analysis in laminectomy control spinal cords of adult rats was used to provide the first report of the normal expression patterns of the N1, C1, C2 and C2' cassettes in the cervical, thoracic and lumbar regions of the spinal cord as a percent of total NR1 subunit protein. In all regions studied, the C1 and C2 cassettes were usually contained in less than 10% of total NR1 protein. In contrast, approximately 90% of total NR1 protein contained the C2' cassette. A significant proportion of total NR1 protein (approximately 30%) also contained the N1 cassette. These data are consistent with expression of NR1(000) (NR1-4a) and NR1(100) (NR1-4b) as the dominant splice forms in the spinal cord. Splice variant expression was also studied following incomplete, contusive spinal cord injury (SCI) to the thoracic level 8 (T8) region. This injury did not change expression of the C1 or C2 cassette in any region of the spinal cord acutely at 24 h or chronically at 1 month. There was an increase in expression of the N1 cassette in the lumbar regions 1 month after injury (p < 0.05). These data indicate that SCI induces distal changes in NR1 splice variant expression, which may play a role in the adaptive response of neurons in the chronically injured spinal cord.  相似文献   

8.
9.
10.
11.
Circadian oscillators have been observed throughout the rodent brain. In the human brain, rhythmic expression of clock genes has been reported only in the pineal gland, and little is known about their expression in other regions. The investigators sought to determine whether clock gene expression could be detected and whether it varies as a function of time of day in the bed nucleus of the stria terminalis (BNST) and cingulate cortex, areas known to be involved in decision making and motivated behaviors, as well as in the pineal gland, in the brains of Alzheimer's disease (AD) patients and aged controls. Relative expression levels of PERIOD1 (PER1 ), PERIOD2 (PER2), and Brain and muscle Arnt-like protein-1 (BMAL1) were detected by quantitative PCR in all 3 brain regions. A harmonic regression model revealed significant 24-h rhythms of PER1 in the BNST of AD subjects. A significant rhythm of PER2 was found in the cingulate cortex and BNST of control subjects and in all 3 regions of AD patients. In controls, BMAL1 did not show a diurnal rhythm in the cingulate cortex but significantly varied with time of death in the pineal and BNST and in all 3 regions for AD patients. Notable differences in the phase of clock gene rhythms and phase relationships between genes and regions were observed in the brains of AD compared to those of controls. These results indicate the presence of multiple circadian oscillators in the human brain and suggest altered synchronization among these oscillators in the brain of AD patients.  相似文献   

12.
13.
Seladin-1 (SELective Alzheimer's Disease INdicator-1) is an anti-apoptotic gene, which is down-regulated in brain regions affected by Alzheimer's disease (AD). In addition, seladin-1 catalyzes the conversion of desmosterol into cholesterol. Disruption of cholesterol homeostasis in neurons may increase cell susceptibility to toxic agents. Because the hippocampus and the subventricular zone, which are affected in AD, are the unique regions containing stem cells with neurogenic potential in the adult brain, it might be hypothesized that this multipotent cell compartment is the predominant source of seladin-1 in normal brain. In the present study, we isolated and characterized human mesenchymal stem cells (hMSC) as a model of cells with the ability to differentiate into neurons. hMSC were then differentiated toward a neuronal phenotype (hMSC-n). These cells were thoroughly characterized and proved to be neurons, as assessed by molecular and electrophysiological evaluation. Seladin-1 expression was determined and found to be significantly reduced in hMSC-n compared to undifferentiated cells. Accordingly, the total content of cholesterol was decreased after differentiation. These original results demonstrate for the first time that seladin-1 is abundantly expressed by stem cells and appear to suggest that reduced expression in AD might be due to an altered pool of multipotent cells.  相似文献   

14.
Abstract: Developmental changes in the levels of N -methyl- d -aspartate (NMDA) receptor subunit mRNAs were identified in rat brain using solution hybridization/RNase protection assays. Pronounced increases in the levels of mRNAs encoding NR1 and NR2A were seen in the cerebral cortex, hippocampus, and cerebellum between postnatal days 7 and 20. In cortex and hippocampus, the expression of NR2B mRNA was high in neonatal rats and remained relatively constant over time. In contrast, in cerebellum, the level of NR2B mRNA was highest at postnatal day 1 and declined to undetectable levels by postnatal day 28. NR2C mRNA was not detectable in cerebellum before postnatal day 11, after which it increased to reach adult levels by postnatal day 28. In cortex, the expression of NR2A and NR2B mRNAs corresponds to the previously described developmental profile of NMDA receptor subtypes having low and high affinities for ifenprodil, i.e., a delayed expression of NR2A correlating with the late expression of low-affinity ifenprodil sites. In cortex and hippocampus, the predominant splice variants of NR1 were those without the 5' insert and with or without both 3' inserts. In cerebellum, however, the major NR1 variants were those containing the 5' insert and lacking both 3' inserts. The results show that the expression of NR1 splice variants and NR2 subunits is differentially regulated in various brain regions during development. Changes in subunit expression are likely to underlie some of the changes in the functional and pharmacological properties of NMDA receptors that occur during development.  相似文献   

15.
16.
A gene expression profile of Alzheimer's disease.   总被引:12,自引:0,他引:12  
Postmortem analysis of brains of patients with Alzheimer's disease (AD) has led to diverse theories about the causes of the pathology, suggesting that this complex disease involves multiple physiological changes. In an effort to better understand the variety and integration of these changes, we generated a gene expression profile for AD brain. Comparing affected and unaffected brain regions in nine controls and six AD cases, we showed that 118 of the 7050 sequences on a broadly representative cDNA microarray were differentially expressed in the amygdala and cingulate cortex, two regions affected early in the disease. The identity of these genes suggests the most prominent upregulated physiological correlates of pathology involve chronic inflammation, cell adhesion, cell proliferation, and protein synthesis (31 upregulated genes). Conversely, downregulated correlates of pathology involve signal transduction, energy metabolism, stress response, synaptic vesicle synthesis and function, calcium binding, and cytoskeleton (87 downregulated genes). The results support several separate theories of the causes of AD pathology, as well as add to the list of genes associated with AD. In addition, approximately 10 genes of unknown function were found to correlate with the pathology.  相似文献   

17.
The pharmacology of the N -methyl-d-aspartate (NMDA) receptor site was examined in pathologically affected and relatively spared regions of cerebral cortex tissue obtained at autopsy from Alzheimer's disease cases and matched controls. The affinity and density of the [(3)H]MK-801 binding site were delineated along with the enhancement of [(3)H]MK-801 binding by glutamate and spermine. Maximal enhancement induced by either ligand was regionally variable; glutamate-mediated maximal enhancement was higher in controls than in Alzheimer's cases in pathologically spared regions, whereas spermine-mediated maximal enhancement was higher in controls in areas susceptible to pathological damage. These and other data suggest that the subunit composition of NMDA receptors may be locally variable. Studies with modified conantokin-G (con-G) peptides showed that Ala(7)-con-G had higher affinity than Lys(7)-con-G, and also defined two distinct binding sites in controls. Nevertheless, the affinity for Lys(7)-con-G was higher overall in Alzheimer's brain than in control brain, whereas the reverse was true for Ala(7)-con-G. Over-excitation mediated by specific NMDA receptors might contribute to localized brain damage in Alzheimer's disease. Modified conantokins are useful for identifying the NMDA receptors involved, and may have potential as protective agents.  相似文献   

18.
Liu Z  Lv C  Zhao W  Song Y  Pei D  Xu T 《Neurochemical research》2012,37(7):1420-1427
Although studies have shown that excitotoxicity mediated by N-methyl-D-aspartate receptors (NMDARs, NR) plays a prominent role in Alzheimer's disease (AD), the precise expression patterns of NMDARs and their relationship to apoptosis in AD have not been clearly established. In this study, we used Abeta (Aβ) 1-40 and AlCl(3) to establish AD rat model. The behavioral changes were detected by morris water maze and step-down test. The hippocampal amyloid deposition and pathological changes were determined by congo red and hematoxylin-eosin staining. Immunohistochemistry was used to detect expression of NR1, NR2A and NR2B, and TUNEL staining was used to detect apoptosis. Results showed that water maze testing escape latency of AD-like rats was prolonged significantly. Reaction time, basal number of errors, and number of errors of step-down test were increased significantly; latency period of step-down test was shortened significantly in AD-like rats. Amyloid substance deposition and obvious damage changes could be seen in hippocampus of AD-like rats. These results suggested that AD rat model could be successfully established by Aβ1-40 and AlCl(3). Results also showed that expression of NR1 and NR2B were significantly increased, but expression of NR2A had no significant change, in AD-like rat hippocampus. Meanwhile, apoptotic cells were significantly increased in AD-like rat hippocampus, especially in CA1 subfield and followed by dentate gyrus and CA3 subfield. These results implied that NR2B-, not NR2A-, containing NMDARs showed pathological high expression in AD-like rat hippocampus. This pathological high expression with apoptosis and selective vulnerability of hippocampus might be exist a specific relationship.  相似文献   

19.
20.
Abstract: The regional and developmental expression of NMDA receptors containing the NR2D subunit was analyzed on the level of the subunit mRNA and protein in rat brain. RNase protection experiments indicated that among two proposed splice variants of the NR2D subunit, only the NR2D-2 subunit is expressed. The regional distribution of the NR2D subunit protein was visualized with a newly developed NR2D-2 subunit-specific antiserum on brain sections using the histoblot technique. In adult brain, NR2D immunoreactivity was mainly restricted to diencephalic, mesencephalic, and brainstem structures. During postnatal development, the NR2D subunit was detected transiently in certain regions, such as the ventro-basal complex of the thalamus, hippocampus, inferior colliculus, and brainstem reticular formation, suggesting that NR2D subunit-containing receptors play a role in these brain areas only during development. The level of NR2D subunit mRNA and protein decreased during late postnatal development. However, significant levels of NR2D subunit mRNA and protein were present in adulthood, in particular, in the globus pallidus, thalamus, subthalamic nuclei, and superior colliculus. These results indicate a functional relevance for NMDA receptors containing the NR2D subunit in the developing and adult brain, although its expression in the adult brain is less prominent and restricted to a few brain areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号