首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Karyotypes were analysed in 113 populations of 34 species of Rhynchospora (Cyperaceae). They showed typical holocentric chromosomes lacking primary constrictions. Nucleolar constrictions were observed in the terminal regions of a few chromosomes (except in R. nanuzae , in which they were interstitial). The chromosome numbers varied between 2 = 4 and 2n = 50. The primary base number seems to be x = 5; x = 6 and x = 9 are secondary. Dysploidy occurred at low frequency, whereas polyploidy seemed to be the predominant event in the karyotype evolution of the genus. Karyotypic differences were found in R. consanguinea var. speciosa and R. consanguinea var. rigida and the closely related R. emaciata, R. riparia and R. tenuis from section Tenues. On the other hand, karyotypic similarities occurred among sections Valderugosae, Marisculae, Stenophylku and Cemuae.  相似文献   

2.
The wide distribution of polyploidy among plants has led to a variety of theories for the evolutionary advantages of polyploidy. Here we claim that the abundance of polyploidy may be the result of a simple ratcheting process that does not require evolutionary advantages due to the biological properties of organisms. The evolution of polyploidy is a one-way process in which chromosome number can increase but not decrease. Using a simple mathematical model, we show that average ploidal level within a plant lineage can continually increase to the levels observed today, even if there are ecological or physiological disadvantages to higher ploidy. The model allowed us to estimate the average net speciation and polyploidy rates for ten angiosperm genera. Based on these estimates, the model predicts distributions of ploidal levels statistically similar to those observed in nine of the 10 genera.  相似文献   

3.
Schoenus (Cyperaceae) has holocentric chromosomes. Chromosome numbers were counted and nuclear DNA amounts were measured for all the New Zealand species of the genus. Chromosome numbers ranged from 2n = 8 to c. 2n = 90. Two chromosome races, with 2n = 28 and 2n = 56, were found in S. pauciflorus. Flow cytometry using propidium iodide‐stained nuclei was used to measure genome size. A 14.8‐fold variation in 2C DNA content was found, with values ranging from 1.33 to 19.71 pg/2C nucleus. Phylogenetic trees based on sequence variation in the internal transcribed spacer (ITS) region of the 45S ribosomal DNA locus were constructed using several phylogenetic models to reveal possible evolutionary relationships among the New Zealand Schoenus spp. and a sample of Australian Schoenus spp. Analysis revealed heterogeneity of chromosome number, size and DNA C value within clades. Meiosis in four species showed only bivalent formation at metaphase I. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 169 , 555–564.  相似文献   

4.
5.
Holocentric chromosomes-chromosomes that lack localized centromeres-occur in numerous unrelated clades of insects, flatworms, and angiosperms. Chromosome number changes in such organisms often result from fission and fusion events rather than polyploidy. In this study, I test the hypothesis that chromosome number evolves according to a uniform process in Carex section Ovales (Cyperaceae), the largest New World section of an angiosperm genus renowned for its chromosomal variability and species richness. I evaluate alternative models of chromosome evolution that allow for shifts in both stochastic and deterministic evolutionary processes and that quantify the rate of evolution and heritability/phylogenetic dependence of chromosome number. Estimates of Ornstein-Uhlenbeck model parameters and tree-scaling parameters in a generalized least squares framework demonstrate that (1) chromosome numbers evolve rapidly toward clade-specific stationary distributions that cannot be explained by constant variance (Brownian motion) evolutionary models, (2) chromosome evolution in the section is rapid and exhibits little phylogenetic inertia, and (3) explaining the phylogenetic pattern of chromosome numbers in the section entails inferring a shift in evolutionary dynamics at the root of a derived clade. The finding that chromosome evolution is not a uniform process in sedges provides a novel example of karyotypic orthoselection in an organism with holocentric chromosomes.  相似文献   

6.
7.
彭丹  武志强 《生物多样性》2022,30(3):21416-2886
植物中雌雄性别分化是一种进化的性状。雌雄异株在多个开花植物谱系中独立演化, 但各个支系的性染色体状态、性别决定区域与性别决定基因不尽相同。多样的植物性染色体和性别决定系统为研究植物性别相关基因的形成机制、性别决定区域和性染色体进化提供了极好的机会。随着测序技术的进步和分析方法的提高, 近年来越来越多物种性别决定的相关分子机制得到解析, 并将理论成果应用于提升经济效益与城市环境等实际问题中。本文将从目前的研究现状和方法, 性别决定单、双基因模型的建立, 植物性染色体进化过程等方面进行总结, 对未来植物性别决定的研究提出四点建议: (1)研究方向逐步从基因研究扩展到调控途径研究; (2)从单一物种转向相关科属比较研究; (3)改进现有性别决定基因模型或探索新模型和性别模式物种; (4)加强性别鉴定技术在实际生产中的研发工作。同时探讨性别决定理论研究未来在农业生产、园艺绿化种植中幼苗性别鉴别筛选等方面的应用前景。  相似文献   

8.
热带山地雨林中植物不同性别系统的数量和空间分布特征如何? 是否受自然环境条件影响? 这些问题的回答有助于更深入理解群落物种多样性是如何形成的。本文以海南尖峰岭热带山地雨林60 ha大样地中胸径大于1 cm的木本植物为研究对象, 描述了样地内木本植物性别系统的数量特征, 分析了雌雄异株植物空间分布与地形因子的相关关系。结果表明: 大样地内289种木本种子植物中有两性花植物176种, 单性花植物113种; 在单性花植物中, 51种为雌雄同株, 62种为雌雄异株。单性花植物植株数占所有植株总数的36.2%; 雌雄异株植物植株数占所有植株总数的21.5%, 占单性花植物植株数的59.5%。在20 m × 20 m样方的空间尺度, 雌雄异株植物呈现聚集分布的物种共有31种。以20 m × 20 m样方为分析单元, 雌雄异株植物种类的性别比例与海拔、凹凸度和坡度呈弱正相关; 个体相对多度仅和海拔呈弱正相关, 与坡度和凹凸度无相关; 而3个性别系统多样性指数与海拔、凹凸度和坡度均无显著关联。可见雌雄异株植物在海南热带山地雨林中占据了较大的比例, 但大部分种类种群较小, 其数量分布特征与地形因素紧密相关, 雌雄异株植物的存在对群落物种多样性的形成有较大贡献。  相似文献   

9.
10.
Insects use floral signals to find rewards in flowers, transferring pollen in the process. In unisexual plants, the general view is that staminate (male) and pistillate (female) flowers obtain conspecific pollen transfers by advertising their rewards with similar floral signals. For female plants lacking food rewards, this can lead to floral mimicry and pollination by deceit. In this study, we challenge this view by presenting evidence for different rewards offered by flowers on females and males, as a mechanism promoting sexual dimorphism in Leucadendron xanthoconus (Proteaceae), a clearly sexually dimorphic shrub. The tiny beetle pollinators Pria cinerascens (Nitidulidae) depend entirely on the plants they pollinate for survival and reproduction. Male flowers provide mating and egglaying sites, and food for adults and larvae. Female flowers lack nectar and function to shelter pollinators from rain. Their flower heads have cup‐shaped display leaves, and are more closed than are those in males. On rainy days, flowers on females received 30% more visits than did flowers on males, and 90% more than they did on sunny days. When we removed display leaves in females, intact flower heads received 14 times more P. cinerascens visits than did manipulated flower heads, indicating that the cup shape attracts the beetles. In both sexes, having many flowers increased the probability of visits and the number of P. cinerascens visiting a plant. In males, the number of larvae was positively correlated with floral‐display size, while in females, seed set (pollen transfers) showed no relationship with floral‐display size. Ninety‐five per cent of the ovules received pollen and 52% matured into seeds. We explain the sexual dimorphism in L. xanthoconus as a result of an intimate partnership with P. cinerascens pollinators, in conjunction with a rainy climate. Pollinators favour large male floral displays, because they offer a reliable food source for adults and larvae. Frequent rains drive the P. cinerascens to leave males in search of the protection offered by females. Because females offer shelter, an essential resource that is not offered by male plants, they receive sufficient pollen independent of their floral‐display size. This pollination system promotes the evolution of sexually dimorphic floral signals, guiding pollinators to different rewards in male and female flowers. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 85 , 97–109.  相似文献   

11.
In the traditional view of vertebrate lung ventilation mechanisms, air-breathing fishes and amphibians breathe with a buccal pump, and amniotes breathe with an aspiration pump. According to this view, no extant animal exhibits a mechanism that is intermediate between buccal pumping and aspiration breathing; all lung ventilation is produced either by expansion and compression of the mouth cavity via the associated cranial and hyobranchial musculature (buccal pump), or by expansion of the thorax via axial musculature (aspiration pump). However, recent work has shown that amphibians exhibit an intermediate mechanism, in which axial muscles are used for exhalation and a buccal pump is used for inhalation. These findings indicate that aspiration breathing evolved in two steps: first, from pure buccal pumping to the use of axial musculature for exhalation and a buccal pump for inspiration; and second, to full aspiration breathing, in which axial muscles are used for both inhalation and exhalation. Furthermore, the traditional view also holds that buccal pump breathing was lost shortly after aspiration breathing evolved. This view is now being challenged by the discovery that several species of lizards use a buccal pump to augment costal aspiration during exercise. This result, combined with the observation that a behavior known as “buccal oscillation” is found in all amniotes except for mammals, suggests that a reappraisal of the role of buccal pumping in extant and extinct amniotes is in order.Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

12.
The sudden rise of angiosperms to ecological dominance was an "abominable mystery" to Charles Darwin, and understanding the underlying evolutionary driving force has remained a scientific challenge since then. The recognition of polyploidization as an important factor for plant speciation is likely to hold a key to this mystery and we will discuss possible mechanisms underlying this phenomenon. Polyploidization raises an immediate reproductive barrier in the endosperm, pointing towards an important but greatly underestimated role of the endosperm in preventing interploidy hybridizations. Parent-of-origin-specific gene expression is largely restricted to the endosperm, providing an explanation for the dosage sensitivity of the endosperm. Here, we review epigenetic mechanisms causing endosperm dosage sensitivity, their possible consequences for raising interploidy and interspecies hybridization barriers and their impact on flowering plant evolution. This article is part of a Special Issue entitled: Epigenetic Control.  相似文献   

13.
Wang X  Shi X  Hao B  Ge S  Luo J 《The New phytologist》2005,165(3):937-946
* Large-scale duplication events have been recently uncovered in the rice genome, but different interpretations were proposed regarding the extent of the duplications. * Through analysing the 370 Mb genome sequences assembled into 12 chromosomes of Oryza sativa subspecies indica, we detected 10 duplicated blocks on all 12 chromosomes that contained 47% of the total predicted genes. Based on the phylogenetic analysis, we inferred that this was a result of a genome duplication that occurred c. 70 million years ago, supporting the polyploidy origin of the rice genome. In addition, a segmental duplication was also identified involving chromosomes 11 and 12, which occurred c. 5 million years ago. * Following the duplications, there have been large-scale chromosomal rearrangements and deletions. About 30-65% of duplicated genes were lost shortly after the duplications, leading to a rapid diploidization. * Together with other lines of evidence, we propose that polyploidization is still an ongoing process in grasses of polyploidy origins.  相似文献   

14.
15.
Recent progress on sperm characterization in flowering plants   总被引:1,自引:0,他引:1  
The organization, isolation and physiology of the angiosperm male gamete has recently emerged as an area of special interest. Detailed in vivo studies have revealed: (1) that the functional unit of male reproduction is a'male germ unit,'composed of two sperm cells and a physically associated vegetative nucleus; (2) that the two sperm cells are often cytoplasmically dimorphic, and (3) that some sperm cells appear to undergo preferential fertilization, preferentially fusing with either the egg or the proendospermaric central cell. Male gamete isolation has provided enrichments of up to 107 cells ml–1, with sperm integrity and viability demonstrated by the flunrochromatic reaction and ATP levels. Although results from biochemical and hybridoma antibody characterization are still preliminary, they indicate that sperm cells possess polypeptide expression patterns that are different from those of surrounding cells. These findings suggest the existence of an independent developmental program in the angiosperm male gamete.  相似文献   

16.
In A. vulgare sex is usually determined either by a cytoplasmic feminizing factor (F symbiotic bacteria) or by another feminizing factor (f) which behaves like a mobile element of DNA and which seems to correspond to a fragment of bacterial DNA. By inhibiting the expression of male genes carried by the Z heterochromosome, these feminizing factors induce differentiation of neo-females [ZZ(+F) or ZZ(+f)]. Such a mechanism leads to the production of progenies whose sex ratio is highly female biased. In some populations in which F and/or f factors are present, genetic females (WZ) have disappeared and all individuals (males and females) are genetic males. However in other populations, cohabitation of ZZ(+f) neo-females and females in all points similar to genetic females is observed. Such a situation may be unstable and is not likely to be explainable only by migrations of individuals from distinct populations. Owing to certain types of crosses, in particular those which involve an artificial neo-male ( = female reversed into a functional male by an implant of androgenic gland) we show here that the f factor can be transmitted as a Mendelian gene. In these progenies ZfZ females may appear: like WZ females, they breed broods whose sex ratio is unbiased. The hypothesis that the “F bacteria—A. vulgare” symbiosis may have led, after a complex co-evolutive process (F bacteria → f mobile element → insertion of f on Z heterochromosome), to the creation (from a male genotype) of a female genotype, is put forward. The consequences of such a phenomenon on the composition and the evolution of A. vulgare populations are examined.  相似文献   

17.
18.
Advances in recent years have revolutionized our understanding of both the context and occurrence of polyploidy in plants. Molecular phylogenetics has vastly improved our understanding of plant relationships, enabling us to better understand trait and character evolution, including chromosome number changes. This, in turn, has allowed us to appreciate better the frequent occurrence and extent of polyploidy throughout the history of angiosperms, despite the occurrence of low chromosome numbers in some groups, such as in Arabidopsis (A. thaliana was the first plant genome to be sequenced and assembled). In tandem with an enhanced appreciation of phylogenetic relationships, the accumulation of genomic data has led to the conclusion that all angiosperms are palaeopolyploids, together with better estimates of the frequency and type of polyploidy in different angiosperm lineages. The focus therefore becomes when a lineage last underwent polyploidization, rather than simply whether a plant is ‘diploid’ or ‘polyploid’. This legacy of past polyploidization in plants is masked by large‐scale genome reorganization involving repetitive DNA loss, chromosome rearrangements (including fusions and fissions) and complex patterns of gene loss, a set of processes that are collectively termed ‘diploidization’. We argue here that it is the diploidization process that is responsible for the ‘lag phase’ between polyploidization events and lineage diversification. If so, diploidization is important in determining chromosome structure and gene content, and has therefore made a significant contribution to the evolutionary success of flowering plants. © 2015 The Authors. Botanical Journal of the Linnean Society published by John Wiley & Sons Ltd on behalf of Linnean Society of London, 2016, 180 , 1–5.  相似文献   

19.
The holoparasitic plant genus Cuscuta is comprised of species with various degrees of plastid functionality and significant differences in photosynthetic capacity, ranging from moderate to no photosynthetic carbon fixation. In the present study, several Cuscuta species were analyzed with respect to the overall contents of tocochromanols and plastoquinone and the levels of the individual tocochromanols. No correlations among photosynthetic capacity, the amount of carotenoids, of plastoquinone and of tocochromanols were observed. On the contrary, wide variation in the composition of the tocochromanol fraction was observed among different species, as well as in stems of the same species in response to starvation conditions. The implications of these findings are discussed.  相似文献   

20.
New functions for electrical signals in plants   总被引:12,自引:0,他引:12  
Eric  Davies 《The New phytologist》2004,161(3):607-610
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号