首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Retrograde cobalt labeling was performed by incubating the rootlets of cranial nerves IX, X and XI, or the central stumps of the same nerves, in a cobaltic lysine complex solution, and the distribution of efferent neurons sending their axons into these nerves was investigated in serial sections of the medulla and the cervical spinal cord in young rats. The following neuron groups were identified. The inferior salivatory nucleus lies in the dorsal part of the tegmentum at the rostral part of facial nucleus. It consists of a group of medium-sized and a group of small neurons. Their axons make a hair-pin loop at the midline and join the glossopharyngeal nerve. The dorsal motor nucleus of the vagus situates in the dorsomedial part of the tegmentum. Its rostral tip coincides with the first appearance of sensory fibres of the glossopharyngeal nerve, the caudal end extends into the pyramidal decussation. The constituting cells have globular or fusiform perikarya and they are the smallest known efferent neurons. The ambiguous nucleus is in the ventrolateral part of the tegmentum. The rostral tip lies dorsal to the facial nucleus, and the caudal tip extends to the level of the pyramidal decussation. The rostral one third of the ambiguous nucleus is composed of tightly-packed medium sized neurons, while larger neurons are arranged more diffusely in the caudal two thirds. The long dendrites are predominantly oriented in the dorsoventral direction. The dorsally-oriented axons take a ventral bend anywhere between the ambiguous nucleus and dorsal motor nucleus of the vagus. The motoneurons of the accessorius nerve are arranged in a medial, a lateral and a weak ventral cell column. The medial column begins at the caudal aspect of the pyramidal decussation and terminates in C2 spinal cord segment. The lateral and ventral columns begin in C2 segment and extend into C6 segment. The neurons have large polygonal perikarya and characteristic cross-shaped dendritic arborizations. The axons follow a dorsally-arched pathway between the ventral and dorsal horns. The accessorius motoneurons have no positional relation to any of the vagal efferent neurons. It is concluded that the topography and neuronal morphology of accessorius motoneurons do not warrant the designation of a bulbar accessorius nucleus and a bulbar accessorius nerve.  相似文献   

2.
Summary Central projections of afferents from the lateral line nerves and from the individual branches of the VIIIth cranial nerve in Xenopus laevis and Xenopus mülleri were studied by the application of HRP to the cut end of the nerves.Upon entering the rhombencephalon, the lateral line afferents form a longitudinal fascicle of ascending and descending branches in the ventro-lateral part of the lateral line neuropile. The fascicle exhibits a topographic organization, that is not reflected in the terminal field of the side branches. The terminal field can be subdivided into a rostral, a medial and a caudal part, each of which shows specific branching and terminal pattern of the lateral line afferents. These different patterns within the terminal field are interpreted as the reflection of functional subdivisions of the lateral line area. The study did not reveal a simple topographic relationship between peripheral neuromasts and their central projections.Two nuclei of the alar plate with significant lateral line input were delineated: the lateral line nucleus (LLN) and the medial part of the anterior nucleus (AN). An additional cell group, the intermediate nucleus (IN), is a zone of lateral line and eighth nerve overlap, although such zones also exist within the ventral part of the LLN and the dorsal part of the caudal nucleus (CN). Six nuclei which receive significant VIIIth nerve input are recognized: the cerebellar nucleus (CbN), the lateral part of the anterior nucleus, the dorsal medullary nucleus (DMN), the lateral octavus nucleus (LON), the medial vestibular nucleus (MVN) and the caudal nucleus (CN).All inner ear organs have more than one projection field. All organs project to the dorsal part of the LON and the lateral part of the AN. Lagena, amphibian papilla and basilar papilla project to separate regions of the dorsal medullary nucleus (DMN). There is evidence for a topographic relation between the hair cells of the amphibian papilla (AP) and the central projections of AP fibers. The sacculus projects extensively to a region between the DMN and the LON. Fibers from the sacculus and the lagena project directly to the superior olive. Fibers from the utriculus and the three crista organs terminate predominantly in the medial vestibular nucleus (MVN) and in the adjacent parts of the reticular formation, and their terminal structures appear to be organotopically organised. Octavus fiber projections to the cerebellum and to the spinal cord are also described.  相似文献   

3.
Somatotopic arrangements of cells and fibers within the dorsal columns and the dorsal column nuclei have been mapped most precisely by electrophysiological recording methods. This study uses an anatomical approach to evaluate the precision of individual digital nerve projections to the cuneate nucleus (CN) in young macaque monkeys. Digital nerves supplying about one-half the palmar skin of a digit were surgically exposed, cut, and treated with wheatgerm agglutinin conjugated to horseradish peroxidase (WGA:HRP) on 3 successive days. After 2 additional days, animals were killed and medullas were recovered for study of serial sections reacted to display axons labeled by transganglionic transport of label. Labeled afferent fibers from each digit were found within a circumscribed columnar zone extending through the caudal CN and rostrally throughout the pars rotunda of CN. At caudal levels, diffuse projections reach the dorsal edge of the CN; more rostrally, they shift into deeper parts of the nucleus and are heaviest along its ventral and medial edges at levels near the obex. Fibers from the thumb (digit 1) project lateral (and ventral) to those from digit 2, and projections from digit 3 are medial to those from 2. Each digital projection field is closely adjacent to that from the adjacent digit. Few fibers extend to the rostral CN. Projection fields of homologous digits are quite symmetrical on the two sides. Although there do seem to be some differences in the somatotopic arrangement of digital input in macaques compared to other nonprimate mammals studied previously, these observations (precisely organized, circumscribed fields for separate digits) define a system well designed for transmission of data encoding spatial relationships.  相似文献   

4.
Somatotopic arrangements of cells and fibers within the dorsal columns and the dorsal column nuclei have been mapped most precisely by electrophysiological recording methods. This study uses an anatomical approach to evaluate the precision of individual digital nerve projections to the cuneate nucleus (CN) in young macaque monkeys. Digital nerves supplying about one-half the palmar skin of a digit were surgically exposed, cut, and treated with wheatgerm agglutinin conjugated to horseradish peroxidase (WGA:HRP) on 3 successive days. After 2 additional days, animals were killed and medullas were recovered for study of serial sections reacted to display axons labeled by transganglionic transport of label. Labeled afferent fibers from each digit were found within a circumscribed columnar zone extending through the caudal CN and rostrally throughout the pars rotunda of CN. At caudal levels, diffuse projections reach the dorsal edge of the CN; more rostrally, they shift into deeper parts of the nucleus and are heaviest along its ventral and medial edges at levels near the obex. Fibers from the thumb (digit 1) project lateral (and ventral) to those from digit 2, and projections from digit 3 are medial to those from 2. Each digital projection field is closely adjacent to that from the adjacent digit. Few fibers extend to the rostral CN. Projection fields of homologous digits are quite symmetrical on the two sides. Although there do seem to be some differences in the somatotopic arrangement of digital input in macaques compared to other nonprimate mammals studied previously, these observations (precisely organized, circumscribed fields for separate digits) define a system well designed for transmission of data encoding spatial relationships.  相似文献   

5.
The primary divisions of the spinal nerve in the brown caiman characteristically show the following features: (1) the medial ramus was lies in the thoraco-lumbar and caudal regions, and (2) the first cervical and hypoglossal nerves form a single nerve complex from which the ventral and dorsal rami extend. Intramuscular injections of horseradish peroxidase (HRP) established the positions of motoneurons whose axons followed the primary rami. In the ventral horn of the thoracic and caudal spinal cord, the motoneurons of the medial ramus lie ventrally. These motoneurons lie between the epaxial and hypaxial motoneurons. At the spinomedullary junction, the pools of motoneurons innervating the infrahyoid, lingual, and dorsal muscles have a somatotopic organization similar to that observed in the thoraco-lumbar and caudal regions. Thus clear somatotopic organization of the motoneurons that innervate the axial musculature exists at all spinal levels. © 1994 Wiley-Liss, Inc.  相似文献   

6.
Projections of the central cerebellar nuclei to the intralaminar thalamic nuclei were studied in cats with the use of light and electron microscopy. Almost all intralaminar nuclei were shown to obtain cerebello-thalamic projections. The entire complex of the central cerebellar nuclei serves as a source of such projections; yet, involvement of different nuclei is dissimilar. Destruction of the central and, especially, caudal regions of the fastigial nucleus evoked in the intralaminar thalamic nuclei degenerative changes in the nerve fibers (from swelling and development of varicosities up to total fragmentation). Pathological phenomena could be noticed in the most caudal regions of the above thalamic nuclear group, including the medial dorsal nucleus. Projections of the cerebellar interpositus nucleus were directed toward nearly the same regions of the intralaminar nuclei; degeneration was more intensive (covered thecentrum medianum) when posterior regions of the interpositus nucleus were destroyed. Destruction of the lateral cerebellar nucleus evoked a similar pattern of pathological changes, but degeneration was also observed in some structures of the ventral and anterior nuclear groups of the thalamus. Electron microscopic examination showed that degeneration of dark and light types developed in the fiber preterminals and terminals. It can be concluded that the central cerebellar nuclei project not only to the ventral complex of the thalamic nuclei, but also to the anterior, medial, and intralaminar nuclear groups (rostral and caudal portions).  相似文献   

7.
The efferent connections of the rostral nucleus of the solitary tract (NTS) in the rat were studied by anterograde transport of Phaseolus vulgaris leucoagglutinin. Rostral to the injection site, fibers travel through the rostral parvocellular reticular formation and deflect medially or laterally around the motor trigeminal nucleus, giving off few terminals in these nuclei and terminate in the parabrachial nucleus. Moderate projections to the peritrigeminal zone, including the intertrigeminal nucleus and the dorsal subcoeruleus nucleus, were observed. Caudally to the injection site, dense innervations from the rostral nucleus of the solitary tract were detected in the parvocellular reticular formation ventral and caudal to the injection site and in the intermediate and ventral medullary reticular formation. The rostral central and ventral subdivisions of the NTS up to the level where the nucleus of the solitary tract abuts the fourth ventricle and the hypoglossal nucleus, receive moderate input from the rostral nucleus of the solitary tract. In general, the projections from the rostral nucleus of the solitary tract were bilateral with an ipsilateral predominance. The caudal part of the nucleus of the solitary tract, the dorsal motor nucleus of the vagus and the facial nucleus were not labeled. It is concluded that medullary rNTS projections participate in oral motor behavior and autonomic control of abdominal organs.  相似文献   

8.
The retinal innervation, cytoarchitectural, and immunohistochemical organization of the suprachiasmatic nucleus (SCN) was studied in the domestic sheep. The SCN is a large elongated nucleus extending rostrocaudally for roughly 3 mm in the hypothalamus. The morphology is unusual in that the rostral part of the nucleus extends out of the main mass of the hypothalamus onto the dorsal aspect of the optic chiasm. Following intraocular injection of wheat-germ agglutininhorseradish peroxidase or tritiated amino acids, anterograde label is distributed throughout the SCN. Retinal innervation of the SCN is bilaterally symmetric or predominantly ipsilateral. Quantitative image analysis demonstrates that, although the amount of autoradiographic label is greatest in the ventral and central parts of the nucleus, density varies progressively between different regions. In addition to the SCN, retinal fibers are also seen in the medial preoptic area, the anterior and lateral hypothalamic areas, the dorsomedial hypothalamus, the retrochiasmatic area, and the basal telencephalon. Whereas the SCN can be identified using several techniques, complete delineation of the nucleus requires combined tract tracing, cytoarchitectural, and histochemical criteria. Compared with the surrounding hypothalamic regions, the SCN contains smaller, more densely packed neurons, and is largely devoid of myelinated fibers. Cell soma sizes are smaller in the ventral SCN than in the dorsal or lateral parts, but an obvious regional transition is lacking. Using Nissl, myelin, acetylcholinesterase, and cytochrome oxidase staining, the SCN can be clearly distinguished in the rostral and medial regions, but is less differentiated toward the caudal pole. Immunohistochemical demonstration of several neuropeptides shows that the neurochemical organization of the sheep SCN is heterogeneous, but that it lacks a distinct compartmental organization. Populations of different neuropeptide-containing cells are found throughout the nucleus, although perikarya positive for vasoactive intestinal polypeptide and fibers labeled for methionine-enkephalin are predominant ventrally; neurophysine-immunoreactive cells are more prominent in the dorsal region and toward the caudal pole. The results suggest that the intrinsic organization of the sheep SCN is characterized by gradual regional transitions between different zones.  相似文献   

9.
The origin of different branches of the facial nerve in the rabbit was determined by using retrograde transport of HRP. Either the proximal stump of specific nerves was exposed to HRP after transection, or an injection of the tracer was made into particular muscles innervated by a branch of the facial nerve. A clear somatotopic pattern was observed. Those branches which innervate the rostral facial musculature arise from cells located in the lateral and intermediate portions of the nuclear complex. Orbital musculature is supplied by neurons in the dorsal portion of the complex, with the more rostral orbital muscles receiving input from more laterally located cells while the caudal orbital region receives innervation from more medial regions of the dorsal facial nucleus. The rostral portion of the ear also receives innervation from cells located in the dorsomedial part of the nucleus, but the caudal aspect of the ear is supplied exclusively by cells located in medial regions. The cervical platysma, the platysma of the lower jaw, and the deep muscles (i.e., digastric and stylohyoid) receive input from cells topographically arranged in the middle and ventral portions of the nuclear complex. It is proposed that the topographic relationship between the facial nucleus and branches of the facial nerve reflects the embryological derivation of the facial muscles. Those muscles that develop from the embryonic sphincter colli profundus layer are innervated by lateral and dorsomedial portions of the nuclear complex. The muscles derived from the embryonic platysma layer, including the deep musculature, receive their input from mid to ventral regions of the nuclear complex.  相似文献   

10.
This study describes the projection of cervical spinal afferent nerve fibers to the medulla in the brush-tailed possum, a marsupial mammal. After single dorsal roots (between C2 and T1) were cut in a series of animals, the Fink-Heimer method was used to demonstrate the projection fields of fibers entering the CNS via specific dorsal roots. In the high cervical spinal cord, afferent fibers from each dorsal root form a discrete layer in the dorsal funiculus. The flattened laminae from upper cervical levels are lateral and those from lower cervical levels are medial within the dorsal columns. All afferent fibers at this level are separated from gray matter by the corticospinal fibers in the dorsal funiculus. All cervical roots project throughout most of the length of the well-developed main cuneate nucleus in a loosely segmentotopic fashion. Fibers from rostral roots enter more lateral parts of the nucleus, and fibers from lower levels pass to more medial areas; but terminal projection fields are typically large and overlap extensively. At more rostral medullary levels, fibers from all cervical dorsal roots also reach the external cuneate nucleus. The spatial arrangement here is more complex and more extensively overlapped than in the cuneate nucleus. Rostral cervical root fibers reach ventral and ventrolateral areas of the external cuneate nucleus and continue to its rostral pole; more caudal root fibers project to more dorsal and medial regions within the nucleus. These results demonstrate that projection patterns of spinal afferents in this marsupial are similar to those seen in the few placental species for which detailed data concerning this system are available.  相似文献   

11.
Horseradish peroxidase histochemical studies of afferent and efferent projections of the trigeminal nerve in two species of chondrostean fishes revealed medial, descending and ascending projections. Entering fibers of the trigeminal sensory root project medially to terminate in the medial trigeminal nucleus, located along the medial wall of the rostral medulla. Other entering sensory fibers turn caudally within the medulla, forming the trigeminal spinal tract, and terminate within the descending trigeminal nucleus. The descending trigeminal nucleus consists of dorsal (DTNd) and ventral (DTNv) components. Fibers of the trigeminal spinal tract descend through the lateral alar medulla and into the dorsolateral cervical spinal cord. Fibers exit the spinal tract throughout its length, projecting to the ventral descending trigeminal nucleus (DTNv) in the medulla and to the funicular nucleus at the obex. Retrograde transport of HRP through sensory root fibers also revealed an ascending bundle of fibers that constitutes the neurites of the mesencephalic trigeminal nucleus, cell bodies of which are located in the rostral optic tectum. Retrograde transport of HRP through motor root fibers labeled ipsilateral cells of the trigeminal motor nucleus, located in the rostral branchiomeric motor column.  相似文献   

12.
The dorsomedial motor nuclei were demonstrated by the cobalt-labeling technique applied to the so-called somatic motor cranial nerves. The motoneurons constituting these nuclei are oval-shaped and smaller than the motoneurons in the ventrolateral motor nuclei. They give rise to ventral and dorsal dendrite groups which have extensive arborization areas. A dorsolateral cell group in the rostral three quarters of the oculomotorius nucleus innervates ipsilateral eye muscles (m.obl.inf., m.rect.inf., m.rect.med.) and a ventromedial cell group innervates the contralateral m. rectus superior. Ipsilateral axons originate from ventral dendrites, contralateral axons emerge from the medial aspect of cell bodies, or from dorsal dendrites, and form a "knee" as they turn around the nucleus on their way to join the ipsilateral axons. A few labeled small cells found dorsal and lateral to the main nucleus in the central gray matter are regarded as representing the nucleus of Edinger-Westphal. The trochlearis nucleus is continuous with the ventromedial cell group of the oculomotorius nucleus. The axons originate in dorsal dendrites, run dorsally along the border of the gray matter and pierce the velum medullare on the contralateral side. A compact dendritic bundle of oculomotorius neurons traverse the nucleus, and side branches appear to be in close apposition to the trochlearis neurons. A dorsomedial and a ventrolateral cell group becomes labeled via the abducens nerve. The former supplies the m. rectus lateralis, while the latter corresponds to the accessorius abducens nucleus which innervates the mm. rectractores. Neurons in this latter nucleus are large and multipolar, resembling the neurons in the ventrolateral motor nuclei. Their axons originate from dorsal dendrites and form a "knee" around the dorsomedial aspect of the abducens nucleus. Cobalt applied to the hypoglossus nerve reaches a dorsomedial cell group (the nucleus proper), spinal motoneurons and sympathetic preganglionic neurons. Of the dorsomedial motor cells, the hypoglossus neurons are the largest, and a branch of their ventral dendrites terminates on the contralateral side. Some functional and developmental biological aspects of the morphological findings, such as the crossing axons and the peculiar morphology of the accessory abducens nucleus, are discussed.  相似文献   

13.
The cellular origin of the brainstem projections to the oculomotor nucleus in the rabbit has been investigated by using free (HRP) and lectin-conjugated horseradish peroxidase (WGA-HRP). Following injections of these tracers into the somatic oculomotor nucleus (OMC), retrogradely labeled cells have been observed in numerous brainstem structures. In particular, bilateral labeling has been found in the four main subdivisions of the vestibular complex, predominantly in the superior and medial vestibular nuclei and the interstitial nucleus of Cajal, while ipsilateral labeling was found in the rostral interstitial nucleus of the medial longitudinal fascicle (Ri-MLF), the Darkschewitsch and the praepositus nuclei. Neurons labeled only contralaterally have been identified in the following structures: mesencephalic reticular formation dorsolateral to the red nucleus, abducens internuclear neurons, group Y, several areas of the lateral and medial regions of the pontine and medullary reticular formation, ventral region of the lateral cerebellar nucleus and caudal anterior interpositus nucleus. This study provides also information regarding differential projections of some centers to rostral and caudal portions of the OMC. Thus, the rostral one-third appears to receive predominant afferents from the superior and medial vestibular nuclei, while the caudal two-thirds receive afferents from all the four vestibular nuclei. Finally, the group Y sends afferents to the middle and caudal, but not to the rostral OMC.  相似文献   

14.
Summary The anterograde Phaseolus vulgaris-leucoagglutinin (PHA-L) tracing technique was used to determine the distribution of efferent fibers originating in the lateral septal nucleus of the guinea pig. For complementary detection of the chemical identity of the target neurons, double-labeling immunocytochemistry was performed with antibodies to PHA-L and to vasopressin, oxytocin, vasoactive intestinal polypeptide, serotonin or dopamine -hydroxylase, respectively. The hypothalamus received the majority of the PHA-L-stained septofugal fibers. Here, a specific topography was observed. (1) The medial and lateral preoptic area, (2) the anterior, lateral, dorsal, posterior hypothalamic and retrochiasmatic area, (3) the supraoptic, paraventricular, suprachiasmatic, dorsomedial, caudal ventromedial and arcuate nuclei, and (4) the tuberomammillary, medial and lateral supramammillary, dorsal and ventral premammillary nuclei always contained PHA-L-labeled fibers. The rostral portion of the ventromedial nucleus and the medial and lateral mammillary nucleus only occasionally showed weak terminal labeling. In other diencephalic areas, termination of PHA-L-labeled fibers was observed in the epithalamus and the nuclei of the midline region of the thalamus. In the mesencephalon, terminal varicosities occurred in the ventral tegmental area, interfascicular and interpeduncular nucleus, and periaqueductal gray. In addition, the dorsal and medial raphe nuclei of the metencephalon, together with the locus coeruleus and the dorsal tegmental nucleus, received lateral septal efferents.  相似文献   

15.
J D Mikkelsen  M M O'Hare 《Peptides》1991,12(1):177-185
The suprachiasmatic nucleus (SCN) regulates a number of circadian rhythms in mammals. A neuropeptide Y (NPY)-containing pathway from the intergeniculate leaflet of the lateral geniculate to the SCN is considered to carry information of the environmental light-dark cycle. Antisera directed against NPY, Cys-NPY(32-36)amide or the C-terminal extended peptide of proNPY(68-97) (CPON) and avidin-biotin immunohistochemistry were used to define the precise distribution of NPYergic nerve fibers in the SCN, and to compare the location of the various fragments of proNPY in these nerves. Gel chromatography and specific radioimmunoassays were applied to quantify the efficiency of the amidation of NPY, and to study the size of peptides demonstrating NPY- and NPYamide-immunoreactivity in anterior hypothalamic extracts. NPY-, NPYamide-, and CPON-immunoreactive nerve fibers exhibited apparently the same distribution and morphology in the SCN. Immunoreactive fibers were preferentially located in the ventral part of the SCN, but along the rostrocaudal axis of the nucleus, the density and the precise distribution of immunoreactive elements changed. From the rostral third of the SCN to the middle third, the number of immunoreactive fibers increased and their distribution extended in a dorsal and lateral direction. In the caudal part of the SCN, the number of immunoreactive elements decreased and the innervation spread to an even more dorsolateral location. Dorsal aspects of the rostral SCN contained a moderate number of fibers, whereas the dorsomedial quadrant of the caudal 2/3 of the SCN was almost devoid of immunoreactivity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Distribution of adrenergic and peptidergic nerve fibers in rat median eminence was studied three weeks after bilateral adrenalectomy. Fluorescence intensity in the external zone and in some of the nerve cell-bodies proved to be increased in the nucleus arcuatus. There were many nerve fibers with a bright fluorescence in the internal zone. A great number of the peptidergic nerve fibers appeared in the external zone. Reactions in the rostral, medial and caudal regions of the median eminence differed and were described.  相似文献   

17.
应用免疫细胞化学 ABC 技术观察了催产素、精氨酸加压素、促肾上腺皮质激素释放激素、神经肽 Y、神经降压肽、P 物质及亮氨酸脑啡肽免疫反应阳性纤维在大鼠结合臂旁核中的分布。催产素阳性纤维稀少,分布于腹外侧亚核、外外侧亚核、背外侧亚核及外外侧亚核与背外侧亚核之间的移行区。加压素阳性纤维亦甚为稀少,分布于腹外侧亚核、背外侧亚核、外外侧亚核与极外侧亚核.促肾上腺皮质激素释放激素阳性纤维分布于尾侧部臂旁核腰区、外外侧亚核腹内侧部、极外侧亚核、背外侧亚核、中央外侧亚核、内外侧亚核及臂旁内侧核。神经肽 Y 阳性纤维大多为串珠状的终末祥结构,分布于尾侧部腹外侧亚核、背外侧亚核、外外侧亚核背外侧部及外内侧亚核,在上外侧亚核、结合臂背内侧端背侧及臂旁内侧核腹侧部也有少量分布.神经降压肽阳性纤维分布于尾侧部臂旁核腰区、背外侧亚核、背外侧亚核与外外侧亚核之间的移行区、外外侧亚核、外内侧亚核及中吻部臂旁内侧核腹侧部。P 物质及亮氨酸脑啡肽阳性纤维分布于所有的臂旁外侧核诸亚核及外内侧亚核。  相似文献   

18.
Spinocerebellar neurons have been found in previous studies in lamina IX of the lumbosacral spinal cord. This lamina has been characterized as being composed of motor cell groups and the spinocerebellar neurons in the lamina have been found to have certain morphological similarities with the motoneurons. Retrograde double labeling technique, utilizing fluorescent dyes, was used for studying the relations between the spinocerebellar neurons and the motoneurons in lamina IX of the lumbosacral spinal cord in four adult cats. In three of them, Rhodamine labeled latex microspheres were injected bilaterally into the cerebellum and Fast Blue (FB) was injected into hindlimb nerves. In the fourth case, FB was injected into the cerebellum, while the peripheral nerves were injected with propidium iodide. Some overlap was found between labeled spinocerebellar neurons and motoneurons in certain parts of lamina IX, especially in the ventrolateral nucleus in the caudal part of L5 and rostral L6, in the dorsolateral nucleus from the caudal part of L5 to L6 and in the ventromedial nucleus at the S2 level. No double labeled neurons were found, however, in any of these or in other examined areas. This strongly indicates that spinocerebellar neurons in lamina IX are a separate population, different from motoneurons.  相似文献   

19.
Summary Afferents to the cerebellum in frogs (Rana esculenta, Rana temporaria) were studied by use of retrograde transport of horseradish peroxidase. Following injections restricted to the molecular layer of the cerebellum cell labelling was found in the contralateral inferior olive and the ventral portion of the caudal medullary raphe. Injections involving the granular layer resulted in labelling in the ventral horn of the cervical spinal cord, the caudal spinal trigeminal nucleus, the nucleus caudalis and the medial portion of the nucleus ventralis of the vestibular nerve, the inferior reticular nucleus and the nucleus of the fasciculus longitudinalis medialis. Following larger injections, which may have spread significantly into the cerebellar, secondary gustatory, trigeminal or vestibular nuclei, labelled cell bodies were also found in the nucleus ruber, nucleus solitarius, the rostral spinal trigeminal nucleus and the rostral rhombencephalic reticular formation. It is unclear whether the fibers from these latter areas innervate the cerebellum of the frog, as they do in mammals, or only reach the underlying areas. This situation emphasizes a limitation of the HRP technique when applied to small structures as is often the case in lower vertebrates.Supported by Grant Gr 276 to U. G.-C. from the Deutsche Forschungsgemeinschaft.  相似文献   

20.
To elucidate the organization of the ferret spinocervicothalamic pathway (SCTP), we examined the lateral cervical nucleus (LCN) and the termination of the cervicothalamic tract (CTT) in this species. In thionin-stained sections, the ferret LCN appeared as an easily delineated column of cells in the dorsolateral funiculus from about mid-C3 to the rostral end of C1, with most cells located in the C1 and C2 segments. In transverse sections, the LCN was elongated along a dorsolateral to ventromedial axis and in the rostral half of C2 and caudal half of C1 continuous with the neck of the dorsal horn. The number of ferret LCN cells was estimated to 2,500-3,700, with an average of 3,340. Substance P-like immunoreactive fibers located preferentially in the ventromedial part of the LCN, whereas serotonin-like immunoreactive fibers were found throughout the nucleus. Anterograde transport of wheat germ agglutinin-horseradish peroxidase conjugate and biotinylated dextran amine demonstrated that the ferret CTT terminates extensively in the peripheral parts of the ventral posterior lateral nucleus. Sparser termination was evident in the ventral posterior inferior nucleus, in the medial nucleus of the posterior complex, and in the medial part of the magnocellular medial geniculate nucleus. Thus, although the LCN is significantly smaller in ferrets than in cats and raccoons, the organization of the LCN and of the cervicothalamic tract is closely similar in the three species. These findings indicate a conserved general organization of the SCTP among carnivores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号