首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mucosal addressin cell adhesion molecule-1 (MAdCAM-1) is a homing receptor preferentially expressed on gut-associated endothelial cells that plays a central role in leukocyte traffic into the mucosal immune compartment. Although the molecular mechanisms underlying endothelial ICAM-1 or E-selectin expression have been intensively investigated, the mechanisms that regulate human MAdCAM-1 expression have not been defined. We report MAdCAM-1 gene and protein expression in primary cultures of human intestinal microvascular endothelial cells (HIMEC) that was not demonstrated in human umbilical vein endothelial cells. Similar to ICAM-1 and E-selectin expression, MAdCAM-1 gene expression in HIMEC was inducible with TNF-, IL-1, or LPS activation. However, in striking contrast to ICAM-1 and E-selectin expression, MAdCAM-1 mRNA and protein expression in HIMEC was heavily dependent on culture duration and/or cellular density, suggesting a prominent role for cell-cell interaction among these endothelial cells in the expression of the mucosal addressin. MAdCAM-1 expression was inhibited by both SN-50 (NF-B inhibitor) and LY-294002 [phosphatidylinositol 3-kinase (PI3-K) inhibitor], whereas ICAM-1 and E-selectin expression was inhibited by SN-50 but not by LY-294002. The Akt phosphorylation by TNF- or LPS was greater at higher cell density, demonstrating a pattern similar to that of MAdCAM-1 expression. NF-B activation was not affected by cellular density in HIMEC. MAdCAM-1 expression in human gut endothelial cells is regulated by distinct signaling mechanisms involving both NF-B and PI3-K/Akt. These data also suggest that PI3-K/Akt is involved in the gut-specific differentiation of HIMEC, which results in expression of the mucosal addressin MAdCAM-1. cell adhesion molecules; nuclear factor-B; phosphatidylinositol 3-kinase  相似文献   

2.
Mucosal addressin cell adhesion molecule-1 (MAdCAM-1) is essential for lymphocyte trafficking to gut-associated lymphoid tissues and is implicated in inflammatory disorders in the gut and pancreatic islets. In this study, we examined the functional role of MAdCAM-1 during rat ontogeny using newly generated specific mAb. As previously observed in mice and humans, MAdCAM-1 was preferentially expressed in high endothelial venules (HEV) in gut-associated lymphoid tissues and venules of lamina propria in adult rats. Lymphocyte rolling and adhesion on HEV in Peyer's patches (PP) were completely abrogated with neutralizing anti-MAdCAM-1 mAb, in agreement with the notion that MAdCAM-1 is the principal HEV ligand for lymphocyte rolling and adhesion in adult PP. In the developing gastrointestinal tract, MAdCAM-1 was widely expressed in the venules of the lamina propria of fetal rats. In addition, MAdCAM-1 was also expressed in follicular dendritic cells in the neonatal PP. Interestingly, MAdCAM-1 expression was found also in nonmucosal tissues during ontogeny. MAdCAM-1 was transiently expressed in blood vascular endothelial cells in the fetal skin and neonatal thymus. Notably, MAdCAM-1-positive blood vessels were localized mainly in the cortico-medullary junction in the neonatal thymus and about 10-20% of thymocytes, most of which were either CD4, CD8 double positive or single positive specifically reacted with soluble MAdCAM-1 via integrin alpha4beta7. After birth, MAdCAM-1 expression in thymus blood vessels disappeared and concomitantly, the soluble MAdCAM-1-reactive thymocytes were rapidly down-regulated. Our results suggest that MAdCAM-1 functions as a vascular addressin in not only mucosal, but also nonmucosal lymphoid tissues during ontogeny.  相似文献   

3.
4.
5.
6.
7.
The selective emigration of blood born leukocytes into tissues is mediated, in part by interactions of Ig-like cell adhesion molecules (IgCAMs) expressed on vascular endothelium and their cognate ligands, the leukocyte integrins. Within mucosal lymphoid tissues and gastrointestinal sites the mucosal vascular addressin, MAdCAM-1 is the predominant IgCAM, mediating specific lymphocyte homing via interactions with its ligand on lymphocytes, the integrin α4β7. Previous studies have shown that an essential binding motif resides in the first Ig domain of all IgCAMs, containing an acidic residue (D or E) preceded by an aliphatic residue (L or I) that resides in strand C or the CD loop. However, domain swap experiments with MAdCAM-1 and VCAM-1 have shown a requirement for both Ig domains 1 and 2 for efficient integrin binding. We describe the use of chimeric MAdCAM-1/VCAM-1 receptors and point mutations in MAdCAM-1 to define other sites that are required for binding to the integrin α4β7. We find that, in addition to critical CD loop residues, other regions in both domain one and two contribute to MAdCAM-1/α4β7 interactions, including a buried arginine residue in the F strand of domain one and several acidic residues in a highly extended DE ribbon in domain 2. These mutations, when placed in the recently solved crystal structure of human MAdCAM-1 give insight into the integrin binding preference of this unique receptor.  相似文献   

8.
The selective emigration of blood born leukocytes into tissues is mediated, in part by interactions of Ig-like cell adhesion molecules (IgCAMs) expressed on vascular endothelium and their cognate ligands, the leukocyte integrins. Within mucosal lymphoid tissues and gastrointestinal sites the mucosal vascular addressin. MAdCAM-1 is the predominant IgCAM, mediating specific lymphocyte homing via interactions with its ligand on lymphocytes, the integrin alpha4beta7. Previous studies have shown that an essential binding motif resides in the first Ig domain of all IgCAMs, containing an acidic residue (D or E) preceded by an aliphatic residue (L or I) that resides in strand C or the CD loop. However, domain swap experiments with MAdCAM-1 and VCAM-1 have shown a requirement for both Ig domains 1 and 2 for efficient integrin binding. We describe the use of chimeric MAdCAM-1/VCAM-1 receptors and point mutations in MAdCAM-1 to define other sites that are required for binding to the integrin alpha4beta7. We find that, in addition to critical CD loop residues, other regions in both domain one and two contribute to MAdCAM-1/alpha4beta7 interactions, including a buried arginine residue in the F strand of domain one and several acidic residues in a highly extended DE ribbon in domain 2. These mutations, when placed in the recently solved crystal structure of human MAdCAM-1 give insight into the integrin binding preference of this unique receptor.  相似文献   

9.
Nasal-associated lymphoid tissue (NALT), a mucosal inductive site for the upper respiratory tract, is important for the development of mucosal immunity locally and distally to intranasally introduced Ag. To more fully understand the induction of nasal mucosal immunity, we investigated the addressins that allow for lymphocyte trafficking to this tissue. To investigate the addressins responsible for naive lymphocyte binding, immunofluorescent and immunoperoxidase staining of frozen NALT sections were performed using anti-mucosal addressin cell adhesion molecule-1 (MAdCAM-1), anti-peripheral node addressin (PNAd), and anti-VCAM-1 mAbs. All NALT high endothelial venules (HEV) expressed PNAd, either associated with MAdCAM-1 or alone, whereas NALT follicular dendritic cells expressed both MAdCAM-1 and VCAM-1. These expression profiles were distinct from those of the gut mucosal inductive site, Peyer's patches (PP). The functionality of NALT HEV was determined using a Stamper-Woodruff ex vivo assay. The anti-L-selectin MEL-14 mAb blocked >90% of naive lymphocyte binding to NALT HEV, whereas the anti-MAdCAM-1 mAb, which blocks almost all naive lymphocyte binding to PP, minimally blocked binding to NALT HEV. NALT lymphocytes exhibited a unique L-selectin expression profile, differing from both PP and peripheral lymph nodes. Finally, NALT HEV were found in increased amounts in the B cell zones, unlike PP HEV. These results suggest that NALT is distinct from the intestinal PP, that initial naive lymphocyte binding to NALT HEV involves predominantly L-selectin and PNAd rather than alpha4beta7-MAdCAM-1 interactions, and that MAdCAM-1 and VCAM-1 expressed by NALT follicular dendritic cells may play an important role in lymphocyte recruitment and retention.  相似文献   

10.
Gastroesophageal reflux disease is the most common malady of the esophagus, affecting 7% of the United States population. Histological assessment demonstrates classic inflammatory mechanisms including selective leukocyte recruitment and hemorrhage, suggesting a prominent role for the microvasculature. We isolated and characterized human esophageal microvascular endothelial cells (EC) (HEMEC), examined inflammatory activation in response to cytokines, LPS, and acidic pH exposure, and identified signaling pathways that underlie activation. HEMEC displayed characteristic morphological and phenotypic features including acetylated LDL uptake. TNF-alpha/LPS activation of HEMEC resulted in upregulation of the cell adhesion molecules (CAM) ICAM-1, VCAM-1, E-selectin, and mucosal addressin CAM-1 (MAdCAM-1), increased IL-8 production, and enhanced leukocyte binding. Both acid and TNF-alpha/LPS activation lead to activation of SAPK/JNK in HEMEC that was linked to VCAM-1 expression and U-937 leukocyte adhesion. Expression of constitutive inducible nitric oxide synthase in HEMEC was in marked contrast to intestinal microvascular endothelial cells. In this study, we demonstrate that HEMECs are phenotypically and functionally distinct from lower gut-derived endothelial cells and will facilitate understanding of inflammatory mechanisms in esophageal inflammation.  相似文献   

11.
The alpha(4) integrins alpha(4)beta(7) and alpha(4)beta(1), and their ligands mucosal vascular addressin cell adhesion molecule 1 (MAdCAM-1) and VCAM-1, have diverse functions, including roles in the formation of secondary lymphoid tissues at early time points during the colonization and clustering of the fetal lymphoid tissue inducer (LTi) cells and at later time points during the recruitment of lymphocytes. In this study, we evaluated the role of alpha(4) integrins in the development of a recently appreciated class of intestinal lymphoid tissues, isolated lymphoid follicles (ILFs). We observed that diverse ILF cellular populations express alpha(4)beta(7) and alpha(4)beta(1), including the LTi-like cells and lymphocytes, while ILF stromal cells and vessels within ILFs express VCAM-1 and MAdCAM-1, respectively. Evaluation of adult and neonatal beta(7)(-/-) mice and adult and neonatal mice given blocking Abs to alpha(4)beta(7), MAdCAM-1, or VCAM-1 did not identify a role for alpha(4) integrins in cryptopatch (CP) development; however, these studies demonstrated that alpha(4)beta(7) and MAdCAM-1 are required for the transitioning of CP into lymphoid tissues containing lymphocytes or ILFs. Competitive bone marrow transfers demonstrated that beta(7)(-/-) LTi-like cells had a reduced but not significantly impaired ability to localize to CP. Bone marrow transfers and adoptive transfers of B lymphocytes revealed that beta(7) expression by B lymphocytes was essential for their entry into the developing ILFs. These findings demonstrate an essential role for alpha(4)beta(7)/MAdCAM-1 in ILF development corresponding to the influx of beta(7)-expressing lymphocytes and a nonessential role for beta(7)-localizing LTi-like cells to the small intestine.  相似文献   

12.
Tissue homing of activated T cells is typically mediated through their specific integrin and chemokine receptor repertoire. Activation of human primary CD4(+) T cells in the presence of CD46 cross-linking induces the development of a distinct immunomodulatory T cell population characterized by high IL-10/granzyme B production. How these regulatory T cells (Tregs) migrate/home to specific tissue sites is not understood. In this study, we determined the adhesion protein and chemokine receptor expression pattern on human CD3/CD46-activated peripheral blood CD4(+) T cells. CD3/CD46-activated, but not CD3/CD28-activated, T cells up-regulate the integrin alpha(4)beta(7). The interaction of alpha(4)beta(7) with its ligand mucosal addressin cell adhesion molecule 1 (MAdCAM-1) mediates homing or retention of T cells to the intestine. CD3/CD46-activated Tregs adhere to/roll on MAdCAM-1-expressing HeLa cells, similar to T cells isolated from the human lamina propria (LP). This interaction is inhibited by silencing MAdCAM-1 expression in HeLa cells or by the addition of blocking Abs to beta(7). CD46 activation of T cells also induced the expression of the surface-bound cytokine LIGHT and the chemokine receptor CCR9, both marker constitutively expressed by gut LP-resident T cells. In addition, we found that approximately 10% of the CD4(+) T lymphocytes isolated from the LP of patients undergoing bariatric surgery contain T cells that spontaneously secrete a cytokine pattern consistent with that from CD46-activated T cells. These data suggest that CD46-induced Tregs might play a role in intestinal immune homeostasis where they could dampen unwanted effector T cell responses through local IL-10/granzyme B production.  相似文献   

13.
 MAdCAM-1, the endothelial addressin cell adhesion molecule-1, interacts preferentially with the leukocyte β7 integrin LPAM-1 (α4β7), but also with L-selectin, and with VLA-4 (α4β1) on myeloid cells, and serves to direct leukocytes into mucosal and inflamed tissues. Overlapping cosmid and phage λ genomic clones were isolated, revealing that the human MAdCAM-1 gene contains five exons where the signal peptide, two Ig domains, and mucin domain are each encoded by separate exons. The transmembrane domain, cytoplasmic domain, and 3′ untranslated region are encoded together on exon 5. The mucin domain contains eight repeats in total that are subject to alternative splicing. Despite the absence of a human counterpart of the third IgA-homologous domain and lack of sequence conservation of the mucin domain, the genomic organizations of the human and mouse MAdCAM-1 genes are similar. An alternatively spliced MAdCAM-1 variant was identified that lacks exon 4 encoding the mucin domain, and may mediate leukocyte adhesion to LPAM-1 without adhesion to the alternate receptor, L-selectin. The MAdCAM-1 gene was located at p13.3 on chromosome 19, in close proximity to the ICAM-1 and ICAM-3 genes (p13.2-p13.3). PMA-inducible promotor activity was contained in a 700 base pair 5’ flanking fragment conserved with the mouse MAdCAM-1 gene including tandem NF-kB sites, and an Sp1 site; and in addition multiple potential AP2, Adh1 (ETF), PEA3, and Sp1 sites. In summary, the data establish that the previously reported human MAdCAM-1 cDNA does indeed encode the human homologue of mouse MAdCAM-1, despite gross dissimilarities in the MAdCAM-1 C-terminal structures. Received: 5 December 1996 / Revised: 2 January 1997  相似文献   

14.
The LAM1 molecule is a member of the new family of cellular adhesion/homing molecules that contain a lectin-like domain at their amino-terminal end followed by an epidermal growth factor-like domain and short consensus repeat units like those found in C3/C4 binding proteins. Two mAb that react with the leukocyte adhesion molecule 1 (LAM1) were produced and used to examine the cell-surface expression of LAM1. The anti-LAM1 antibodies were reactive with the majority of blood lymphocytes, NK cells, neutrophils, and monocytes. LAM1 was also expressed by subpopulations of phenotypically immature and mature thymocytes. Blood lymphocytes rapidly modulated LAM1 from the cell surface during PMA exposure for 60 min. Coordinate with the loss of LAM1 from the cell surface, PMA-treated lymphocytes lost the ability to bind to lymph node high endothelial venules, indicating that expression of LAM1 may play a role in lymphocyte homing. Mitogen stimulation of blood T and B lymphocytes also resulted in decreased LAM1 expression, but at a slower rate. LAM1 was only weakly expressed by a minority of spleen lymphocytes. However, culturing spleen lymphocytes in media alone resulted in increased expression of LAM1 by a subpopulation of the cells (40 to 60%). Concomitant mitogen stimulation of spleen lymphocytes resulted initially in down-regulation of LAM1 expression followed by increased expression of LAM1 and then subsequent loss of LAM1 from the cell surface. The pattern of anti-LAM1 antibody reactivity was identical to that reported for the TQ1 and Leu-8 antibodies, and all of these antibodies reacted with cells transfected with the LAM1 cDNA. Thus, LAM1 is broadly expressed by leukocytes, and binding of LAM1 may participate in the process of leukocyte extravasation into lymphoid organs or sites of acute inflammation with subsequent loss of LAM1 from the cell surface.  相似文献   

15.

Background  

MAdCAM-1 plays a central role in T-lymphocyte homing to the gut, but its role in chronic liver inflammation remains unknown. Therefore, this study measured MAdCAM-1 expression, regulation, and function in cultured murine hepatic endothelial cells.  相似文献   

16.
Homing of recirculating lymphocytes from the blood into the lymphoid tissues is mediated by 90-kDa homing receptors on the lymphocyte cell surface, allowing selective binding to specialized endothelium lining high endothelial venules. This study describes two novel mAb, NKI-P1 and NKI-P2, directed against functional epitopes of a human lymphocyte homing receptor, gp90. Biochemical studies demonstrated that these antibodies recognize a 90-kDa glycoprotein which is similar to the Ag recognized by the mAb Hermes-1. This notion was confirmed by immunohistochemical studies showing identical reaction patterns. Furthermore, it was observed that NKI-P1 and NKI-P2 blocked adhesion of lymphocytes to high endothelial venules. Immunohistochemical, immunofluorescence, and immunoprecipitation studies revealed that gp90 is widely expressed on hemopoietic cells including lymphocytes, macrophages/dendritic cells, myeloid cells, and erythrocytes. The gp90 is also expressed on a number of nonhemopoietic cells such as endothelial cells, certain epithelial cells, and fibroblasts. In addition to its expression on normal cells, gp90 is present on a spectrum of tumor cell lines of lymphoid, monocytic, epithelial, glial, and melanocytic origin. In addition to the 90-kDa product, the antibodies immunoprecipitate several polypeptides in the range of 120 to 200 kDa. Interestingly, it was observed that certain mamma tumor cell-line cells lack the 90-kDa polypeptide indicating the heterogeneous expression of the molecules recognized by the antibodies. These results indicate that the 90-kDa glycoprotein homologues of the Hermes-1 human lymphocyte homing receptor are expressed on hemopoietic tissues as well as on a number of nonhemopoietic tissues and tumor cell lines. Although the function of these molecules in nonlymphoid cells is presently unknown, they might play a role in cell-cell or cell-matrix adhesion.  相似文献   

17.
The integrin alpha(4)beta(7) is the cell adhesion receptor for the mucosal vascular addressin MAdCAM-1, and this interaction is dominant in lymphocyte homing to Peyer's patch high endothelial venules, and plays key roles in lymphocyte recruitment at sites of inflammation. To identify alpha(4) subunit amino acids important for alpha(4)beta(7)/MAdCAM-1 interaction, we expressed mutant alpha(4) and wild type beta(7) chains in K562 cells and analyzed the effect of the mutations on cell adhesion to a soluble MAdCAM-1 (sMAdCAM-1-Ig). Transfectants expressing mutated alpha(4) at Tyr(187) displayed a substantial decrease in adhesion to this ligand, which was associated with a reduced alpha(4)beta(7)/sMAdCAM-1-Ig interaction, as determined by soluble binding assays. Addition of Mn(2+) to the adhesion assays did not restore the impaired adhesion. Mutations at alpha(4) Gln(152)Asp(153) also affected transfectant adhesion to sMAdCAM-1-Ig, but did not involve an alteration of alpha(4)beta(7)/MAdCAM-1 binding, and adhesion was restored by Mn(2+). Instead, mutations at alpha(4) Asn(123)Glu(124) did not affect this adhesion. Mutation of alpha(4) Tyr(187) abolished alpha(4)beta(7)-mediated cell adhesion to CS-1/fibronectin, an additional ligand for alpha(4)beta(7), while alpha(4) Gln(152)Asp(153) transfectant mutants showed a reduced adhesion. These results identify alpha(4) Tyr(187) as a key residue during receptor alpha(4)beta(7)/ligand interactions, indicating that it plays important roles in alpha(4)beta(7)-mediated leukocyte adhesion, and provide a potential target for therapeutic intervention in several inflammatory pathologies.  相似文献   

18.
The functional expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1) and MAdCAM-1 in the choroid plexus is indicative of a role of this structure in the communication of the immune system with the central nervous system (CNS). In order to gain further insight into the possible functions of adhesion molecules expressed in the choroid plexus, we investigated the exact ultrastructural localization of VCAM-1, ICAM-1 and MAdCAM-1 on semithin and ultrathin cryosections of the choroid plexus of healthy mice and of mice suffering from experimental autoimmune encephalomyelitis (EAE). In the healthy choroid plexus VCAM-1 and ICAM-1, but not MAdCAM-1, could be detected on the apical surface of the choroid plexus epithelial cells. During EAE, immunoreactivity for VCAM-1 and ICAM-1 was dramatically increased. Additionally, apical expression of MAdCAM-1 was observed on individual choroid plexus epithelial cells during EAE. At the same time, VCAM-1, ICAM-1 or MAdCAM-1 were never present on the endothelial cells of the fenestrated capillaries within the choroid plexus. The polar expression of VCAM-1, ICAM-1 and MAdCAM-1 on the apical surface of choroid plexus epithelial cells, which form the blood-cerebrospinal fluid barrier, implies a previously unappreciated function of this barrier in the immunosurveillance of the CNS.  相似文献   

19.
CD56, an adhesion molecule closely related to neural cell adhesion molecule, is an immunophenotypic marker for several unique populations of PBLS: Although CD56(+) cells derive from multiple lymphocyte lineages, they share a role in immunosurveillance and antitumor responses. We have studied the chemokine receptor expression patterns and functional migratory responses of three distinct CD56(+) populations from human peripheral blood. NK-T cells were found to differ greatly from NK cells, and CD16(+) NK cells from CD16(-) NK cells. CD16(+) NK cells were the predominant population responding to IL-8 and fractalkine, whereas NK-T cells were the predominant population responding to the CCR5 ligand macrophage-inflammatory protein-1beta. CD16(-) NK cells were the only CD56(+) population that uniformly expressed trafficking molecules necessary for homing into secondary lymphoid organs through high endothelial venule. These findings describe a diverse population of cells that may have trafficking patterns entirely different from each other, and from other lymphocyte types.  相似文献   

20.
Lymphocyte rolling velocity is determined largely by interactions between leukocyte alpha(4)-integrin (CD49d) and L-selectin and mucosal addressin cell adhesion molecule-1 (MAdCAM-1) in mesenteric postcapillary venules and Peyer's patch high endothelial venules (HEVs). The role of these interactions in other tissue sites of lymphocyte emigration is not known. With the use of real-time intravital confocal microscopy, we found that rolling velocities of T lymphocytes in the murine mesenteric lymph node (MLN) HEV also depend on L-selectin and CD49d. However, in the murine spleen, rolling velocities of T lymphocytes are not influenced by the loss of L-selectin and CD49d. With the use of FITC-dextran and TIE2-GFP mice, we further defined the microvascular compartments of the spleen and showed that adherence of T cells is localized to regions in the white pulp that are not lined by endothelial cells and have shear rates similar to bone marrow sinusoids. These results establish that T cell trafficking to the spleen differs from trafficking to other secondary lymphoid organs and suggest that the mechanical properties of the blood-filtering role of the spleen are important in T cell accumulation in the organ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号