首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
NAD(P)(+)-glycohydrolase (NADase, EC 3.2.2.6) was partially purified from microsomal membranes of human spleen after solubilization with Triton X-100. In addition to NAD+ and NADP+, the enzyme catalyzed the hydrolysis of several NAD+ analogues and the pyridine base exchange reaction with conversion of NAD+ into 3-acetylpyridine adenine dinucleotide. The enzyme also catalyzed the synthesis of cyclic ADP-ribose (cADPR) from NAD+ and the hydrolysis of cADPR to adenosine diphosphoribose (ADPR). Therefore, this enzyme is a new member of multicatalytic NADases recently identified from mammals, involved in the regulation of intracellular cADPR concentration. Human spleen NADase showed a subunit molecular mass of 45 kDa, a pI of 4.9 and a Km value for NAD+ of 26 microM. High activation of ADPR cyclase activity was observed in the presence of Ag+ ions, corresponding to NADase inhibition.  相似文献   

2.
A new type of nicotinamide adenine dinucleotide glycohydrolase (NADase) has been isolated from rat liver nuclei. When partially purified chromatin is passed through a Sephadex G-200 column in the presence of 1 M NaCl, enzyme activities catalyzing the liberation of nicotinamide from NAD elute in two peaks. One, which appears in the void volume fraction, hydrolyzes the nicotinamide-ribose linkage of NAD to produce nicotinamide and ADP-ribose in stoichiometric amounts. This activity is not inhibited by 5 mM nicotinamide. The other, which elutes much later, catalyzes the formation of poly(ADP-ribose) from NAD and is completely inhibited by 5 mM nicotinamide. The former, NADase, is DNase-insensitive and thermostable, has a pH optimum of 6.5 to 7, a Km for NAD of 28 muM, and a Ki for nicotinamide of 80 mM, and hydrolyzes NADP as well as NAD. The latter, poly(ADP-ribose) synthetase, is sensitive to DNase treatment and heat labile, has a pH optimum of 8 to 8.5, a Km for NAD of 250 muM and a Ki for nicotinamide of 0.5 mM and is strictly specific for NAD. Further, the former NADase is shown to lack transglycosidase activity, which has been documented to be a general property of NADases derived from animal tissues. These results indicate that the NAD-hydrolyzing enzyme newly isolated from nuclei is a novel type of mammalian NADase which catalyzes the hydrolytic cleavage of the nicotinamide-ribose linkage of NAD.  相似文献   

3.
NAD glycohydrolases are the longest known enzymes that catalyze ADP-ribose transfer. The function of these ubiquitous, membrane-bound enzymes has been a long standing puzzle. The NAD glycohydrolase are briefly reviewed in light of the discovery by our laboratory that NAD glycohydrolases are bifunctional enzymes that can catalyze both the synthesis and hydrolysis of cyclic ADP-ribose, a putative second messenger of calcium homeostasis.Abbreviations NADase nicotinamide adenine dinucleotide glycohydrolase - NAD nicotinamide adenine dinucleotide - ADP-ribose adenosine diphosphoribose - cADPR cyclic adenosine diphosphoribose  相似文献   

4.
ADP-ribosyl cyclase, which catalyzes the conversion from NAD+ to cyclic adenosine diphosphoribose (cADPR), is proposed to participate in cell cycle regulation in Euglena gracilis. This enzyme, which was found as a membrane-bound protein, was purified almost the homogeneity after solubilization with deoxycholate, and found to be a monomeric protein with a molecular mass of 40 kDa. Its Km value for NAD+ was estimated to be 0.4 mM, and cADPR, a product of the enzyme, inhibited the enzyme competitively with respect to NAD+ whereas another product, nicotinamide, showed noncompetitive (mixed-type) inhibition. In contrast to mammalian CD38 and BST-1, Euglena ADP-ribosyl cyclase lacked cADPR hydrolase activity.  相似文献   

5.
We report the kinetics and molecular properties of CD38 purified from bovine lung microsomal membranes after its solubilization with Triton X-100. The enzyme was found to be a novel member of a multicatalytic NAD+-glycohydrolase (NADase, EC 3.2.2.6). It was able to utilize NAD + in different ways, producing nicotinamide (Nam) and either adenosine diphosphoribose (ADPR, NADase activity) or cyclic ADPR (cADPR, cyclase activity); it also catalyzed the hydrolysis of cADPR to ADPR (cADPR, hydrolase activity). In addition, the enzyme catalyzed the pyridine base exchange reaction with conversion of NAD + into NAD analogues. These data are evidence that CD38 is involved in the regulation of both NAD+ and calcium-mobilizing agents, the concentration resulting in an essential enzyme that plays a key role in cellular energy and signal-transduction systems.  相似文献   

6.
The reaction between NAD and histamine in the presence of purified bull semen nicotinamide adenine dinucleotide nucleosidase (NADase) was studied with respect to the rate of disappearance of the nicotinamide ribosidic linkage of NAD and the rate of the loss of one orcinol-positive ribose of NAD. It was observed that in the presence of this enzyme, 50% of the ribosidic linkage was hydrolyzed prior to any change in orcinol-positive ribose. A nonenzymatic reaction of the product of hydrolysis, adenosine diphosphoribose with histamine was observed to result in the loss of one orcinol-positive ribose. Similar nonenzymatic reactions of histamine were observed with ribose and ribose-5-phosphate. The data suggest that the bull semen NADase does not catalyze a transglycosidation reaction between NAD and histamine as had been claimed previously.  相似文献   

7.
A particulate NMN glycohydrolase of rabbit spleen was solubilized with Triton X100 and purified approximately 100-fold. The enzyme was shown to have a pH maximum of 6.5, a Km of 0.25 mM, a Vmax of 5.3 mumol/min/mg protein, an activation energy of 7.9 kcal/mol, and a molecular weight of approximately 400,000. Both of the purified and the particulate enzymes exhibited identical catalytic properties with respect to substrate specificity, activation energy, pH profile and exchange reaction with nicotinic acid, except that the purified enzyme was highly activated with Triton X100 as compared with the particulate enzyme; it appears that the purified enzyme possesses the same catalytic properties as the enzyme present in the tissue and that solubilization does not significantly alter the native protein. In addition to catalytic activity with NMN, the rabbit spleen enzyme catalyzed an irreversible hydrolysis with NAD and NADP, exhibiting catalyzing activity ratios of NMN:NAD:NADP = 1.00:1.45:0.44 and Vmax/Km ratios of 1.00:1.7:2.3, respectively. These ratios of activity remained constant throughout purification of the enzyme and no separation of these activities was detected. Mutually competitive inhibition of the enzyme with Ki values similar to Km, and identical rates of thermal denaturation of the enzyme and activity-pH profiles with NMN or NAD indicated the hydrolysis of the C-N glycosidic linkage of the pyridine nucleotides to be catalyzed by the same enzyme. The enzyme was less specific for the purine structure of the substrate dinucleotides but was stereospecific for the glycosidic linkage cleaved. Nicotinamide riboside, the nicotinic acid analogs and the reduced forms were not hydrolyzed. A linear noncompetitive inhibition of NMN hydrolysis with nicotinamide indicated an ordered Uni-Bi mechanism in which nicotinamide was the first product released from the enzyme. A property that the rabbit spleen enzyme appears to share with other NAD glycohydrolases is the transglycosidation reaction. The ratio of transglycosidation reaction vs. hydrolysis catalyzed by the enzyme in the presence of NMN and nicotinic acid indicated that the enzyme could function as a primary transglycosidase rather than a hydrolytic enzyme in vivo.  相似文献   

8.
d-Glucose-6-phosphate nicotinamide adenine dinucleotide phosphate (NADP) oxidoreductase (EC 1.1.1.49) from Bacillus licheniformis has been purified approximately 600-fold. The enzyme appears to be constitutive and exhibits activity with either oxidized NAD (NAD(+)) or oxidized NADP (NADP(+)) as electron acceptor. The enzyme has a pH optimum of 9.0 and has an absolute requirement for cations, either monovalent or divalent. The enzyme exhibits a K(m) of approximately 5 muM for NADP(+), 3 mM for NAD(+), and 0.2 mM for glucose-6-phosphate. Reduced NADP (NADPH) is a competitive inhibitor with respect to NADP(+) (K(m) = 10 muM). Phosphoenolpyruvate (K(m) = 1.6 mM), adenosine 5'-triphosphate (K(m) = 0.5 mM), adenosine diphosphate (K(m) = 1.5 mM), and adenosine 5'-monophosphate (K(m) = 3.0 mM) are competitive inhibitors with respect to NAD(+). The molecular weight as estimated from sucrose density centrifugation and molecular sieve chromatography is 1.1 x 10(5). Sodium dodecyl sulfate gel electrophoresis indicates that the enzyme is composed of two similar subunits of approximately 6 x 10(4) molecular weight. The intracellular levels of glucose-6-phosphate, NAD(+), and NADP(+) were measured and found to be approximately 1 mM, 0.9 mM, and 0.2 mM, respectively, during logarithmic growth. From a consideration of the substrate pool sizes and types of inhibitors, we conclude that this single constitutive enzyme may function in two roles in the cell-NADH production for energetics and NADPH production for reductive biosynthesis.  相似文献   

9.
Highly purified streptococcal nicotinamide adenine dinucleotide glycohydrolase (NADase) was obtained by utilizing disodium tetrathionate to protect the enzyme by blocking the sulfhydryl groups of streptococcal proteinase. This was followed by two-step ion-exchange chromatography. The pure enzyme, demonstrated as a single band on sodium dodecyl sulfate/polyacrylamide gel electrophoresis, had a specific activity of 11,200 NADase units per mg of protein and was devoid of hemolytic activity. NADase had a molecular weight of about 55,000 as determined by gel filtration, by summation of amino acid residues, and by sodium dodecyl sulfate/gel electrophoresis. The purified enzyme had optimal activity at pH 7.3 and at 40 C and a calculated Km of 5.1 times 10- minus 4 mM. It was inhibited by alpha-iodoacetamide.  相似文献   

10.
NAD glycohydrolase, or NADase (NAD+ glycohydrolase, EC 3.2.2.5) was solubilized with porcine pancreatic lipase from isolated fractions of microsomes and plasma membranes obtained from rat livers. The enzyme from each organelle was further purified by DEAE-cellulose chromatography, gel filtration and isoelectric focusing. The solubilized, partially purified enzymes had similar molecular weights, pH-activity profiles and Km values. Marked charge heterogeneity was observed for the microsomal enzyme on isoelectric focusing between pH 6 and 8 with maximum activity focusing at pH 8.0. Plasma membrane NADase displayed a single peak at pH 6.7. Treatment of the partially purified microsomal or plasma membrane enzyme with neuraminidase resulted in a single peak of activity on isoelectric focusing (pH 3.5--10) with a pI of 9.2. Polyacrylamide gel electrophoresis of either NADase revealed a periodate-Schiff positive band which was coincident with enzyme activity. Compositional analyses of the microsomal enzyme focusing at pH 8.0 confirmed the presence of hexoses, hexosamines and sialic acid. Differences in carbohydrate composition might be important in determining the subcellular distribution of this enzyme.  相似文献   

11.
The localization of NAD+ glycohydrolase [EC 3.2.2.5] (NADase) in purified rat liver nuclei has been examined. Subnuclear fractionation revealed that at least 70% of the NADase in nuclei was associated with the nuclear envelope fraction. The nuclear envelope fraction was practically free of microsomal contamination as judged by electron microscopic morphometry and assays of microsomal marker enzymes. Therefore, NADase was found to be an integral component of the nuclear envelope. The enzymological properties of the nuclear envelope NADase were compared with those of the microsomal enzyme. The nuclear envelope NADase was identical to the microsomal enzyme in its Km for NAD+ (60 muM), pH optimum (pH 6.5), ratio of transglycosidase activity to NADase activity (about 0.5), thermal stability and sensitivity to various inhibitors. Thus, NADase is a common enzymic component of both the nuclear envelope and the endoplasmic reticulum.  相似文献   

12.
Starting from a partially purified dinucleoside tetraphosphatase (Np4Nase; EC 3.6.1.17), we developed an affinity elution purification protocol involving the strong competitive inhibitor adenosine 5'-tetraphosphate. Np4Nase bound to Cibacron Blue F3G-A-Sepharose 4B or to Reactive Blue 2-Sepharose CL-6B was specifically eluted with 10 microM adenosine 5'-tetraphosphate and 5 mM MgCl2, but not by either of them separately. The final Np4Nase preparation was homogeneous by sodium dodecyl sulfate polyacrylamide gel electrophoresis followed by Coomassie blue or silver staining. The protein band showed an apparent 18 kDa molecular mass. The specific activity of the homogeneous Np4Nase was about 150 units/mg, meaning a 45,000-fold increase and a 10% recovery with respect to the crude extract. After preparative polyacrylamide gel electrophoresis, protein visualization with KCl, fragmentation of the gel lane, and extraction, all the renatured Np4Nase activity was found associated to the 18 kDa band. The renatured enzyme showed the same Km value for diadenosine 5',5"'-P1,P4-tetraphosphate as the partially purified or the native homogeneous Np4Nase.  相似文献   

13.
The hydrolysis of diadenosine tetraphosphate, a compound previously described by others to occur in liver at concentrations of around 0.1 mu M, is carried out by a specific enzyme. This enzyme has been partially purified from rat liver extracts, and the following properties have been found. The Km value for diadenosine tetraphosphate is 2 mu M; the products of hydrolysis are ATP and AMP; the Km value for diguanosine tetraphosphate is 2 mu M; none of the following substances were substrates of the enzyme: diadenosine triphosphate, diguanosine di and triphosphates, adenosine tetraphosphate, ATP, ADP, NAD+, NADP+ and bis-p-nitrophenylphosphate. Cyclic AMP was not an inhibitor of the reaction. The enzyme requires Mg2+ ions, is maximally active at a pH value of approximately 8, and has a molecular weight of 22000 as estimated by filtration on Sephadex G-100. The activation energy of the reaction was of 10250 cal times mol-1 (42886 J times mol-1). Particularly striking is the inhibition by adenosine tetraphosphate (Ki equals 48 nM) and guanosine tetraphosphate (Ki equals 14 nM). Other nucleotides tested were also competitive inhibitors with Ki values in the 10--100 mu M range.  相似文献   

14.
Subcellular fractionation of bovine thyroid tissue by differential pelleting and isopycnic gradient centrifugation in a zonal rotor indicated that NAD(+) glycohydrolase is predominantly located and rather uniformly distributed in the plasma membrane. Comparison of NAD(+) glycohydrolase activities of intact thyroid tissue slices, functional rat thyroid cells in culture (FRT(l)) and their respective homogenates indicated that most if not all of the enzyme (catalytic site) is accessible to extracellular NAD(+). The reaction product nicotinamide was predominantly recovered from the extracellular medium. The diazonium salt of sulphanilic acid, not penetrating into intact cells, was able to decrease the activity of intact thyroid tissue slices to the same extent as in the homogenate. Under the same conditions this reagent almost completely abolished NAD(+) glycohydrolase activity associated with intact thyroid cells in culture. The triazine dye Cibacron Blue F3GA and its high-M(r) derivative Blue Dextran respectively completely eliminated or caused a severe depression in the NAD(+) glycohydrolase activity of FRT(l) cells. The enzyme could be readily solubilized from bovine thyroid membranes by detergent extraction, and was further purified by gel filtration and affinity chromatography on Blue Sepharose CL-6B. The overall procedure resulted in a 1940-fold purification (specific activity 77.6mumol of nicotinamide released/h per mg). The purified enzyme displays a K(m) of 0.40mm for beta-NAD(+), a broad pH optimum around pH7.2 (0.1 m-potassium phosphate buffer) and an apparent M(r) of 120000. Nicotinamide is an inhibitor (K(i) 1.9mm) of the non-competitive type. The second reaction product ADP-ribose acts as a competitive inhibitor (K(i) 2.7mm). The purified enzyme splits beta-NAD(+), beta-NADP(+), beta-NADH and alpha-NAD(+) at rates in the relative proportions 1:0.75:<0.02:<0.02 and exhibits transglycosidase (pyridine-base exchange) activity. Anionic phospholipids such as phosphatidylinositol and phosphatidylserine inhibit the partially purified enzyme. A stimulating effect was observed upon the addition of histones.  相似文献   

15.
An egg-specific NADase has been purified to homogeneity from the ovotestis of the opisthobranch mollusk Aplysia californica. Unlike other NADases, the Aplysia enzyme generates primarily cyclic-ADP-ribose (cADPR) rather than ADP-ribose from NAD. cADPR has been shown to stimulate the release of Ca2+ from microsomes prepared from sea urchin egg and, when injected into intact eggs, to activate the cortical reaction, multiple nuclear cycles, and DNA synthesis. The Aplysia enzyme was initially identified as an inhibitor of cholera and pertussis toxin-catalyzed ADP-ribosylation. By the use of an NADase assay, it was purified from the aqueous-soluble fraction of ovotestis by sequential column chromatography. The enzyme has an apparent molecular mass of 29 kDa, a Km for NAD of 0.7 mM, and a turnover rate of approximately 27,000 mol NAD.min-1.mol enzyme-1 at 30 degrees C. Monoclonal antibodies were generated to the NADase. Immunoblots of two-dimensional gels revealed multiple isoforms of the enzyme, with pls ranging from 8.1 to 9.8. The multiple isoforms were resolved with a cation exchange high-pressure liquid chromatography column and shown to generate cADPR. Immunohistochemical analysis of cryostat sections of Aplysia ovotestis shows that the enzyme is specific to the eggs and restricted to large 5- to 10-microns granules or vesicles. To date the cADPR-generating enzyme activity has been identified in various organisms, including mammals. The Aplysia enzyme is the first example in which the enzyme that generates cADPR has been purified. All of the available evidence indicates that this NADase is a second-messenger enzyme, implying that other NADases may serve a similar function.  相似文献   

16.
NAD glycohydrolases (NADases) catalyze the hydrolysis of NAD to ADP-ribose and nicotinamide. Although many members of the NADase family, including ADP-ribosyltransferases, have been cloned and characterized, the structure and function of NADases with pure hydrolytic activity remain to be elucidated. Here, we report the structural and functional characterization of a novel NADase from rabbit reticulocytes. The novel NADase is a glycosylated, glycosylphosphatidylinositol-anchored cell surface protein exclusively expressed in reticulocytes. shRNA-mediated knockdown of the NADase in bone marrow cells resulted in a reduction of erythroid colony formation and an increase in NAD level. Furthermore, treatment of bone marrow cells with NAD, nicotinamide, or nicotinamide riboside, which induce an increase in NAD content, resulted in a significant decrease in erythroid progenitors. These results indicate that the novel NADase may play a critical role in regulating erythropoiesis of hematopoietic stem cells by modulating intracellular NAD.  相似文献   

17.
D Eby  M E Kirtly 《Biochemistry》1976,15(10):2168-2171
Using NAD analogues as ligands, the structural requirements for negative cooperativity in binding to rabbit muscle glyceraldehyde-3-phosphate dehydrogenase were examined. Although the affinity of nicotinamide hypoxanthine dinucleotide is considerably lower than that of NAD+, it also binds to the enzyme with negative cooperatively. Two pairs of nicotinamide hypoxanthine dinucleotide binding sitess were distinguished, one pair having an affinity for the analogue which is 15 times that of the second pair. Negative cooperativity is also found in the Km values for the analogue. Thus modification of the adenine ring of NAD+ to hypoxanthine does not abolish negative cooperativity in coenzyme binding. Adenosine diphosphoribose binding to the same enzyme shows neither positive nor negative cooperativity, indicating that cooperativity apparently requires an intact nicotinamide ring in the coenzyme structure, under the conditions of these experiments. Occupancy of the nicotinamide subsite of the coenzyme binding site is not necessary for half-of-sites reactivity of alkylating or acylating compounds (Levitzki, A. (1974), J. Mol, Biol. 90, 451-458). However, it can be important in the negative cooperativity in ligand binding, as illustrated by adenosine diphosphoribose which fails to exhibit negative cooperativity. Occupancy of the adenine subsite by adenine is important for stabilization of the enzyme against thermal denaturation. Whether the stabilization is due to an altered conformation of the subunits or stabilization of the preexisting structure of the apoenzyme cannot be determined from these studies. However, nicotinamide hypoxanthine dinucleotide does not contribute to enzyme stability although it serves as a substrate and shows negative cooperativity.  相似文献   

18.
We purified and characterized two major glutathione S-transferase isoenzymes (GST2 and GST3) from snail Bulinus truncatus (Mollusca, Gastropoda, Planorbidae) tissue. The Km with respect to 1-chloro-2, 4-dinitrobenzene (CDNB) for both isoenzymes was increased as the pH decreased. Km of both isoenzymes with respect to glutathione (GSH) doubled when the pH was increased from 6.0 to 6.5. Acid inactivated GST2 and GST3 and the two enzymes were almost inactive at pH 3.5. However, they retain the full activity for at least 20 h when incubated at pH between 6.0 and 9.0. The optimum temperature was 45 degrees C for GST2 and 50 degrees C for GST3. The half lifetime at 50 degrees C was 70 min and 45 min for GST2 and GST3 isoenzymes, respectively. Addition of 5 mM GSH to the incubation buffer increased the half life of both isoenzymes more than fourfold. The activation energy for catalyzing the conjugation of CDNB was 1.826 and 3.435 kcal/mol for GST2 and GST3, respectively. I50 values for Cibacron blue, bromosulphophthalein, indocyanine green, hematin and ethacrynic acid were 0.76 microM, 47.9 microM, 7.59 microM, 0.03 microM and 0.79 microM for GST2, and 0.479 microM, 79.4 microM, 89.1 microM, 32.4 microM and 1.15 microM for GST3, respectively. Cibacron blue and indocyanine green were non-competitive inhibitors, while hematin was a mixed inhibitor. Bromosulphophthalein was found to be a competitive inhibitor for GST2 and a mixed inhibitor for GST3.  相似文献   

19.
S-Adenosyl-L-homocysteine hydrolase from Dictyostelium discoideum has been purified to homogeneity. It is composed of four subunits, each with a molecular mass of 47,000. In the hydrolysis direction, the enzyme has a pH optimum of 7.5, a Km for S-adenosyl-L-homocysteine (SAH) of 6 microM, and a Vmax of 0.22 mumol min-1 mg-1. In the synthesis direction, the pH optimum is 8.0, the Km for adenosine is 0.4 microM, and the Vmax is 0.30 mumol min-1 mg-1. Although the enzyme binds beta-nicotinamide adenine dinucleotide, as well as adenosine 3',5'-cyclic monophosphate and 2'-deoxyadenosine, these ligands have no effect on enzymatic activity when added to the assay mixture. However, preincubation of SAH hydrolase with NAD+ results in a 25% activation of the enzyme. In addition, this ligand has a striking effect on subunit-subunit interactions, as shown by stabilization of quaternary structure during polyacrylamide gel electrophoresis. Preincubation with cAMP or 2'-deoxyadenosine inactivates the enzyme. Although in both cases the activity is restored upon further incubation with NAD+, we show that inactivation by these two ligands proceeds by different mechanisms. NAD+-reversible inactivation by cAMP and 2'-deoxyadenosine was also observed with the SAH hydrolase from rabbit erythrocytes. Thus, these previously unreported properties of SAH hydrolase also occur with mammalian enzymes and are not restricted to D. discoideum.  相似文献   

20.
The catalytic properties of membrane-bound calf spleen NAD glycohydrolase were studied in comparison with previous data obtained with a solubilized hydrosoluble form of the enzyme. When the hydrolysis of NAD catalyzed by membrane-bound NAD glycohydrolase was studied at pH values below 7.5, only insignificant interference by other NAD-hydrolyzing enzymes was detected, and no proton-diffusional inhibition was observed. The kinetics could, therefore, be followed using a titrimetric assay for NAD glycohydrolase activity. The effect of pH, ionic strength on the kinetic parameters, and shifts in binding constants for several ligands of the membrane-bound enzyme indicate that the NAD glycohydrolase activity is influenced by an electrostatic potential due to negative charges (polyelectrolyte effect). No significant changes in kinetic mechanism could be found between both NAD glycohydrolase forms. The association of the enzyme with the membrane results in a remarkably increased thermal stability, in changes in binding properties of the active site and in the emergence of new inhibitor binding sites; e.g. adenosine 3':5'-monophosphate (cyclic AMP) and adenosine, which do not inhibit the hydrosoluble form of NAD glycohydrolase, are good inhibitors (respectively competitive and mixed) of the membrane-bound enzyme. These data (i.e. allotopic changes) probably can be ascribed to enzyme conformational changes induced and stabilized by interaction with membrane constituents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号