首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary Inside out and right side out vesicles were used to study the sidedness of Ca binding to the human red cell membrane. It was shown that these vesicles exhibited only a limited permeability to Ca, enabling the independent characterization of Ca binding to the extracellular and cytoplasmic membrane surfaces. Ca binding was studied in 10 mM Tris HCl at pH 7.4, 22±2°C and was shown to be complete in under 5 min. Scatchard plots were made from Ca binding data obtained at free Ca concentrations in the range of 10–6 to 10–3M. Under these conditions inside out vesicles exhibit two independent binding sites for Ca with association constants of 1×105 and 6×103 M–1, and right side out vesicles exhibit three independent binding sites with association constants of 2×105, 1.4×104 and 3×102M–1. Upon the addition of 0.1M KCl a third, high affinity site was found on inside out vesicles with an association constant of 3×105, (in 0.1 M KCl). Ca binding to inside out vesicles increased nearly linearly with pH in the, range of pH 4 to pH 11, while binding to right side out vesicles remained practically unchanged in the range of pH 7 to pH 9. Progressive increase of the ionic strength of the medium by the addition of K, Mg or Tris decreased Ca binding to inside out vesicles as did the addition of ATP. Comparison of a series of cation competitors for Ca binding sites on inside out vesicles at 0.003 mM Ca showed that La was the most effective competitor of all while Cd was the most effective divalent cation competitor of those tested. Our findings suggest that the effects of low concentrations of Ca at the inner surface of the red cell membrane are mediated primarily through Ca binding to site 1 (and, possibly site 2) of inside out vesicles of which there are approximately 1.6×105 per equivalent cell.  相似文献   

2.
We have earlier shown that an N-terminal truncated annexin I molecule, annexin I(des1-8), is generated in human neutrophils through cleavage by a membrane localized metalloprotease. The truncated protein showed differences in membrane binding among the neutrophil granule populations as compared to full-length annexin I. In this study, we investigated the cleavage capabilities of isolated neutrophil secretory vesicles and plasma membrane, and the binding of full-length annexin I and annexin I(des1-8) to these membrane fractions. Translocations were performed in vitro to secretory vesicles and plasma membrane, respectively, at different Ca(2+) concentrations. We show that the annexin I-cleaving membrane localized metalloprotease is present both in the secretory vesicles and the plasma membrane. The N-terminal truncation of annexin I gives rise to a molecule with a decreased Ca(2+) requirement for binding, both to secretory vesicles and plasma membrane. There was, thus, no difference in binding of either full-length annexin I or annexin I(des1-8) to the secretory vesicles as compared to the plasma membrane.  相似文献   

3.
WNK (with no lysine [K]) protein kinases were named for their unique active site organization. Mutations in WNK1 and WNK4 cause a familial form of hypertension by undefined mechanisms. Here, we report that WNK1 selectively binds to and phosphorylates synaptotagmin 2 (Syt2) within its calcium binding C2 domains. Endogenous WNK1 and Syt2 coimmunoprecipitate and colocalize on a subset of secretory granules in INS-1 cells. Phosphorylation by WNK1 increases the amount of Ca2+ required for Syt2 binding to phospholipid vesicles; mutation of threonine 202, a WNK1 phosphorylation site, partially prevents this change. These findings suggest that phosphorylation of Syts by WNK1 can regulate Ca2+ sensing and the subsequent Ca2+-dependent interactions mediated by Syt C2 domains. These findings provide a biochemical mechanism that could lead to the retention or insertion of proteins in the plasma membrane. Interruption of this regulatory pathway may disturb membrane events that regulate ion balance.  相似文献   

4.
The binding of a calcium-activated neutral protease (CANP) with high calcium sensitivity (muCANP) to erythrocyte membranes and its subsequent autolytic activation on the membranes were analyzed by an immunoblot technique. In the presence of calcium ions, muCANP bound to the erythrocyte membranes as a heterodimer of 79- and 28-kDa subunits and was converted quickly on the membranes to an active form with a 76-kDa large subunit. The active form was then released from the membranes to the soluble fraction. These sequential reactions, however, were not specific to inside-out vesicles, but occurred also, except for some Ca2+-independent binding, on right side-out vesicles. A rapid degradation of some membrane proteins was observed after binding of muCANP to the membranes. The binding of muCANP to erythrocyte membranes was inhibited by substrates and the endogenous CANP inhibitor, which is also a suicide substrate. These results strongly suggest that muCANP binds to membranes by recognition of membrane proteins as substrates and not at a special site for activation. Thus, a possible mechanism for muCANP activation on membranes is that muCANP first binds to substrates on membranes, is activated, and then degrades the substrates to deform the membrane structures.  相似文献   

5.
Optical response of the indicator chlortetracycline to membrane potential   总被引:1,自引:0,他引:1  
S Tang  T Beeler 《Cell calcium》1990,11(6):425-429
Chlortetracycline is a fluorescent, Ca2+ indicator commonly used to monitor the internal Ca2+ concentration of membrane vesicles and organelles. We have found that the intensity of chlortetracycline fluorescence in the presence of Ca2(+)-loaded liposomes is dependent on the membrane potential of the vesicles as well as the intravesicular Ca2+ concentration. The fluorescence of chlortetracycline was lower when an inside-negative membrane potential was placed across the liposome membrane. Since chlortetracycline diffuses across the membrane in the zwitterionic form, the distribution of chlortetracycline across the membrane should not be strongly dependent on the membrane potential. However, because the proton permeability of phospholipid vesicles is relatively high, the intravesicular proton concentration is dependent on the membrane potential. The binding of Ca2+ to chlortetracycline is dependent on pH in the range of pH 6 to pH 8. Therefore, changes in the intravesicular pH as a result of a change in the membrane potential causes relatively large changes in the chlortetracycline fluorescence signal even when there isn't a change in the Ca2+ concentration.  相似文献   

6.
The calpain-binding components on the plasma membrane were characterized using calpain I. 125I-labeled calpain was bound to inside-out membrane vesicles from human erythrocyte in a Ca2(+)-dependent manner, but not to right-side-out membrane vesicles. The maximum binding was observed at more than 5 microM Ca2+. The binding amount of calpain to the inside-out membrane vesicles was decreased when the vesicles were pretreated with 100 micrograms/ml of trypsin, chymotrypsin, elastase, or pronase P for 30 min at 37 degrees C, although the binding to the vesicles pretreated with 200 micrograms/ml of phospholipase A2 or C was not affected. Calpain-binding proteins in the membrane were analyzed by using a modified immunoblotting for calpain. Immunostained bands of 240, 220, 89, 72, 52, and 36 kDa were detected as the calpain-binding proteins in the native membrane. All of these bands had disappeared in trypsin-treated membrane. The disappearance of bands was dose-dependent with respect to trypsin and paralleled the reduction of binding amount of calpain to the trypsinized membrane. In calpain-treated membrane, the 240 and 36 kDa bands were retained in the blotting, though the other bands disappeared dose-dependently with respect to calpain. These results suggested that the significant component in the inner surface of plasma membrane for binding of calpain was proteinaceous and the calpain-binding proteins could be classified into two species, i.e. substrates of calpain (220, 89, 72, and 52 kDa protein) and non-substrates (240 and 36 kDa protein).  相似文献   

7.
The mechanism for binding of human erythrocyte calpain I to human erythrocyte inside-out vesicles was studied by immunoelectrophoretic blot analysis. Binding of calpain I to inside-out vesicles was observed both in the absence and presence of Ca2+. Moreover, in the absence of Ca2+, acidic proteins like casein, ovalbumin and calpastatin suppressed while basic proteins like arginase and lysozyme did not affect the binding of calpain I to inside-out vesicles. Here, we propose a model for the binding of calpain to the membrane.  相似文献   

8.
[3H]Ryanodine binding to skeletal muscle and cardiac sarcoplasmic reticulum (SR) vesicles was compared under experimental conditions known to inhibit or stimulate Ca2+ release. In the skeletal muscle SR, ryanodine binds to a single class of high-affinity sites (Kd of 11.3 nM). In cardiac SR vesicles, more than one class of binding sites is observed (Kd values of 3.6 and 28.1 nM). Ryanodine binding to skeletal muscle SR vesicles requires high concentrations of NaCl, whereas binding of the drug to cardiac SR is only slightly influenced by ionic strength. In the presence of 5'-adenylyl imidodiphosphate (p[NH]ppA), increased pH, and micromolar concentration of Ca2+ (which all induce Ca2+ release from SR) binding of ryanodine to SR is significantly increased in skeletal muscle, while being unchanged in cardiac muscle. Ryanodine binding to skeletal but not to cardiac muscle SR is inhibited in the presence of high Ca2+ or Mg2+ concentrations (all known to inhibit Ca2+ release from skeletal muscle SR). Ruthenium red or dicyclohexylcarbodiimide modification of cardiac and skeletal muscle SR inhibit Ca2+ release and ryanodine binding in both skeletal and cardiac membranes. These results indicate that significant differences exist in the properties of ryanodine binding to skeletal or cardiac muscle SR. Our data suggest that ryanodine binds preferably to site(s) which are accessible only when the Ca2+ release channel is in the open state.  相似文献   

9.
A study was made of the uptake of Ca2+ by brush-border membrane vesicles prepared from rabbit small intestine. The process was found to be time, temperature and substrate concentration dependent, displayed saturability, did not depend on added energy sources and occurred optimally in a pH range of 7.5-8.0. Although the transport of D-glucose by these membrane vesicles responded to changes in osmotic pressure as modified by adding cellobiose to the medium, the uptake of Ca2+ was found not to be osmotically-sensitive. Moreover, the equilibrium uptake value obtained when vesicles were exposed to 0.36 mM Ca2+ was some 60-fold higher than the amount that could have been accommodated by the intravesicular space, calculated from the equilibrium uptake of D-glucose. It was concluded from these results that the uptake involved complete binding of the Ca2+ to the membrane. The ionophore A23187 enhanced the rates of uptake and efflux of Ca2+ without affecting equilibrium values, which suggests that the binding of Ca2+ measured under our conditions was to interior sites of the membrane. The binding capacity was decreased in the presence of 10 mM lidocaine as indicated by a diminution of the equilibrium binding values. Generating an electrochemical potential (negative inside) by addition of valinomycin to vesicles pre-equilibrated with K2SO4, enhanced the rate of uptake of Ca2+. Addition of metal ions, on the other hand, inhibited the uptake, La3+ and Tb3+ being most effective followed by Mn2+, Ba2+ and Mg2+. Na+ and K+ were the least inhibitory. The properties of the Ca2+ uptake process found in rabbit brush-border membranes were compared to those of similar processes occurring in other species.  相似文献   

10.
Annexins are Ca(2+)- and phospholipid-binding proteins that are widely expressed in mammalian tissues and that bind to different cellular membranes. In recent years its role in membrane traffic has emerged as one of its predominant functions, but the regulation of its intracellular distribution still remains unclear. We demonstrated that annexin 6 translocates to the late endocytic compartment in low density lipoprotein-loaded CHO cells. This prompted us to investigate whether cholesterol, one of the major constituents of low density lipoprotein, could influence the membrane binding affinity and intracellular distribution of annexin 6. Treatment of crude membranes or early and late endosomal fractions with digitonin, a cholesterol-sequestering agent, displayed a strong reduction in the binding affinity of a novel EDTA-resistant and cholesterol-sensitive pool of annexin 6 proteins. In addition, U18666A-induced accumulation of cholesterol in the late endosomal compartment resulted in a significant increase of annexin 6 in these vesicles in vivo. This translocation/recruitment correlates with an increased membrane binding affinity of GST-annexin 6 to late endosomes of U18666A-treated cells in vitro. In conclusion, the present study shows that changes in the intracellular distribution and concentration of cholesterol in different subcellular compartments participate in the reorganization of intracellular pools of Ca(2+)-dependent and -independent annexin 6.  相似文献   

11.
Folate binding and transport by rat kidney brush-border membrane vesicles   总被引:1,自引:0,他引:1  
[3H]Pteroylglutamic acid (PteGlu) uptake was studied using brush-border membrane vesicles isolated from rat kidney. Results on the uptake of [3H]PteGlu by brush-border membrane vesicles incubated in media of increasing osmolarities demonstrated that uptake was contributed by two components, intravesicular transport and membrane binding. Both the components of the uptake exhibited similar pH dependence, with maxima at pH 5.6, and were found to be saturable mechanisms with Km values of 6.7.10(-7) and 11.2.10(-7) M, respectively. These studies show that PteGlu is transported by isolated rat kidney brush-border membrane vesicles in a manner consistent with a saturable system and that a binding component may be functionally associated with this.  相似文献   

12.
The present study aimed to clarify the existence of a Na+/Ca2+ antiport device in kidney tubular epithelial cells discussed in the literature to represent the predominant mechanistic device for Ca2+ reabsorption in the kidney. Inside-out oriented plasma membrane vesicles from tubular epithelial cells of guinea-pig kidney showed an ATP-driven Ca2+ transport machinery similar to that known to reside in the plasma membrane of numerous cell types. It was not affected by digitalis compounds which otherwise are well-documented inhibitors of Ca2+ reabsorption. The vesicle preparation contained high, digitalis-sensitive (Na+ + K+)-ATPase activities indicating its origin from the basolateral portion of plasma membrane. The operation of a Na+/Ca2+ antiport device was excluded by the findings that steep Ca2+ gradients formed by ATP-dependent Ca2+ accumulation in the vesicles were not discharged by extravesicular Na+, and did not drive 45Ca2+ uptake into the vesicles via a Ca2+-45Ca2+ exchange. The ATP-dependent Ca2+ uptake into the vesicles became increasingly depressed with time by extravesicular Na+. This was not due to an impairment of the Ca2+ pump itself, but caused by Na+/Ca2+ competition for binding sites on the intravesicular membrane surface shown to be important for high Ca2+ accumulation in the vesicles. Earlier observations on Na+-induced release of Ca2+ from vesicles pre-equilibrated with Ca2+, seemingly favoring the existence of a Na+/Ca2+ antiporter in the basolateral plasma membrane, were likewise explained by the occurrence of Na+/Ca2+ competition for binding sites. The weight of our findings disfavors the transcellular pathway of Ca2+ reabsorption through tubule epithelium essentially depending on the operation of a Na+/Ca2+ antiport device.  相似文献   

13.
Transverse tubule membranes isolated from rabbit skeletal muscle consist mainly of sealed vesicles that are oriented primarily inside out. These membranes contain a high density of binding sites for 1,4-dihydropyridine calcium channel antagonists. The presence of functional voltage-dependent calcium channels in these membranes has been demonstrated by their ability to mediate 45Ca2+ efflux in response to changes in membrane potential. Fluorescence changes of the voltage-sensitive dye, 3,3'-dipropyl-2,2'-thiadicarbocyanine, have shown that transverse tubule vesicles may generate and maintain membrane potentials in response to establishing potassium gradients across the membrane in the presence of valinomycin. A two-step procedure has been developed to measure voltage-dependent calcium fluxes. Vesicles loaded with 45Ca2+ are first diluted into a buffer designed to generate a membrane potential mimicking the resting state of the cell and to reduce the extravesicular Ca2+ to sub-micromolar levels. 45Ca2+ efflux is then measured upon subsequent depolarization. Flux responses are modulated with appropriate pharmacological specificity by 1,4-dihydropyridines and are inhibited by other calcium channel antagonists such as lanthanum and verapamil.  相似文献   

14.
Changes in the charge of sarcoplasmic reticulum (SR) vesicles are studied using lipophilic ions, which are adsorbed by the membrane phase. Upon addition of MgATP, phenyldicarbaundecaborane (PCB-) and tetraphenylboron (TPB-) are taken up by the SR vesicles, while tetraphenylphosphonium (TPP+) is released into the water phase. The PCB- uptake occurs as well under conditions when SR membrane is shunted by high Cl- concentration. MgATP induces minor additional binding of PCB- in the presence of oxalate and it is followed by release of the lipophilic anion from the vesicles. EGTA partly reverses the ATP effect, and calcium ionophore A23187 plus EGTA reverses it completely. Vesicles that were preliminarily loaded by Ca2+ demonstrated higher passive and lower ATP-dependent PCB- binding. Activation of isolated Ca2+-ATPase in the presence of 0.1 mM EGTA results in PCB- release into the medium and additional TPP+ binding to the enzyme. We suggest that the redistribution of the lipophilic ions between the water phase and SR membrane reflects charge changes in Ca2+-binding sites inside both SR vesicles and Ca2+-ATPase molecules in the course of Ca2+ translocation.  相似文献   

15.
Ca2+-dependent activator protein for secretion (CAPS) is a cytosolic protein essential for the Ca2+-dependent fusion of dense-core vesicles (DCVs) with the plasma membrane and the regulated secretion of a subset of neurotransmitters. The mechanism by which CAPS functions in exocytosis and the means by which it associates with target membranes are unknown. We identified two domains in CAPS with distinct membrane-binding properties that were each essential for CAPS activity in regulated exocytosis. The first of these, a centrally located pleckstrin homology domain, exhibited three properties: charge-based binding to acidic phospholipids, binding to plasma membrane but not DCV membrane, and stereoselective binding to phosphatidylinositol 4,5-bisphosphate. Mutagenesis studies revealed that the former two properties but not the latter were essential for CAPS function. The central pleckstrin homology domain may mediate transient CAPS interactions with the plasma membrane during Ca2+-triggered exocytosis. The second membrane association domain comprising distal C-terminal sequences mediated CAPS targeting to and association with neuroendocrine DCVs. The CAPS C-terminal domain was also essential for optimal activity in regulated exocytosis. The presence of two membrane association domains with distinct binding specificities may enable CAPS to bind both target membranes to facilitate DCV-plasma membrane fusion.  相似文献   

16.
Annexins (ANXs) are a superfamily of proteins whose functional hallmark is Ca2+-dependent binding to anionic phospholipids. Their core domains are usually composed of a 4-fold repeat of a conserved amino acid sequence, with each repeat containing a type II Ca2+ binding site that is generally thought to mediate Ca2+-dependent binding to the membrane. We now report that ANX12 binding to phospholipid vesicles is highly cooperative with respect to Ca2+ concentration (Hill constant approximately 7), thereby suggesting that more than the four well-characterized type II Ca2+ binding sites are involved in phospholipid binding. Two independent approaches, a novel 45Ca2+ copelleting assay and isothermal titration calorimetry, indicate a stoichiometry of approximately 12 mol of Ca2+/mol of ANX12 for binding to phospholipid vesicles. On the basis of the "low-affinity" Ca2+-binding sites in a number of ANX X-ray crystal structures, we propose a model for ANX12 bilayer binding that involves three types of Ca2+ sites in each of the four repeats. In this model, there is a complementarity between the spacing of the ANX12 Ca2+ binding sites and the spacing of the phospholipid headgroups in bilayers. We tested the implications of the model by manipulating the physical state of vesicles composed of phospholipids with saturated acyl chains with temperature and measuring its influence on ANX12 binding. ANX12 bound to vesicles in a Ca2+-dependent manner when the vesicles were in the liquid crystal phase but not when the phospholipid was in the gel phase. Furthermore, ANX12 bound initially to fluid bilayers remained bound when cooled to 4 degrees C, a temperature that should induce the gel phase transition. Overall, these studies suggest that ANX12 is well suited to being a Ca2+ sensor for rapid all-or-none intercellular membrane-related events.  相似文献   

17.
Interactions of band 4.1 with mixed phospholipid membranes [phosphatidylserine (PtdSer), phosphatidylethanolamine, phosphatidylcholine, etc.] and erythrocyte inside-out vesicles were studied. Band 4.1 showed a higher affinity to PtdSer-containing membranes. The amount of binding to PtdSer-containing liposomes was larger than that to PtdSer-lacking liposomes. The amount of binding to inside-out vesicles did not change significantly on a protease treatment of the vesicles. The amount of band 4.1 bound on inside-out vesicles decreased on PtdSer-decarboxylase treatment of the vesicles. Ca2+ acted inhibitory to the binding of band 4.1. Band 4.1 together with PtdSer-containing vesicles but not with PtdSer-lacking vesicles induced gelation of spectrin-actin copolymer solution. Ca2+ inhibited the gelation. Fluorescence energy transfer from PtdSer-containing vesicles to band 4.1 was larger than that from PtdSer-lacking vesicles. Band 4.1 caused a marked release of tempocholine from preloaded PtdSer-containing liposomes but not from PtdSer-lacking liposomes. The release was larger from liposomes containing more PtdSer. Ca2+ was inhibitory to the tempocholine release. We suggest from these results that band 4.1 provides another anchoring site for the cytoskeletal spectrin-actin network to PtdSer domains in the inner layer of erythrocyte membrane. This anchoring may be involved in functional regulation since the interaction causes the membrane permeability change that is dependent on Ca2+.  相似文献   

18.
S W Tendian  B R Lentz 《Biochemistry》1990,29(28):6720-6729
The temperature-composition phase diagram of mixed dimyristoylphosphatidylserine (DMPS) and dimyristoylphosphatidylcholine (DMPC) small unilamellar vesicles was determined in the presence and absence of bound bovine prothrombin by monitoring the phospholipid order-disorder phase separation using diphenylhexatriene (DPH) fluorescence anisotropy. The shape of the membrane temperature-composition diagram was essentially unaltered by the binding of prothrombin in the presence of Ca2+ although the two-phase (gel/fluid) region was slightly narrowed and shifted by 1-10 degrees C to higher temperatures. This result does not support the popular idea that extensive domains rich in negatively charged phospholipid are induced in response to prothrombin binding. Instead of implying domain formation, our results demonstrate that the observed increase in melting temperature associated with binding of prothrombin to acidic phospholipid membranes can be accounted for by the observed altered membrane order both in the fluid and in the solid lamellar phases. The membrane order in the liquid-crystalline phase increased with increased acidic lipid content, and much more so for DMPS than for dipentadecanoylphosphatidylglycerol (DC15PG). These results demonstrate that simple shifts in membrane phase behavior cannot be properly interpreted to prove the existence of charged lipid domains. In addition, we report the unexpected observation that prothrombin increased the anisotropy of DPH in DMPS/DMPC vesicles in the liquid-crystalline phase in the absence of Ca2+ as well as in its presence. This effect was seen to a lesser extent and only at a much higher charged-lipid content for DC15PG/DMPC vesicles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
A previous report (Watkins, M.S., Hitt, A.S. and Bulger, J.E. (1977) Biochem. Biophys. Res. Commun. 79, 640-647) has indicated that the asymmetric forms of Electrophorus acetylcholinesterase bind exclusively to sphingomyelin vesicles through interaction with the collagen-like 'tail' portion of the enzyme. We report here that acetylcholinesterase also binds to phosphatidylcholine vesicles containing saturated fatty acyl chains and to egg phosphatidylcholine vesicles containing cholesterol. This suggests preferential binding of acetylcholinesterase to membranes of lower fluidity. Surface charge of vesicles and density of zwitterionic lipid headgroups do not significantly affect binding of native acetylcholinesterase. The presence of chondroitin sulfate or hyaluronic acid slightly increases the binding of native acetylcholinesterase to sphingomyelin vesicles, while the presence of 1 M NaCl, bovine serum albumin, or tissue fractions enriched in basement membrane diminish binding. The dissociation constant for native acetylcholinesterase and sphingomyelin vesicles is (1.0-1.5) X 10(-7) M, as measured by a flotation binding assay. The globular, 11S form of acetylcholinesterase also binds to lipid vesicles, although not to the same degree as native acetylcholinesterase. This suggests that the collagen tail of the enzyme enhances binding, but is not essential for binding to occur. These results are consistent with the location of acetylcholinesterase on the surface of the postsynaptic plasma membrane in vivo.  相似文献   

20.
A genetically altered variant of Cry9Ca from Bacillus thuringiensis shows high potency against the spruce budworm, Choristoneura fumiferana Clemens. Its activity, as measured by feeding inhibition in frass-failure assays, is estimated to be four to seven times greater than B. thuringiensis subsp. kurstaki HD-1, the strain currently used in commercial products to control this insect. Bioassays against budworm of mixtures of the modified Cry9Ca and two of the Cry1A endotoxin proteins produced by HD-1 show neither synergism nor antagonism. Experiments with brush border membrane vesicles from budworm midgut revealed that Cry9Ca and the Cry1A toxins share a common binding site and that bound Cry9Ca can be displaced from the membrane to some extent by the Cry1A toxins. However, it is uncertain whether the binding site is actually the receptor molecule or a membrane protein associated with pore formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号