首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ackerly. S. C. 1992 07 15: Morphogenetic regulation in the shells of bivalves and brachiopods: evidence from the geometry of the spiral.
Analyses of the spiral geometry in shells of the mollusc Pecten maximus and the brachiopod Terebratulina retusa indicate a relative reduction in morphological variability within the population during growth. The spiral, as measured by a model of exponential radial expansion, tends to converge on a particular adult form, irrespective of irregularities during early growth phases. The recurrence of this pattern of variability in populations from two separate phyla (molluscs and brachiopods) suggests a common mechanism controlling shell form. Brachiopoda. Mollusca, coiling, spiral. morphogenetic regulation, growth .  相似文献   

2.
We sampled four populations of the robustly shelled Pleurocera canaliculata from large rivers and five pleurocerid populations bearing more fusiform shells (nominally P. acuta and P. pyrenellum) from smaller streams in a study area extending from upstate New York to northern Alabama, USA. Gene frequencies at 9 allozyme-encoding loci revealed that each population of P. acuta or P. pyrenellum was more genetically similar to the P. canaliculata population inhabiting the larger river immediately downstream than to any nominal conspecific. Thus, the extensive intraspecific variation in shell robustness displayed by these nine populations has apparently been rendered cryptic by taxonomic confusion. We then employed geometric morphometrics to explore a gradient in shell morphology from the acuta form to the typical canaliculata form in 18 historic samples collected down the length of Indiana’s Wabash River. The shell forms appeared generally distinctive on the major axes yielded by relative warp analysis (increasing robustness and decreasing spire elongation), although some overlap was apparent. MANCOVA returned a significant relationship between multivariate shape variation and stream size, as measured by drainage area. Possible drivers for this phenomenon include an environmental cline in the risk of dislodgement due to hydrodynamic drag and shifts in the community of predators.  相似文献   

3.
Mollusc shells are a result of the deposition of crystalline and amorphous calcite catalyzed by enzymes and shell matrix proteins (SMP). Developing a detailed understanding of bivalve mollusc biomineralization pathways is complicated not only by the multiplicity of shell forms and microstructures in this class, but also by the evolution of associated proteins by domain co-option and domain shuffling. In spite of this, a minimal biomineralization toolbox comprising proteins and protein domains critical for shell production across species has been identified. Using a matched pair design to reduce experimental noise from inter-individual variation, combined with damage-repair experiments and a database of biomineralization SMPs derived from published works, proteins were identified that are likely to be involved in shell calcification. Eighteen new, shared proteins likely to be involved in the processes related to the calcification of shells were identified by the analysis of genes expressed during repair in Crassostrea gigas, Mytilus edulis, and Pecten maximus. Genes involved in ion transport were also identified as potentially involved in calcification either via the maintenance of cell acid–base balance or transport of critical ions to the extrapallial space, the site of shell assembly. These data expand the number of candidate biomineralization proteins in bivalve molluscs for future functional studies and define a minimal functional protein domain set required to produce solid microstructures from soluble calcium carbonate. This is important for understanding molluscan shell evolution, the likely impacts of environmental change on biomineralization processes, materials science, and biomimicry research.  相似文献   

4.
Aquatic species can experience different selective pressures on morphology in different flow regimes. Species inhabiting lotic regimes often adapt to these conditions by evolving low‐drag (i.e., streamlined) morphologies that reduce the likelihood of dislodgment or displacement. However, hydrodynamic factors are not the only selective pressures influencing organismal morphology and shapes well suited to flow conditions may compromise performance in other roles. We investigated the possibility of morphological trade‐offs in the turtle Pseudemys concinna. Individuals living in lotic environments have flatter, more streamlined shells than those living in lentic environments; however, this flatter shape may also make the shells less capable of resisting predator‐induced loads. We tested the idea that “lotic” shell shapes are weaker than “lentic” shell shapes, concomitantly examining effects of sex. Geometric morphometric data were used to transform an existing finite element shell model into a series of models corresponding to the shapes of individual turtles. Models were assigned identical material properties and loaded under identical conditions, and the stresses produced by a series of eight loads were extracted to describe the strength of the shells. “Lotic” shell shapes produced significantly higher stresses than “lentic” shell shapes, indicating that the former is weaker than the latter. Females had significantly stronger shell shapes than males, although these differences were less consistent than differences between flow regimes. We conclude that, despite the potential for many‐to‐one mapping of shell shape onto strength, P. concinna experiences a trade‐off in shell shape between hydrodynamic and mechanical performance. This trade‐off may be evident in many other turtle species or any other aquatic species that also depend on a shell for defense. However, evolution of body size may provide an avenue of escape from this trade‐off in some cases, as changes in size can drastically affect mechanical performance while having little effect on hydrodynamic performance. J. Morphol. 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

5.
Morphological convergence is a central concept in evolutionary biology, but convergent patterns remain under‐studied in nonvertebrate organisms. Some scallop species exhibit long‐distance swimming, a behaviour whose biomechanical requirements probably generate similar selective regimes. We tested the hypothesis that shell shape similarity in long‐distance swimming species is a result of convergent evolution. Using landmark‐based geometric morphometrics, we quantified shell shape in seven species representing major behavioural habits. All species displayed distinct shell shapes, with the exception of the two long‐distance swimmers, whose shells were indistinguishable. These species also displayed reduced morphological variance relative to other taxa. Finally, a phylogenetic simulation revealed that these species were more similar in their shell shape than was expected under Brownian motion, the model of character evolution that best described changes in shell shape. Together, these findings reveal that convergent evolution of shell shape occurs in scallops, and suggest that selection for shell shape and behaviour may be important in the diversification of the group. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 163 , 571–584.  相似文献   

6.
This study uses the carapace of emydid turtles to address hypothesized differences between terrestrial and aquatic species. Geometric morphometrics are used to quantify shell shape, and performance is estimated for two shell functions: shell strength and hydrodynamics. Aquatic turtle shells differ in shape from terrestrial turtle shells and are characterized by lower frontal areas and presumably lower drag. Terrestrial turtle shells are stronger than those of aquatic turtles; many-to-one mapping of morphology to function does not entirely mitigate a functional trade-off between mechanical strength and hydrodynamic performance. Furthermore, areas of morphospace characterized by exceptionally poor performance in either of the functions are not occupied by any emydid species. Though aquatic and terrestrial species show no significant differences in the rate of morphological evolution, aquatic species show a higher lineage density, indicative of a greater amount of convergence in their evolutionary history. The techniques employed in this study, including the modeling of theoretical shapes to assess performance in unoccupied areas of morphospace, suggest a framework for future studies of morphological variation.  相似文献   

7.
The shape and relative weight of the shell have been shown tovary intraspecifically and interspecifically in a number ofspecies of gastropods, including many different littorinids.These differences give rise to different shell forms in differenthabitats. In those species which have non-planktotrophic development,differences in shell form among shores have been usually explainedin terms of natural selection because exposure to waves supposedlyfavours light shells with large apertures, while predation bycrabs on sheltered shores favours elongated, thick shells withsmaller apertures. Differences in shell shape among speciesfound at different heights on the shore have been explainedin terms of resistance to desiccation and temperature. Suchvariables would tend to act on a relatively broad-scale, i.e.causing differences among heights on a shore or among shores.Rates of growth, which might vary at much smaller scales withina shore, have also been shown to affect the shapes of many shells. In this study, the shape and relative weight of shells of threespecies of co-existing littorinids (Littorina unifasciata, Bembiciumnanum and Nodilittorina pyramidalis) were measured. These speciesall haveplanktotrophic development and they are found on manyshores where there is no evidence that they are preyed uponby crabs. Before explanations of shell shape are proposed, itis necessary that patterns of variation, within different partsof ashore and among different shores are clearly documented.These patterns were measured at a number of different spatialscales within and among replicate shores with different amountsof wave exposure. Large and small specimens were included toallow intraspecific comparisons among snails of different sizesfound at different heights on the shore. The results showedsignificant differences among shores in shape and relative weightof shells, but these differences could not be explained by exposureto waves. In addition, snails of different sizes and differentspecies did not show the same patterns although they were collectedfrom the same sites. Importantly, the shell shape of Liuorinaunifasciata varied significantly among sites at approximatelythe same height within a shore. These differences could notbe clearly correlated with density, mean size nor exposure towaves. The only consistent pattern was a decrease in relativeaperture size in specimens living higher on the shore. Modelsthat have commonly been proposed to explain shape and relativeweight of shells in other species of gastropods are not adequateto explain the small- and large-scale variation of the measurementsdescribed here. It is proposed that any selective advantageof shell morphology and the effects of any variables on thedevelopment of shell morphology in these species can only beidentified after appropriately designed and replicated fieldexperiments. (Received 4 March 1994; accepted 13 September 1994)  相似文献   

8.
Populations of species that inhabit a range of environments frequently display divergent morphologies that correlate with differences in ecological parameters. The velocity of water flow (i.e., flow velocity) is a critical feature of aquatic environments that has been shown to influence morphology in a broad range of taxa. The focus of this study was to evaluate the relationship between flow velocity and shell morphology for males and females of the semi-aquatic freshwater turtle Pseudemys concinna. For both sexes, the carapace and plastron show significant morphological differences between habitats characterized by slow-flowing (i.e., lentic) and fast-flowing (i.e., lotic) water. In general, the most prominent pattern for both sexes is that the shells of individuals from lotic habitats are more streamlined (small height-to-length ratio) than the shells of individuals from lentic habitats. Of the two shell components (carapace and plastron), the carapace shows greater divergence between habitats, particularly for males. These results are consistent with adaptations to flow velocity, and suggest that variation in shape may be more constrained in females. I also provide empirical evidence for an adaptive benefit of the observed shape change (i.e., drag reduction) and a brief comment on the relative roles of genetic divergence and phenotypic plasticity in generating shape differences observed in this species.  相似文献   

9.
1.?Studies examining the integration of constitutive and inducible aspects of multivariate defensive phenotypes are rare. 2.?I asked whether marine snails (Nucella lamellosa) from habitats with and without abundant predatory crabs differed in constitutive and inducible aspects of defensive shell morphology. 3.?I examined multivariate shell shape development of snails from each habitat in the presence and absence of waterborne cues from feeding crabs (Cancer productus). I also examined the influence of constitutive and inducible shell morphology on resistance to crushing. 4.?Regardless of the presence of crabs, snails from high-risk (HR) habitats developed rotund, short-spired shells, while snails from low-risk habitats developed elongate shells, tall-spired shells, indicating among-habitat divergence in constitutive shell shape. Moreover, allometry analyses indicated that constitutive developmental patterns underlying this variation also differed between habitats. However, snails from HR habitats showed greater plasticity for apertural lip thickness and apertural area in the presence of crab cues, indicating among-habitat variation in defence inducibility. 5.?Both shell shape and apertural lip thickness contributed to shell strength suggesting that constitutive shell shape development and inducible lip thickening have evolved jointly to form an effective defence in habitats where predation risk is high.  相似文献   

10.
11.
The functional significance of frilled septa and complex sutures in ammonoids has generated ongoing debate. The 'classic' hypothesis envisages ammonoid shells and septa as designed for resisting ambient hydrostatic pressure, complex sutures being the evidence of strength in shells for colonization of deep habitats. Here we address the 'suture problem', focusing on the analysis and interpretation of variables in our database of Late Jurassic ammonites not included in previous studies, such as whorl height ( W h ), whorl shape ( S ), shell coiling ( WD ), taxonomic grouping and basic planispiral shell shape. The results indicate that sutural complexity, as measured by the fractal dimension ( D f ) value of the suture line, is positively correlated with W h , and that the sutures of oceanic shells tend to provide, for a given W h value, lower D f estimates than do those of neritic shells. No general trend of increase in sutural complexity was noted for specimens recovered from swell areas belonging to oceanic fringes with respect to those that inhabited epicontinental shelves. In fact, Perisphinctoidea, the clade best represented in the database analysed, shows a higher D f mean value in neritic species than in epioceanic ones. Significant differences in sutural complexity were detected for groups of ammonites classified according to shell shapes ( WD , S ). Oxycones and discocones, streamlined potential swimmers, show the highest D f mean values, while spherocones and cadicones, which were presumably vertical vagrants, present the lowest ones. This indicates that sutural complexity was more related to shell geometry than to bathymetry.  相似文献   

12.
The present study assessed the existence of variation in the shell shape of the pod razor shell (Ensis siliqua) throughout its distributional range in the north-eastern Atlantic. Shells of E. siliqua caught at seven collecting sites (three in Portugal, three in Spain and one in Ireland) were studied by geometric morphometric methods, using both landmark- and contour-based methods. Both approaches (landmarks inside the valves and shell outline) discriminated the shells from Aveiro (centre of Portugal) and Strangford Lough (Ireland) from those caught in the nearby localities (remaining Portuguese and Spanish sites, maximum distance of 550 km by sea). Landmark analysis revealed that shells from Aveiro were more similar to shells from Ireland (~1,500 km far away). Contour analysis revealed that shells from Aveiro had a shape with a comparatively larger height-to-width ratio, whereas shells from Ireland showed a slightly more curved outline than in the remaining sites. Landmark- and contour-based methods provided coherent complementary information, confirming the usefulness of geometric morphometric analyses for discerning differences in shell shape among populations of E. siliqua. A brief review of previous applications of geometric morphometric methods to modern bivalve species is also provided.  相似文献   

13.
This paper considers the patterns of shell shape variation shown by Nucella canalicuata, N. emarginata and N. lamellosa from two areas of the Pacific Northwest: the shores near Friday Harbour on San Juan Island and near Bamfield on the west coast of Vancouver Island. No clear pattern of variation in association with changes in exposure was seen in either N. canaliculata or N. lamellosa . It appears that genetic influences are more important controls of shell shape than environmental selection in both these species. Nucella emarginata shows the nearest approximation to the pattern shown by the Atlantic species, N. lapillus , but only at the exposed end of the wave-action gradient. On those shores, enclaves from the most surf-washed open coast headlands have shells with proportionally larger apertures (and thus a shorter, squatter form) than their equivalents in local shelter. But, unlike in N. lapillus , the trend does not continue onto genuinely sheltered shores. Under these circumstances the species is generally rare and, where enclaves do occur, their shells are of much the same shape (although of a much larger size) as in more exposed situations.  相似文献   

14.
Kim, J.K., Khim, B.‐K., Woo, K.S., & Yoon, S.H. 2009: Records of palaeo‐seawater condition from oxygen‐isotope profiles of early Pleistocene fossil molluscs from the Seoguipo Formation (Korea). Lethaia, Vol. 43, pp. 170–181. High‐resolution δ18O profiles of early Pleistocene fossil molluscs (Mizuhopecten tokyoensis hokurikuensis) from the shallow‐marine sedimentary Seoguipo Formation (Korea) were found to exhibit distinct annual cycles identified by their unique seasonality (δ18O amplitude). A direct comparison of fossil δ18O profiles with that of living shells (Amusium japonicum japonicumi) indicated that the palaeoseawater conditions differed from present‐day seawater. Specifically, the positive δ18O shift in the isotope profile of the fossil specimens relative to that of the living mollusc shell reflected that palaeotemperature was lower than that today. However, a comparison of the coldest palaeotemperatures (determined from the heaviest δ18O values of fossil shells), with the present‐day winter temperatures indicates that temperature variation alone cannot account for the entire positive δ18O offset. These findings indicate that variation in the seawater δ18Ow values plays a dominant role in the biogenic carbonate precipitation of fossils. Thus, the fossil shells obtained from stratigraphic units suggest different palaeoenvironmental conditions, including lower temperatures and 18O‐enriched glacial seawater, when compared with the present‐day conditions. The Seoguipo Formation records at least five cycles of relative sea‐level fluctuations, with changes in fossil δ18O amplitudes separated by sequence boundaries likely to reflect variations of unique palaeoseawater condition, although the oxygen‐isotope profile of fossil molluscs appears to provide a snap‐shot of the palaeoclimatic signature. □Early Pleistocene, mollusc fossils, oxygen isotope, palaeoenvironment, seawater temperature.  相似文献   

15.
The work presents results on drag and lift measurement conducted in a low speed wind tunnel on a replica of the entire human arm. The selected model positions were identical to those during purely rotational front crawl stroke in quasi-static conditions. A computational fluid dynamics model using Fluent showed close correspondence with the experimental results and confirmed the suitability of low speed wind tunnel for the drag and lift measurement in quasi-static conditions. The obtained profiles of the hydrodynamic forces were similar to the dynamic data presented in an earlier study suggesting that shape drag is a major contributing factor in propulsive force generation. The aim of this study was to underline the importance of the entire arm analysis, the elbow angle and a newly defined angle of attack representing the angle of shoulder rotation. It was found that both the maximum value of the drag force at 160 degrees elbow flexion angle and the momentum generated by it exceed the respective magnitudes for the fully extended arm. The latter is underlined by a prolonged plateau of near maximum drag that was obtained at shoulder angle range of 50-140 degrees suggesting that optimal arm configuration in terms of propulsive force generation requires elbow flexion. Furthermore it was found that drag trend is not consistent with the widely assumed and used sinus wave profile. A gap in the existing experimental research was filled as for the first time the entire arm lift and drag was measured across the entire stroke range.  相似文献   

16.
The interior of 36 specimens of Pholadomya Sowerby (Bivalvia) from the Middle Jurassic of Poland reveals the presence of unusual septa that separate sediment‐filled chambers from the shell interior. The septa occupy one or several recurrent loci in shells of various individuals, that is within umbones, in pallial sinuses and along the shell margins. Based on the location and shape of the septa, eight forms grouped into types and varieties are identified. A possible cause for the formation of septa is sediment toxicity, but intrusion of sediment to the shell interior must have been linked to shell breakage or rupture of the free periostracum. One form of septa occurs in perforated umbones, common in Pholadomya; other forms occur in intact shells, which suggest damage to free periostracum. The most likely cause for the latter is the presence of parasites, especially digenean trematodes, for which clams were intermediate hosts. The morphological aberrations presented here were hitherto unknown in both fossil and extant bivalves. This study is also the first report of pathologies in Anomalodesmata.  相似文献   

17.
Conventional aerodynamic arguments suggest that possession of high aspect ratio wings will always improve the flight performance of glides. Drag and power will be minimized at intermediate flight speeds. It is shown, however, that as the aspect ratio increases, these minimum drag speeds are reduced, and will fall below the stall speed of the glider. This will happen at lower aspect ratios in small gliders, which operate at higher profile drag coefficients. Increasing the aspect ratio further will improve performance less than this analysis suggests.
A detailed analysis is developed to calculate the optimum shape of small gliders. Profile drag increases with aspect ratio, owing to the fall in the Reynolds number, while induced drag falls with increasing aspect ratio. Minimum drag will be encountered and hence the glide angle will be minimized at intermediate values of aspect ratio. Best glide angles are achieved at low speeds (high lift coefficients) and the optimum aspect ratio increases with the mass of the glider.
Small natural gliders possess large, low aspect ratio wings. The aspect ratios are generally somewhat below those which would produce the best glide angle at stall speed, but should give a reasonable performance over a range of speeds.  相似文献   

18.
Nucella lapillus is a common and widely distributed carnivorous gastropod of North Atlantic rocky sea shores. Populations of this animal usually show variation in shell shape according to the exposure of their habitat to wave action, with individuals from exposed sites having a short squat shell and a wide aperture as compared with a more elongated form seen in shelter. The same pattern of variation is seen over most of the species European range, but there are some exceptions. One of these has been described in Sullom Voe (Shetland) and this prompted an investigation of Faroese populations to ascertain whether they behaved in a similar manner. It is shown in this paper that Faroese populations vary in shell shape with exposure in the usual way (and not like those in Shetland) and moreover show such a fine and precise reflection of minor alterations in environmental conditions that measurement of dog-whelk shells may prove to be the best way of 'measuring' exposure in Faroe.  相似文献   

19.
The shells of the bivalve mollusks are organo-mineral structures predominantly composed of calcium carbonate, but also of a minor organic matrix, a mixture of proteins, glycoproteins, and polysaccharides. These proteins are involved in mineral deposition and, more generally, in the spatial organization of the shell crystallites in well-defined microstructures. In this work, we extracted different organic shell extracts (acid-soluble matrix, acid-insoluble matrix, water-soluble matrix, guanidine HCl/EDTA-extracted matrix, referred as ASM, AIM, WSM, and EDTAM, respectively) from the shell of the scallop Pecten maximus and studied their biological activities on human articular chondrocytes (HACs). We found that these extracts differentially modulate the biological activities of HACs, depending on the type of extraction and the concentration used. Furthermore, we showed that, unlike ASM and AIM, WSM promotes maintenance of the chondrocyte phenotype in monolayer culture. WSM increased the expression of chondrocyte-specific markers (aggrecan and type II collagen), without enhancing that of the main chondrocyte dedifferentiation marker (type I collagen). We also demonstrated that WSM could favor redifferentiation of chondrocyte in collagen sponge scaffold in hypoxia. Thus, this study suggests that the organic matrix of Pecten maximus, particularly WSM, may contain interesting molecules with chondrogenic effects. Our research emphasizes the potential use of WSM of Pecten maximus for cell therapy of cartilage.  相似文献   

20.
Scaphitid ammonoids were ubiquitous and significant components of the Western Interior Seaway during the Late Cretaceous. This group is characterized by a recurved hook at maturity that deviates from the juvenile whorls. Such a modification seems counterproductive to active locomotion and to manage a biologically effective orientation that facilitates efficient feeding and swimming. Virtually reconstructed 3D hydrostatic models reveal that the examined mature scaphitids had the capacity for neutral buoyancy while assuming a stable, upward-facing orientation in the water column during life. Models of juvenile Hoploscaphites nicolletii suggest that scaphitid apertures were oriented only slightly more horizontal than adults. The hydrostatic influence of sexual dimorphism was explored with the species Hoploscaphites crassus. The inflated macroconch has a lower stability and higher hydrodynamic drag compared to its microconch counterpart. The effect of shell compression was investigated by comparing H. crassus and the more compressed H. nicolletii. The latter species has a relatively high stability and much less hydrodynamic drag during movement. The mature U-shaped body chamber distributes organismal mass in a way that increases stability, and simultaneously orients the soft body so that propulsive energy is efficiently transmitted into horizontal backwards movement with minimal rocking. Swimming velocities computed from hydrodynamic drag experiments suggest that scaphitids were relatively slow swimmers with compressed forms attaining slightly higher velocities (when scaled by mass). Hydrodynamic lift was investigated with computational fluid dynamics simulations. These experiments revealed that the overall shape of the shell is responsible for significant lift in the upwards direction, which is not heavily influenced by ornamentation. This explains how a reduced soft body can overcome and manage a slightly negatively buoyant condition during life. Therefore, the seemingly cumbersome shape and orientation of the scaphitid morphotype may not have been a hindrance during locomotion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号