首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A standard technique of microbial genetics, which involves the transfer of cells from single colonies by means of sterile toothpicks, has been adapted to somatic cell genetics. Its use has been demonstrated in the isolation of X-ray-sensitive mutants of CHO cells. 9000 colonies have been tested and 6 appreciably X-ray-sensitive mutants were isolated. (D10 values 5–10-fold of wild-type D10 value.) A further 6 mutants were obtained which showed a slight level of sensitivity (D10 values less than 2-fold of wild-type D10 value).The 6 more sensitive mutants were also sensitive to bleomycin, a chemotherapeutic agent inducing X-ray-like damage. Cross-sensitivity to UV-irradiation and treatment with the alkylating agents, MMS, EMS and MNNG, was investigated for these mutants. Some sensitivity to these other agents was observed, but in all cases it was less severe than the level of sensitivity to X-irradiation. Each mutant showed a different overall response to the spectrum of agents examined and these appear to represent new mutant phenotypes derived from cultured mammalian cell lines. One mutant strain, xrs-7, was cross-sensitive to all the DNA-damaging agents, but was proficient in the repair of single-strand breaks.  相似文献   

2.
A standard technique of microbial genetics, which involves the transfer of cells from single colonies by means of sterile toothpicks, has been adapted to somatic cell genetics. Its use has been demonstrated in the isolation of X-ray-sensitive mutants of CHO cells. 9000 colonies have been tested and 6 appreciably X-ray-sensitive mutants were isolated. (D10 values 5-10-fold of wild-type D10 value.) A further 6 mutants were obtained which showed a slight level of sensitivity (D10 values less than 2-fold of wild-type D10 value). The 6 more sensitive mutants were also sensitive to bleomycin, a chemotherapeutic agent inducing X-ray-like damage. Cross-sensitivity to UV-irradiation and treatment with the alkylating agents, MMS, EMS and MNNG, was investigated for these mutants. Some sensitivity to these other agents was observed, but in all cases it was less severe than the level of sensitivity to X-irradiation. Each mutant showed a different overall response to the spectrum of agents examined and these appear to represent new mutant phenotypes derived from cultured mammalian cell lines. One mutant strain, xrs-7, was cross-sensitive to all the DNA-damaging agents, but was proficient in the repair of single-strand breaks.  相似文献   

3.
W Zhu  P C Keng  W G Chou 《Mutation research》1992,274(3):237-245
Complementary DNA cloning, differential screening and Northern hybridization techniques were used to study differential gene expression in the wild-type Chinese hamster ovary (CHO) K1 cell line and its two X-ray sensitive mutants, xrs-5 and xrs-6. 11 species of mRNAs were found underexpressed in the two independently isolated mutants. The steady-state levels of those mRNAs are 3-26-fold less in the two mutants, depending on the particular species. 6 of the underexpressed mRNAs have been identified by comparing the sequences of the cloned cDNAs to the known sequences in GenBank. 4 of them code for the structural proteins of ferritin heavy chain, nonmuscle myosin light chain 3nm, ribosomal protein S17 and L7, respectively. The other two have strong homology with mouse B2 or retroviral sequences. The remaining 5 mRNAs did not show significant homology with any of the known sequences and apparently represent newly isolated species. The effect of 137Cs gamma-rays on the expression of the 11 mRNAs has been studied. Radiation inhibited the expression of the B2-like gene in the mutants but not in the wild-type CHO cells. The levels of the other 10 mRNAs were not affected by radiation. The underexpression of this group of genes in both xrs-5 and xrs-6 mutants seems to be related to their radiation-sensitive phenotype, although the specific gene responsible has not been identified. Two models are proposed to explain the mechanism of underexpression. It is suggested that a cellular factor or/and chromosome structural changes are involved.  相似文献   

4.
The complementation effect of wild-type CHO-K1 and xrs mutants after fusion, as judged by the frequencies of X-ray-induced G1 and G2 premature chromosome condensation (PCC), was studied. For induction of PCC, X-irradiated interphase cells (G1 and G2) were fused immediately with untreated mitotic cells of the same cell line or with mitotic cells of another line. The frequencies of breaks in G1-PCC, or breaks and chromatid exchanges in G2-PCC were determined and the latter parameter was compared with the frequency of chromosomal aberrations in mitotic cells following G2 irradiation. CHO-K1 cells were capable of complementing the X-ray sensitivity of both xrs 5 and xrs 6 cells. However, full restoration of the repair defect in xrs cells could never be accomplished. The mutants failed to complement each other. In CHO-K1 cells, the incidence of chromosomal aberrations was significantly higher in G2-PCC (2.5-fold) than that observed in mitotic cells at 2.5 h after irradiation. The ratio of the induced frequency of aberrations in G2-PCC to that in mitotic cells was correlated with the degree of repair of DNA double-strand breaks (dsb) and reached almost 1 in xrs 5 cells indicating no repair. In addition the data indicated that, during the period of recovery of CHO-K1 cells, X-ray-induced breaks decreased but exchanges remained at the same level. In contrast, due to a deficiency in rejoining of dsb in xrs mutants, breaks remained open for a long period of time, allowing the formation of additional chromatid exchanges during recovery time.  相似文献   

5.
Cells with a genetic defect affecting a biological activity and/or a cell phenotype are generally called "cell mutants" and are a highly useful tool in genetic, biochemical, as well as cell biological research. To investigate peroxisome biogenesis and human peroxisome biogenesis disorders, more than a dozen complementation groups of Chinese hamster ovary (CHO) cell mutants defective in peroxisome assembly have been successfully isolated and established as a model system. Moreover, successful PEX gene cloning studies by taking advantage of rapid functional complementation assay of CHO cell mutants invaluably contributed to the accomplishment of isolation of pathogenic genes responsible for peroxisome biogenesis diseases. Molecular mechanisms of peroxisome assembly are currently investigated by making use of such mammalian cell mutants.  相似文献   

6.
5 mutants of a Chinese hamster ovary (CHO) cell line, which exhibit similar levels of sensitivity to killing by mitomycin C, have been analysed genetically to determine whether they represent one or more genetic complementation groups. Hybrids were constructed by fusing cells carrying either the neo or the Ecogpt marker and selecting in medium containing G418 and mycophenolic acid. Selectable markers were introduced into the cells by DNA transfection using pSV5-neo or pSV5-gpt, which represents a quick and convenient method for generating resistant derivatives. Hybrids generated by crosses between any one mutant and the parental cell line exhibited near wild-type resistance to mitomycin C, indicating that the mutants are phenotypically recessive. Self-cross hybrids for all 5 mutants had D37 values for killing by mitomycin C of between 20 and 30 ng/ml. The values obtained for crosses between different mutants were 60-105 ng/ml, with the exception of 1 pairing which gave a value of 33 ng/ml. These results indicate that that the mutants represent at least 4 different genetic complementation groups, suggesting that cellular resistance to mitomycin C is mediated via a number of different mechanisms.  相似文献   

7.
DNA replication in eukaryotes initiates from discrete genomic regions, termed origins, according to a strict and often tissue-specific temporal program. However, the genetic program that controls activation of replication origins has still not been fully elucidated in mammalian cells. Previously, we measured replication timing at the sequence level along human chromosomes 11q and 21q. In the present study, we sought to obtain a greater understanding of the relationship between replication timing programs and human chromosomes by analysis of the timing of replication of a single human chromosome 11 that had been transferred into the Chinese hamster ovary (CHO) cell line by chromosome engineering. Timing of replication was compared for three 11q chromosomal regions in the transformed CHO cell line (CHO(h11)) and the original human fibroblast cell line, namely, the R/G-band boundary at 11q13.5/q14.1, the centromere and the distal telomere. We found that the pattern of replication timing in and around the R/G band boundary at 11q13.5/q14.1 was similar in CHO(h11) cells and fibroblasts. The 11q centromeric region, which replicates late in human fibroblasts, replicated in the second half of S phase in CHO(h11) cells. By contrast, however, the telomeric region at 11q25, which is late replicating in fibroblasts (and in several other human cell lines), replicated in the first half of S phase or in very early S phase in CHO(h11) cells. Our observations suggest that the replication timing programs of the R/G-band boundary and the centromeric region of human chromosome 11q are maintained in CHO(h11) cells, whereas that for the telomeric region is altered. The replication timing program of telomeric regions on human chromosomes might be regulated by specific mechanisms that differ from those for other chromosomal regions.  相似文献   

8.
Chinese hamster ovary cell mutants defective in myo-inositol transport   总被引:1,自引:0,他引:1  
By means of an in situ colony autoradiographic assay for the incorporation of [14C]inositol into the trichloroacetic acid-insoluble fraction, we have isolated a mutant of cultured Chinese hamster ovary cells defective in inositol transport, named mutant 648. Through comparison of the inositol uptake activity of 648 cells with that of the parental cells with various concentrations of inositol and sodium, it has been demonstrated that Chinese hamster ovary cells possess a sodium-dependent transport system for inositol, and that 648 cells lack this system. The sodium-dependent uptake is inhibited by 2,4-dinitrophenol and ouabain, and the intracellular concentration of inositol exceeds the extracellular concentration during the uptake period, indicating that it is active transport, at least partially driven by the sodium gradient generated by Na+,K(+)-ATPase. The apparent Km for inositol has been estimated to be 12.0 microM. It is inhibited by hyperglycemic concentration of D-glucose in a competitive fashion.  相似文献   

9.
Spontaneous and EMS-induced alpha-amanitin-resistant CHO cells have been isolated and characterized. DNA-dependent RNA polymerase II in cell-free extracts from a mutant (ARM-1) was partially resistant to alpha-amanitin. Growing mutants for several generations in the presence or absence of alpha-amanitin did not change the pattern of inhibition. The mutants grew with a lag following transfer to medium with or without alpha-amanitin. The mutants have an altered RNA polymerase II, and possibly an altered cell membrane.  相似文献   

10.
This paper describes the effects of polyamine deprivation on chromosomes of a polyamine-dependent Chinese hamster ovary cell line which grows continuously in serum-free medium. After 6 days' polyamine deprivation the number of mitoses decreased drastically and most of them showed major chromosome aberrations. There were several gaps and breaks in many chromosomes, some cells exhibiting extensive chromosome fragmentation. Elongation of chromosomes, indicative for unpacking of the chromosome fibres, were also seen. The time course of Harlequin staining of the chromosomes revealed prolongation of the cell cycle in the polyamine-starved cells. The mean number of sister chromatid exchanges per cell was a little higher in the polyamine-starved than in the control cells. The difference is statistically significant, but it has to be taken with some caution, because the experiments could not be carried out under strictly comparable conditions.  相似文献   

11.
Genetic analysis of X-ray-sensitive mutants of the CHO cell line   总被引:6,自引:0,他引:6  
P A Jeggo 《Mutation research》1985,146(3):265-270
The genetic diversity of 6 X-ray-sensitive (xrs) mutants of the CHO cell line has been investigated. Hybrids were constructed by fusing ouabain- and 6-thioguanine-resistant cells to ouabain- and 6-thioguanine-sensitive cells and selecting in HAT and ouabain medium. Hybrids were examined for ploidy and X-ray sensitivity. Crosses between xrs mutants and wild-type showed that each mutant was recessive. Crosses between different xrs mutants showed that all were in the same complementation group. Although all the mutants are primarily sensitive to ionizing radiation and bleomycin, and all have a defect in double-strand break rejoining, their cross-sensitivity to other DNA-damaging agents differed to some degree. One explanation is that this repair gene is involved in a pleiotropic response to DNA damage.  相似文献   

12.
Chinese hamster ovary (CHO)-derived cell lines are the preferred host cells for the production of therapeutic proteins. Here we present a draft genomic sequence of the CHO-K1 ancestral cell line. The assembly comprises 2.45 Gb of genomic sequence, with 24,383 predicted genes. We associate most of the assembled scaffolds with 21 chromosomes isolated by microfluidics to identify chromosomal locations of genes. Furthermore, we investigate genes involved in glycosylation, which affect therapeutic protein quality, and viral susceptibility genes, which are relevant to cell engineering and regulatory concerns. Homologs of most human glycosylation-associated genes are present in the CHO-K1 genome, although 141 of these homologs are not expressed under exponential growth conditions. Many important viral entry genes are also present in the genome but not expressed, which may explain the unusual viral resistance property of CHO cell lines. We discuss how the availability of this genome sequence may facilitate genome-scale science for the optimization of biopharmaceutical protein production.  相似文献   

13.
Chinese hamster ovary mutants simultaneously resistant to ricin and Pseudomonas toxin have been isolated. Two mutant cell lines (4-10 and 11-2) were found to retain normal levels of binding of both ricin and Pseudomonas toxin. They were defective in the internalization of [125I]ricin into the mutant cells, as measured by both a biochemical assay for ricin internalization and electron microscopic autoradiographic studies. Although pretreatment of Chinese hamster ovary cells with a Na+/K+ ionophore, nigericin, resulted in an enhancement of the cytotoxicities of ricin and Pseudomonas toxin in the wild-type Chinese hamster ovary cells, preculture of the mutant cells did not alter the susceptibility of the mutant cells to either toxin. These results provide further evidence that there is a common step in the internalization process for ricin and Pseudomonas toxin.  相似文献   

14.
Summary A new synthetic medium (referred to as GC3) that supports the growth of the Chinese hamster ovary cell line has been developed. It is composed of a 1∶1 mixture of Ham's F12 and modified Eagle's minimum essential (MEM.S) mediums supplemented with transferrin (10 μg/ml), insulin (80 mU/ml), and selenium (1×10−7 M). Other more simple supplementations of our basal medium MEM.S/F12 (transferrin+insulin, transferrin+selenium, ferrous iron+selenium) also give good cell growth responses. Fibronectin or serum pretreatment is not needed for cellular attachment and spreading. Our culture system is characterized by a continuous serum-free cultivation (more than 200 doublings), a clonal growth, a high density proliferation, and a rapid growth rate near that of cells in serum-supplemented medium.  相似文献   

15.
Two X-ray-sensitive mutants of CHO-K1 cells, xrs 5 and xrs 6, were characterised with regard to their responses to genotoxic chemicals, namely bleomycin, MMS, EMS, MMC and DEB for induction of cell killing, chromosomal aberrations and SCEs at different stages of the cell cycle. In addition, induction of mutations at the HPRT and Na+/K+ ATPase (Oua) loci was evaluated after treatment with X-rays and MMS. Xrs 5 and xrs 6 cells were more sensitive than wild-type CHO-K1 to the cell killing effect of bleomycin (3 and 13 times respectively) and for induction of chromosomal aberrations (3 and 4.5 times). In these mutants a higher sensitivity for induction of chromosomal aberrations to MMS, EMS, MMC and DEB was observed (1.5-3.5 times). The mutants also showed increased sensitivity for cell killing effects of mono- and bi-functional alkylating agents (1.7-2.5 times). The high cell killing effect of X-rays in these mutants was accompanied by a slight increase in the frequency of HPRT mutation. The xrs mutants were also more sensitive to MMS for the increased frequency of TGr and Ouar mutants when compared to wild-type CHO-K1 cells. Though bleomycin is known to be a poor inducer of SCEs, an increase in the frequency of SCEs in xrs 6 cells (doubling at 1.2 micrograms/ml) was found in comparison to no significant increase in xrs 5 or CHO-K1 cells. The induced frequency of SCEs in all cell types increased in a similar way after the treatment with mono- or bi-functional alkylating agents. MMS treatment of G2-phase cells yielded a higher frequency of chromatid breaks in the mutants in a dose-dependent manner compared to no effect in wild-type CHO-K1 cells. Treatment of synchronised mutant cells at G1 stage with bleomycin resulted in both chromosome- and chromatid-type aberrations (similar to the response to X-ray treatment) in contrast to the induction of only chromosome-type aberrations in wild-type CHO-K1 cells. The frequency of chromosomal aberrations chromosome and chromatid types) also increased with MMC treatment in G1 cells of xrs mutants. DEB treatment of G1 cells induced mainly chromatid-type aberrations in all cell types. The possible reasons for the increased sensitivity of xrs mutants to the chemical mutagens studied are discussed and the results are compared to cells derived from radiosensitive ataxia telangiectasia patients.  相似文献   

16.
17.
The X-ray-sensitive Chinese hamster ovary (CHO) mutant cell lines xrs 5 and xrs 6 were used to study the relation between X-ray-induced DNA lesions and biological effects. The frequencies of chromosomal aberrations and sister-chromatid exchanges (SCE) were determined in wild-type CHO-K1 as well as mutants xrs 5 and xrs 6 cells following X-irradiation under aerobic and anaerobic conditions. Furthermore, we used a newly developed immunochemical method (based on the binding of a monoclonal antibody to single-stranded DNA) to assay DNA single-strand breaks (SSBs) induced by gamma-rays in these CHO cells, after a repair time of up to 4 h. For all cell lines tested the frequency of X-ray-induced chromosomal aberrations was strongly increased after irradiation in air compared with hypoxic conditions. When compared to the wild-type line, the xrs mutants known to have a defect in repair of DNA double-strand breaks (DSBs) exhibited a markedly enhanced sensitivity to aerobic irradiation, and a high OER (oxygen enhancement ratio) of 2.8-3.5, compared with 1.8-2 in CHO-K1 cells. The induction of SCE by X-rays was relatively little affected in CHO-K1 irradiated in air compared with hypoxic conditions (OER = 0.8), and in xrs 5 (OER = 0.7). A dose-dependent increase in the frequency of SCEs was obtained in xrs 6 cells treated with X-rays in air, and a further increase by a factor of 2 was evident under hypoxic conditions (OER = 0.4). With the immunochemical assay of SSB following gamma-irradiation, no difference was found between wild-type and mutant strains in the number of SSBs induced. The observed rate of rejoining of SSBs was also the same for all cell lines studied.  相似文献   

18.
Summary Isolation and characterization of Chinese hamster ovary cell mutants resistant to different DNA polymerase ase inhibitors (aphidicolin, ara-A and ara-C) have been described. A particular mutant (JK3-1-2A) characterized in detail was found to grow and synthesize DNA in medium containing an amount of aphidicolin tenfold greater than that which completely inhibited the growth and the DNA synthesis of the wild-type cells. An almost twofold increase in the specific activity of the DNA polymerase was seen in this mutant. The mutant DNA polymerase showed altered aphidicolin inhibition kinetics of dCMP incorporation; the apparent K m for dCTP and the apparent K i for aphidicolin were increased in the mutant. These alterations in the kinetic parameters were, however, abolished upon further purification of the enzyme. Ara-CTP was found to act as a competitive inhibitor of the dCMP incorporation by both the wild type and mutant enzymes. In contrast, the effect of aphidicolin on dCMP incorporation was either competitive (wild-type enzymes) or noncompetitive (mutant enzyme). The data presented showed that the sites of action for aphidicolin and ara-CTP were distinct; likewise the dCTP binding site appeared to be separate from other dNTP(s) binding sites. The drug resistance of the mutant was inherited as a dominant trait.Abbreviations ara-A 9--d-arabinofuranosyl adenine - ara-C 1--d-arabinofuranosyl cytosine - aph aphidicolin  相似文献   

19.
Chromosome-mediated gene transfer with the Chinese hamster ovary cell line   总被引:2,自引:0,他引:2  
Using an improved method of chromosome-mediated gene transfer, we have investigated transfer of the codominantly expressed methotrexate-resistant dihydrofolate reductase (MtxRIIIdhfr) gene into Chinese hamster ovary (CHO) cell recipients. The frequency of dhfr gene transfer with CHO cells varied considerably from clone to clone, ranging from 4 X 10(-7) to 5 X 10(-5). Using appropriate cell recipients we were able to test for linkage of several genetic markers available in the CHO cell line. For example, the mutation resulting in the auxotrophic glyB-CHO cell line has been reported by others to be linked to the dhfr gene. However, we could not demonstrate cotransfer of these two markers when glyB- recipient cells were treated with MtxRIII chromosomes and transformant clones were selected for either methotrexate-resistance (MtxR) or glycine prototrophy. We conclude that these two genes are not closely linked in the hamster genome. However, the genes for thymidine kinase (tk) and galactokinase (gk), which are known to be linked in mammalian genomes, were found to cotransfer into CHO recipients with a frequency of about 50%.  相似文献   

20.
We have studied two X-ray-sensitive mutants xrs 5 and xrs 6 (derived from the CHO-K1 cell line), known to be defective in repair of double-strand breaks, for cell killing and frequency of the chromosomal aberrations induced by X-irradiation. The survival experiments showed that mutants are very sensitive to X-rays, the D0, for the wild-type CHO-K1 was 6-fold higher than D0 value for the mutants. The modal number of chromosomes (2 n = 23) and the frequency of spontaneously occurring chromosomal aberrations were similar in all 3 cell lines. X-Irradiation of synchronized mutant cells in G1-phase significantly induced both chromosome- and chromatid-type of aberrations. The frequency of aberrations in xrs mutants was 12-fold more than in the wild-type CHO-K1 cells. X-Irradiation of G2-phase cells also yielded higher frequency of aberrations in the mutants, namely 7-8-fold in xrs 5 and about 3.5-fold in xrs 6 compared to the wild-type CHO-K1 cells. There was a good correlation between relative inability to repair of DNA double-strand breaks and induction of aberrations. The effect of 3-aminobenzamide (3AB), an inhibitor of poly(ADP-ribose) synthetase on the frequency of X-ray-induced chromosomal aberrations in these 3 cell lines was also studied. 3AB potentiated the frequency of aberrations in G1 and G2 in all the cell types. In the mutants, 3AB had a potentiating effect on the frequency of X-ray-induced chromosomal aberrations only at low doses. X-Ray-induced G2 arrest and its release by caffeine was studied by cytofluorometric methods. The relative speed with which irradiated S-G2 cells progressed into mitosis in the presence of caffeine was CHO-K1 greater than xrs 5 greater than xrs 6. Caffeine could counteract G2 delay induced by X-rays in CHO-K1 and xrs 5 but not in xrs 6. Large differences in potentiation by caffeine were observed among these cells subjected to X-rays and caffeine post-treatment for different durations. These responses and possible reasons for the increased radiosensitivity of xrs mutants are discussed and compared to ataxia telangiectasia (A-T) cells and a radiosensitive mutant mouse lymphoma cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号