首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leishmania (L.) tropica is a causative agent of human cutaneous and viscerotropic leishmaniasis. Immune response to L. tropica in humans and experimental animals are not well understood. We previously established that L. tropica infection induces partial protective immunity against subsequent challenge infection with Leishmania major in BALB/c mice. Aim of the present study was to study immunologic mechanisms of protective immunity induced by L. tropica infection, as a live parasite vaccine, in BALB/c mouse model. Mice were infected by L. tropica, and after establishment of the infection, they were challenged by L. major. Our findings shows that L. tropica infection resulted in protection against L. major challenge in BALB/c mice and this protective immunity is associated with: (1) a DTH response, (2) higher IFN-γ and lower IL-10 response at one week post-challenge, (3) lower percentage of CD4+ lymphocyte at one month post-challenge, and (4) the source of IFN-γ and IL-10 were mainly CD4 lymphocyte up to one month post-challenge suggesting that CD4 lymphocytes may be responsible for protection induced by L. tropica infection in the studied intervals.  相似文献   

2.
Leishmaniasis is a parasitic infection affecting ∼12 million people worldwide, mostly in developing countries. Treatment options are limited and no effective vaccines exist to date. Natural Killer T (NKT) cells are a conserved innate-like lymphocyte population with immunomodulating effects in various settings. A number of reports state a role of NKT cells in different models of Leishmania infection. Here, we investigated the effect of NKT cells in a physiologically relevant, intradermal low dose infection model. After inoculation of 103 infectious-stage L. major, comparable numbers of skin-immigrating NKT cells in both susceptible BALB/c mice and resistant C57BL/6 mice were noted. Compared to their wild type counterparts, NKT cell-deficient mice on a C57BL/6 background were better able to contain infection with L. major and showed decreased IL-4 production in cytokine analysis performed 5 and 8 weeks after infection. Low doses of the NKT cell stimulating αGalCer analog PBS57 applied at the time of infection led to disease exacerbation in C57BL/6 wild-type, but not NKT-deficient mice. The effect was dependent both on the timing and amount of PBS57 administered. The effect of NKT cell stimulation by PBS57 proved to be IL-4 dependent, as it was neutralized in IL-4-deficient C57BL/6 or anti-IL-4 antibody-treated wild-type mice. In contrast to C57BL/6 mice, administration of PBS57 in susceptible BALB/c mice resulted in an improved course of disease. Our results reveal a strain- and cytokine-dependent regulatory role of NKT cells in the development of immunity to low dose L. major infections. These effects, probably masked in previous studies using higher parasite inocula, should be considered in future therapy and immunization approaches.  相似文献   

3.
Most experimental studies on leishmaniasis compare two different inbred strains of mice that are resistant or susceptible to one species of Leishmania. In the present study we characterized some cytokines and nitric oxide production as well as histological changes related to resistance and susceptibility in isogenic CBA mice infected with Leishmania major or Leishmania amazonensis. CBA mice are capable of controlling infection with L.  major, but they succumb to infection with L. amazonensis. Cells from susceptible L. amazonensis-infected CBA mice produced interleukin (IL)-4 and IL-10 but no interferon (IFN)-γ. On the other hand, resistant L. major-infected CBA mice produced IFN-γ and IL-10, but IL-4 was detected only in the first week of infection. Histopathological studies showed patterns of tissue responses at the site of the infection and in the draining lymph nodes that correlated with resistance or susceptibility. Resistant mice showed a mixed inflammatory cell infiltration and granulomas in the lesions, whereas in susceptible mice only heavily parasitized macrophages were seen. Our results indicate an important role of the parasite species in determining the pattern of immune response. L. amazonensis induces a Th2-type immune response, whereas L.  major induces a Th1-type response. These factors must be identified and taken into account in the strategies for the development of vaccines against leishmaniasis. The model presented here will be useful for the study of such factors.  相似文献   

4.
BALB/c mice are sensitive to Leishmaniamajor infection, while C57BL/6 mice are resistant and able to mount an effective immune response against the parasite. Since the secreted antigens of L. major suppress the proliferation of BALB/c mice lymphocytes in vitro, we analyzed their effects on the immune system of resistant C57BL/6 mice. Secreted antigens were semi-purified and two fractions with immunosuppressive activity were isolated. 15 μg/ml of fraction could suppress 60% of lymphocyte proliferation and prevent the stimulated lymphocytes entering from G1 phase into the S phase of the cell cycle. These fractions decreased the production of IFN-γ, increased IL-4 level in the lymphocyte culture and down-regulated the nitric oxide production by activated macrophages. These results may suggest that L. major parasite by secreting immunosuppressive factors could down-regulate the immune system of both sensitive and resistant mice for own survival advantage.  相似文献   

5.
Listeria monocytogenes infection induces a strong inflammatory response characterized by the production of IL-12 and IFN-γ and protective immunity against this pathogen is dependent on CD8+ T cells (CTL). Recent studies have suggested that these inflammatory cytokines affect the rate of memory CD8+ T cell generation as well as the number of short-lived effector cells generated. The role of the closely related cytokine, IL-23, in this response has not been examined. We hypothesized that IL-12 and IL-23 produced by dendritic cells collectively enhance the generation and function of memory cells. To test this hypothesis, we employed a DC vaccination approach. Mice lacking IL-12 and IL-23 were vaccinated with wild-type (WT), IL-12−/−, or IL-12/23−/− DC and protection to Lm was monitored. Mice vaccinated with WT and IL-12−/− DC were resistant to lethal challenge with Lm. Surprisingly, mice vaccinated with IL-12/23−/− DC exhibited significantly reduced protection when challenged. Protection correlated with the relative size of the memory pools generated. In summary, these data indicate that IL-23 can partially compensate for the lack of IL-12 in the generation protective immunity against Lm.  相似文献   

6.
Immature dendritic cells (DCs) appear to be involved in peripheral immune tolerance via induction of IL-10-producing CD4+ T cells. We examined the role of TNF-α in generation of the IL-10-producing CD4+ T cells by immature DCs. Immature bone marrow-derived DCs from wild type (WT) or TNF-α−/− mice were cocultured with CD4+ T cells from OVA specific TCR transgenic mice (OT-II) in the presence of OVA323-339 peptide. The WT DCs efficiently induced the antigen-specific IL-10-producing CD4+ T cells, while the ability of the TNF-α−/− DCs to induce these CD4+ T cells was considerably depressed. Addition of exogenous TNF-α recovered the impaired ability of the TNF-α−/− DCs to induce IL-10-producing T cells. However, no difference in this ability was observed between TNF-α−/− and WT DCs after their maturation by LPS. Thus, TNF-α appears to be critical for the generation of IL-10-producing CD4+ T cells during the antigen presentation by immature DCs.  相似文献   

7.
In the murine model of Leishmania major infection, resistance or susceptibility to the parasite has been associated with the development of a Th1 or Th2 type of immune response. Recently, however, the immunosuppressive effects of IL-10 have been ascribed a crucial role in the development of the different clinical correlates of Leishmania infection in humans. Since T cells and professional APC are important cellular sources of IL-10, we compared leishmaniasis disease progression in T cell-specific, macrophage/neutrophil-specific and complete IL-10-deficient C57BL/6 as well as T cell-specific and complete IL-10-deficient BALB/c mice. As early as two weeks after infection of these mice with L. major, T cell-specific and complete IL-10-deficient animals showed significantly increased lesion development accompanied by a markedly elevated secretion of IFN-γ or IFN-γ and IL-4 in the lymph nodes draining the lesions of the C57BL/6 or BALB/c mutants, respectively. In contrast, macrophage/neutrophil-specific IL-10-deficient C57BL/6 mice did not show any altered phenotype. During the further course of disease, the T cell-specific as well as the complete IL-10-deficient BALB/c mice were able to control the infection. Furthermore, a dendritic cell-based vaccination against leishmaniasis efficiently suppresses the early secretion of IL-10, thus contributing to the control of parasite spread. Taken together, IL-10 secretion by T cells has an influence on immune activation early after infection and is sufficient to render BALB/c mice susceptible to an uncontrolled Leishmania major infection.  相似文献   

8.
Keratan sulfate (KS) proteoglycan side chains are abundant in the human cartilage matrix, but these chains have been said to be absent in murine skeletal tissues. We previously showed that KS suppresses cartilage damage and ameliorates inflammation in mice arthritis model. Because mice deficient of N-acetylglucosamine 6-O-sulfotransferase-1 (GlcNAc6ST-1) (KS biosynthesis enzyme) are now available, we decided to do further examinations.We examined, in culture, the difference between GlcNAc6ST-1−/− and wild-type (WT) mice for interleukin (IL)-1α-induced glycosaminoglycan (GAG) release from the articular cartilage. Arthritis was induced by intravenous administration of an anti-type II collagen antibody cocktail and subsequent intraperitoneal injection of lipopolysaccharide. We examined the differences in arthritis severities in the two genotypes. After intraperitoneal KS administration in phosphate-buffered saline (PBS) or PBS alone, we evaluated the potential of KS in ameliorating arthritis and protecting against cartilage damage in deficient mice.GAG release induced by IL-1α in the explants, and severity of arthritis were greater in GlcNAc6ST-1−/− mice than their WT littermates. Intraperitoneal KS administration effectively suppressed arthritis induction in GlcNAc6ST-1−/− mice. Thus, GlcNAc6ST-1−/− mice cartilage is more fragile than WT mice cartilage, and exogenous KS can suppress arthritis induction in GlcNAc6ST-1−/− mice. Vestigial KS chain or altered glycosylation in articular cartilage in GlcNAc6ST-1−/− mice may be protective against arthritis and associated cartilage damage as well as cartilage damage in culture. KS may offer therapeutic opportunities for chondroprotection and suppression of joint damage in inflammatory arthritis and may become a therapeutic agent for treating rheumatoid arthritis.  相似文献   

9.
CD14 deficient (CD14−/−) mice survived longer than wild-type (WT) C57BL/6J mice when inoculated with prions intracerebrally, accompanied by increased expression of anti-inflammatory cytokine IL-10 by microglia in the early stage of infection. To assess the immune regulatory effects of CD14 in detail, we compared the gene expression of pro- and anti-inflammatory cytokines in the brains of WT and CD14−/− mice infected with the Chandler strain. Gene expression of the anti-inflammatory cytokine IL-13 in prion-infected CD14−/− mice was temporarily upregulated at 75 dpi, whereas IL-13 gene expression was not upregulated in prion-infected WT mice. Immunofluorescence staining showed that IL-13 was mainly expressed in neurons of the thalamus at 75 dpi. These results suggest that CD14 can suppress IL-13 expression in neurons during the early stage of prion infection.  相似文献   

10.
BACKGROUND: The role of interleukin (IL)-1 in infectious diseases is controversial; some investigators indicated an enhancing effect of IL-1 on host resistance whereas others demonstrated the protective role of IL-1 receptor antagonist in infection. We evaluated the role of endogenous IL-1 in gut-derived sepsis caused by Pseudomonas aeruginosa, by comparing IL-1-deficient mice and wild-type (WT) mice. METHODS: Gut-derived sepsis was induced by intraperitoneal injection of cyclophosphamide after colonization of P. aeruginosa strain D4 in the intestine. RESULTS: The survival rate of IL-1-deficient mice was significantly lower than that of WT mice (P<0.01). Bacterial counts in the liver, mesenteric lymph node and blood were significantly higher in IL-1-deficient mice than in WT mice. Tumor necrosis factor alpha and IL-6 in the liver were significantly higher in IL-1-deficient mice than in WT mice. In vitro, phagocytosis and cytokine production by macrophages were impaired in IL-1-deficient mice compared with WT mice. CONCLUSION: Our results indicate a critical role for IL-1 during gut-derived P. aeruginosa sepsis. The results also suggest that both impairment of cytokine production and phagocytosis by macrophages are caused by IL-1 deficiency and lead to impaired host response.  相似文献   

11.
Cytotoxin-associated gene A (CagA) acts directly on gastric epithelial cells. However, the roles of CagA in host adaptive immunity against Helicobacter pylori (H. pylori) infection are not fully understood. In this study, to investigate the roles of CagA in the development of H. pylori-induced chronic gastritis, we used an adoptive-transfer model in which spleen cells from C57BL/6 mice with or without H. pylori infection were transferred into RAG2−/− mice, with gastric colonization of either CagA+H. pylori or CagAH. pylori. Colonization of CagA+H. pylori but not CagAH. pylori in the host gastric mucosa induced severe chronic gastritis in RAG2−/− mice transferred with spleen cells from H. pylori-uninfected mice. In addition, when CagA+H. pylori-primed spleen cells were transferred into RAG2−/− mice, CD4+ T cell infiltration in the host gastric mucosa were observed only in RAG2−/− mice infected with CagA+H. pylori but not CagAH. pylori, suggesting that colonization of CagA+H. pylori in the host gastric mucosa is essential for the migration of H. pylori-primed CD4+ T cells. On the other hand, transfer of CagAH. pylori-primed spleen cells into CagA+H. pylori-infected RAG2−/− mice induced more severe chronic gastritis with less Foxp3+ regulatory T-cell infiltration as compared to transfer of CagA+H. pylori-primed spleen cells. In conclusion, CagA in the stomach plays an important role in the migration of H. pylori-primed CD4+ T cells in the gastric mucosa, whereas CagA-dependent T-cell priming induces regulatory T-cell differentiation, suggesting dual roles for CagA in the pathophysiology of H. pylori-induced chronic gastritis.  相似文献   

12.
C3H mice infected with Leishmania amazonensis develop persistent, localized lesions with high parasite loads. During infection, memory/effector CD44hiCD4+ T cells proliferate and produce IL-2, but do not polarize to a known effector phenotype. Previous studies have demonstrated IL-12 is insufficient to skew these antigen-responsive T cells to a functional Th1 response. To determine the mechanism of this IL-12 unresponsiveness, we used an in vitro assay of repeated antigen activation. Memory/effector CD44hiCD4+ T cells did not increase proliferation in response to either IL-2 or IL-12, although these cytokines upregulated CD25 expression. Neutralization of IL-2 enhanced CD4+ T cell proliferation in response to IL-12. This cross-regulation of IL-12 responsiveness by IL-2 was confirmed in vivo by treatment with anti-IL-2 antibodies and IL-12 during antigen challenge of previously infected mice. These results suggest that during chronic infection with L. amazonensis, IL-2 plays a dominant, immunosuppressive role independent of identifiable conventional Treg cells.  相似文献   

13.
Leishmania amazonensis is the etiological agent of diffuse cutaneous leishmaniasis. The immunopathology of leishmaniasis caused by L. amazonensis infection is dependent on the pathogenic role of effector CD4+ T cells. Purinergic signalling has been implicated in resistance to infection by different intracellular parasites. In this study, we evaluated the role of the P2X7 receptor in modulating the immune response and susceptibility to infection by L. amazonensis. We found that P2X7-deficient mice are more susceptible to L. amazonensis infection than wild-type (WT) mice. P2X7 deletion resulted in increased lesion size and parasite load. Our histological analysis showed an increase in cell infiltration in infected footpads of P2X7-deficient mice. Analysis of the cytokine profile in footpad homogenates showed increased levels of IFN-γ and decreased TGF-β production in P2X7-deficient mice, suggesting an exaggerated pro-inflammatory response. In addition, we observed that CD4+ and CD8+ T cells from infected P2X7-deficient mice exhibit a higher proliferative capacity than infected WT mice. These data suggest that P2X7 receptor plays a key role in parasite control by regulating T effector cells and inflammation during L. amazonensis infection.  相似文献   

14.
The potential of autoclaved and heat-killed antigen of Leishmania donovani to induce cell-mediated and humoral response has been evaluated in the present study. The vaccines were delivered thrice subcutaneously at an interval of 2 weeks. Two weeks after second booster, BALB/c mice were challenged with 107 stationary phase promastigotes of L. donovani. Significant protection was achieved in immunized mice against L. donovani challenge with 69% to 76% and 59% to 64% reduction in parasite load in the liver and spleen respectively. Immunization induced significantly higher level of delayed type hypersensitivity (DTH) response in mice immunized with heat-killed antigen followed by autoclaved antigen. The immune response was assessed by quantifying Leishmania-specific antibodies and cytokine production. The antibody response was predominantly of IgG type with increased IgG2a production and lesser amount of IgM. The immunization preferentially stimulates the production of IFN-γ and IL-2 in splenocytes which suggests a Th1 type response with a concomitant down-regulation of IL-10 and IL-4. These results indicate a potential for the heat-killed and autoclaved antigen as a vaccine which could trigger cell-mediated immune response.  相似文献   

15.
We investigated malaria-associated pathology in mice co-infected with Heligmosomoides polygyrus (Hp) and Plasmodium chabaudi AS (Pc). Despite higher peak parasitemia, co-infected wild-type (WT) C57BL/6 mice displayed similar body weight losses, malarial anaemia, and tissue damage but less severe hypothermia and hypoglycaemia, and earlier reticulocytosis than Pc-infected WT mice. Co-infected STAT6−/− mice, deficient in nematode-induced Th2 responses, experienced similar peak parasitemias and generally suffered malaria-associated pathology to a similar degree as co-infected WT mice. These data indicate a complex relationship amongst helminths, malaria and host immune responses resulting in modulation of some but not all aspects of malaria-associated pathology.  相似文献   

16.
We demonstrate immunomodulatory effects, especially those involving murine intestinal IgA secretion, in Peyer's patch cells following oral administration of Bifidobacterium immunomodulator (BIM) derived from sonicated B. pseudocatenulatum 7041. BALB/c mice were administered BIM orally for 7 consecutive days. The PP cells demonstrated upregulated secretion of total IgA including BIM-specific IgA following BIM administration. In observing the response of PP cells co-cultured with BIM, we found enhanced secretion of interferon-γ (IFN-γ) and interleukin (IL)-6 in the CD4+ T cells. In contrast, IL-12 secretion by Thy1.2 PP cells was enhanced, but secretion of IFN-γ, IL-5, and IL-6 was not significantly affected. Furthermore, the population of CD4+ CD45RBhigh T cells in PP increased following oral administration of BIM. These data suggest that CD4+ T cells were affected by BIM administration. Overall, the results show that oral administration of BIM induced CD4+ PP cells to change their expression of cell surface antigen and cytokine production.  相似文献   

17.
The protozoan parasite Leishmania major causes cutaneous lesions to develop at the site of infection, which are resolved with a strong Th1 immune response in resistant hosts, such as C57BL/6 mice. In contrast, the lesions ulcerate in susceptible hosts which display a Th2 response, such as BALB/c mice. The migration of cells in the immune response to L. major is regulated by chemokines and their receptors. The chemokine receptor CCR7 is expressed on activated DCs and naïve T cells, allowing them to migrate to the correct micro-anatomical positions within secondary lymphoid organs. While there have been many studies on the function of CCR7 during homeostasis or using model antigens, there are very few studies on the role of CCR7 during infection. In this study, we show that B6.CCR7-/- mice were unable to resolve the lesion and developed a chronic disease. The composition of the local infiltrate at the lesion was significantly skewed toward neutrophils while the proportion of CCR2+ monocytes was reduced. Furthermore, a greater percentage of CCR2+ monocytes expressed CCR7 in the footpad than in the lymph node or spleen of B6.WT mice. We also found an increased percentage of regulatory T cells in the draining lymph node of B6.CCR7-/- mice throughout infection. Additionally, the cytokine milieu of the lymph node showed a Th2 bias, rather than the resistant Th1 phenotype. This data shows that CCR7 is required for a protective immune response to intracellular L. major infection.  相似文献   

18.
The development of allergy is related to differences in the intestinal microbiota. Therefore, it is suggested that the immune responses induced by different genera of bacteria might be regulated through adaptive as well as innate immunity. In this study, we examined whether antigen-specific immune responses were affected by stimulation with the different genera of intestinal bacteria in vitro. Mesenteric lymph node (MLN) cells isolated from germ-free ovalbumin (OVA)-specific T cell receptor transgenic (OVA-Tg) mice were stimulated with OVA and intestinal bacteria. Cecal contents from conventional mice but not germ-free mice could induce OVA-specific cytokine production. Among the murine intestinal bacteria, Bacteroides acidofaciens (BA) enhanced OVA-specific IFN-γ and IL-10 production while Lactobacillus johnsonii (LA) increased OVA-specific IL-10 production only. The expression of cell surface molecules and cytokine production by antigen-presenting cells (APCs) from germ-free Balb/c mice were analyzed. BA increased the expression of MHC II and co-stimulatory molecules on APCs compared with LA. BA increased IL-6 and IL-10 production but induced less IL-12p40 than LA. To examine the effects of prior stimulation of APCs by intestinal bacteria on the induction of antigen-specific immune responses, cytokine production was determined following co-culture with OVA, CD4+ T cells from OVA-Tg mice, and APCs which were pre-stimulated with the bacteria or not. APCs pre-stimulated with LA did not enhance OVA-specific cytokine production while BA stimulated OVA-specific IL-10 production. These results suggest that the prior stimulation of intestinal immunocytes by Lactobacillus might regulate excessive antigen-specific cytokine responses via APCs when compared with prior stimulation by Bacteroides.  相似文献   

19.
Helminth infections induce strong immunoregulation that can modulate subsequent pathogenic challenges. Taenia crassiceps causes a chronic infection that induces a Th2-biased response and modulates the host cellular immune response, including reduced lymphoproliferation in response to mitogens, impaired antigen presentation and the recruitment of suppressive alternatively activated macrophages (AAMФ). In this study, we aimed to evaluate the ability of T. crassiceps to reduce the severity of experimental autoimmune encephalomyelitis (EAE). Only 50% of T. crassiceps-infected mice displayed EAE symptoms, which were significantly less severe than uninfected mice. This effect was associated with both decreased MOG-specific splenocyte proliferation and IL-17 production and limited leukocyte infiltration into the spinal cord. Infection with T. crassiceps induced an anti-inflammatory cytokine microenvironment, including decreased TNF-α production and high MOG-specific production of IL-4 and IL-10. While the mRNA expression of TNF-α and iNOS was lower in the brain of T. crassiceps-infected mice with EAE, markers for AAMФ were highly expressed. Furthermore, in these mice, there was reduced entry of CD3+Foxp3 cells into the brain. The T. crassiceps-induced immune regulation decreased EAE severity by dampening T cell activation, proliferation and migration to the CNS.  相似文献   

20.
Signal regulatory protein α (SIRPα) is a transmembrane protein that binds the protein tyrosine phosphatases SHP-1 and SHP-2 through its cytoplasmic region and is abundantly expressed on dendritic cells and macrophages. Wild-type (WT) C57BL/6 mice are known to be resistant to Leishmania major infection. We here found that C57BL/6 mice that express a mutant version of SIRPα lacking most of the cytoplasmic region manifested increased susceptibility to L. major infection, characterized by the marked infiltration of inflammatory cells in the infected lesions. The numbers of the parasites in footpads, draining lymph nodes and spleens were also markedly increased in the infected SIRPα mutant mice, compared with those for the infected WT mice. In addition, soluble leishmanial antigen-induced production of IFN-γ by splenocytes of the infected SIRPα mutant mice was markedly reduced. By contrast, the ability of macrophages of SIRPα mutant mice to produce nitric oxide in response to IFN-γ was almost equivalent to that of macrophages from WT mice. These results suggest that SIRPα is indispensable for protective immunity against L. major by the induction of Th1 response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号