首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A Suzuki  T Maeda    T Ito 《Biophysical journal》1991,59(1):25-30
We studied the formation and structure of liquid crystalline phase of F-actin solutions by polarized light photometry, assuming that a small domain of the liquid crystalline phase works as a linear retardation plate. Transmittance of polarized light due to the birefringence of liquid crystalline phase appeared above a threshold concentration of F-actin. The threshold increased with a decrease in filament length, which was regulated by calcium-activated gelsolin. The intensity increased linearly with increasing concentrations until it reached a stationary value. The deviation of optical axis direction of the putative retardation plate was estimated 7-15 degrees. These results indicate that:(a) the liquid crystalline phase is formed above a threshold concentration of F-actin; (b) the threshold is proportional to the inverse of filament length; (c) the ordered phase coexists with the isotropic one, increasing the volume fraction with increasing concentrations until all filaments take the liquid crystalline structure; (d) the filaments in liquid crystalline phase take a highly ordered array. These results can be attributed to the excluded volume effect of rod-like molecules on the formation of liquid crystalline structure.  相似文献   

2.
Single actin filaments were analyzed in solutions ranging from dilute (0.2 microgram/ml), where filaments interact only with solvent, to concentrations (4.0 mg/ml) at which F-actin forms a nematic phase. A persistence length of approximately 1.8 microns and an average length of approximately 22 microns (Kaufmann et al., 1992) identify actin as a model for studying the dynamics of semiflexible polymers. In dilute solutions the filaments exhibit thermal bending undulations in addition to diffusive motion. At higher semidilute concentrations (1.4 mg/ml) three-dimensional reconstructions of confocal images of fluorescently labeled filaments in a matrix of unlabeled F-actin reveal steric interactions between filaments, which account for the viscoelastic behavior of these solutions. The restricted undulations of these labeled chains reveal the virtual tube formed around a filament by the surrounding actin. The average tube diameter <a> scales with monomer concentration c as <a> varies; is directly proportional to c-(0.5 +/- 0.15). The diffusion of filaments in semidilute solutions (c = (0.1-2.0) mg/ml) is dominated by diffusion along the filament contour (reptation), and constraint release by remodeling of the surrounding filaments is rare. The self-diffusion coefficient D parallel along the tube decreases linearly with the chain length for semidilute solutions. For concentrations > 2.5 mg/ml a transition occurs from an isotropic entangled phase to a coexistence between isotropic and nematic domains. Analysis of the molecular motions of filaments suggests that the filaments in the aligned domains are in thermal equilibrium and that the diffusion coefficient parallel to the director D parallel is nearly independent of filament length. We also report the novel direct observation of u-shaped defects, called hairpins, in the nematic domains.  相似文献   

3.
T Oda  K Makino  I Yamashita  K Namba    Y Mada 《Biophysical journal》1998,75(6):2672-2681
We examined factors that affect the filament orientation in F-actin sols to prepare highly well-oriented liquid crystalline sols suitable for x-ray fiber diffraction structure analysis. Filamentous particles such as F-actin spontaneously align with one another when concentrated above a certain threshold concentration. This alignment is attributed to the excluded volume effect of the particles. In trying to improve the orientation of F-actin sols, we focused on the excluded volume to see how it affects the alignment. The achievable orientation was sensitive to the ionic strength of the solvent; the filaments were better oriented at lower ionic strengths, where the effective diameter of the filament is relatively large. Sols of longer filaments were better oriented than those of shorter filaments at the same concentration, but the best achievable orientation was limited, probably because of the filament flexibility. The best strategy for making well-oriented F-actin sols is therefore to concentrate F-actin filaments of relatively short length (<1 micrometer) by slow centrifugation in a low-ionic-strength solvent (<30 mM).  相似文献   

4.
F-actin gels of increasing concentrations (25-300 microM) display in vitro a progressive onset of birefringence due to orientational ordering of actin filaments. At F-actin concentrations <100 microM, this birefringence can be erased and restored at will by sonication and gentle flow, respectively. Hence, the orientational ordering does not result from a thermodynamic transition to a nematic phase but instead is due to mechanical stresses stored in the gels. In contrast, at F-actin concentrations > or =100 microM, gels display spontaneous birefringence recovery, at rest, which is the sign of true nematic ordering, in good agreement with statistical physics models of the isotropic/nematic transition. Well-aligned samples of F-actin gels could be produced and their small-angle x-ray scattering patterns are quite anisotropic. These patterns show no sign of filament positional short-range order and could be modeled by averaging the form factor with the Maier-Saupe nematic distribution function. The derived nematic order parameter S of the gels ranged from S = 0.7 at 300 microM to S = 0.4 at 25 microM. Both birefringence and small-angle x-ray scattering data indicate that, even in absence of cross-linking proteins, spontaneous cooperative alignment of actin filaments may arise in motile regions of living cells where F-actin concentrations can reach values of a few 100 microM.  相似文献   

5.
Some perspectives on the viscosity of actin filaments   总被引:7,自引:5,他引:2       下载免费PDF全文
Measurements of the dynamic viscosity of various actin filament preparations under conditions of low and controlled shear: (a) confirm the shear rate dependence of F-actin viscosities and show that this dependence obeys the power law relationship observed for entangled synthetic polymers; (b) permit estimation of the extent to which shear artifact amplifies changes in the apparent viscosity of F-actin measured in a falling ball viscometer; (c) show that gel-filtration chromatography of actin and the addition of cytochalasin B to F-actin bring about small (20-40%) changes in the viscosity of the F-actin solutions. These variations are consistent with alterations in the actin-binding protein concentrations required for incipient gelation, a parameter inversely related to average filament length. Therefore: (a) changes in the viscosity of F-actin can be magnified by use of the falling ball viscometer, and may exaggerate their biological importance; (b) chromatography of actin may not be required to obtain meaningful information about the rheology of actin filaments; (c) changes in actin filament length can satisfactorily explain alterations in F-actin viscosity exerted by cytochalasin B and by chromatography, obviating the need to postulate specific interfilament interactions.  相似文献   

6.
We have determined diffusion coefficients for small (50- to 70-nm diameter) fluorescein-thiocarbamoyl-labeled Ficoll tracers through F-actin as a function of filament length and cross-linking. fx45 was used to regulate filament length and avidin/biotinylated actin or ABP-280 was used to prepare cross-linked actin gels. We found that tracer diffusion was generally independent of filament length in agreement with theoretical predictions for diffusion through solutions of rods. However, in some experiments diffusion was slower through short (< or = 1.0 micron) filaments, although this result was not consistently reproducible. Measured diffusion coefficients through unregulated F-actin and filaments of lengths > 1.0 micron were more rapid than predicted by theory for tracer diffusion through rigid, random networks, which was consistent with some degree of actin bundling. Avidin-induced cross-linking of biotinylated F-actin did not affect diffusion through unregulated F-actin, but in cases where diffusion was slower through short filaments this cross-linking method resulted in enhanced tracer diffusion rates indistinguishable from unregulated F-actin. This finding, in conjunction with increased turbidity of 1.0-micron filaments upon avidin cross-linking, indicated that this cross-linking method induces F-actin bundling. By contrast, ABP-280 cross-linking retarded diffusion through unregulated F-actin and decreased turbidity. Tracer diffusion under these conditions was well approximated by the diffusion theory. Both cross-linking procedures resulted in gel formation as determined by falling ball viscometry. These results demonstrate that network microscopic geometry is dependent on the cross-linking method, although both methods markedly increase F-actin macroscopic viscosity.  相似文献   

7.
In eukaryotic cells, actin filaments are involved in important processes such as motility, division, cell shape regulation, contractility, and mechanosensation. Actin filaments are polymerized chains of monomers, which themselves undergo a range of chemical events such as ATP hydrolysis, polymerization, and depolymerization. When forces are applied to F-actin, in addition to filament mechanical deformations, the applied force must also influence chemical events in the filament. We develop an intermediate-scale model of actin filaments that combines actin chemistry with filament-level deformations. The model is able to compute mechanical responses of F-actin during bending and stretching. The model also describes the interplay between ATP hydrolysis and filament deformations, including possible force-induced chemical state changes of actin monomers in the filament. The model can also be used to model the action of several actin-associated proteins, and for large-scale simulation of F-actin networks. All together, our model shows that mechanics and chemistry must be considered together to understand cytoskeletal dynamics in living cells.  相似文献   

8.
The effect of Arabidopsis thaliana ADF1 and human ADF on the number of filaments in F-actin solutions has been examined using a seeded polymerization assay. ADF did not sever filaments in a catalytic fashion, but decreased the steady-state length distribution of actin filaments in correlation with its effect on actin dynamics. The increase in filament number was modest as compared with the large increase in filament turnover. ADF did not decrease the length of filaments shorter than 1 micrometer. ADF promoted the rapid turnover of gelsolin-capped filaments in a manner dependent on the number of pointed ends. To explain these results, we propose that, as a consequence of the cooperative binding of ADF to F-actin, two populations of energetically different filaments coexist in solution pending a flux of subunits from one to the other. The ADF-decorated filaments depolymerize rapidly from their pointed ends, while undecorated filaments polymerize. ADF also promotes rapid turnover of gelsolin-capped filaments in the presence of the pointed end capper Arp2/3 complex. It is shown that the Arp2/3 complex steadily generates new barbed ends in solutions of gelsolin-capped filaments, which represents an important aspect of its function in actin-based motility.  相似文献   

9.
Actin filaments form rings and loops when > 20 mM divalent cations are added to very dilute solutions of phalloidin-stabilized filamentous actin (F-actin). Some rings consist of very long single actin filaments partially overlapping at their ends, and others are formed by small numbers of filaments associated laterally. In some cases, undulations of the rings are observed with amplitudes and dynamics similar to those of the thermal motions of single actin filaments. Lariat-shaped aggregates also co-exist with rings and rodlike bundles. These polyvalent cation-induced actin rings are analogous to the toroids of DNA formed by addition of polyvalent cations, but the much larger diameter of actin rings reflects the greater bending stiffness of F-actin. Actin rings can also be formed by addition of streptavidin to crosslink sparsely biotinylated F-actin at very low concentrations. The energy of bending in a ring, calculated from the persistence length of F-actin and the ring diameter, provides an estimate for the adhesion energy mediated by the multivalent counterions, or due to the streptavidin-biotin bonds, required to keep the ring closed.  相似文献   

10.
《Biophysical journal》2022,121(12):2436-2448
Actin is one of the key structural components of the eukaryotic cytoskeleton that regulates cellular architecture and mechanical properties. Dynamic regulation of actin filament length and organization is essential for the control of many physiological processes including cell adhesion, motility and division. While previous studies have mostly focused on the mechanisms controlling the length of single actin filaments, it remains poorly understood how distinct actin filament populations in cells maintain different lengths using the same set of molecular building blocks. Here, we develop a theoretical model for the length regulation of multiple actin filaments by nucleation and growth-rate modulation by actin-binding proteins in a limiting pool of monomers. We first show that spontaneous nucleation of actin filaments naturally leads to heterogeneities in filament length distribution. We then investigate the effects of filament growth inhibition by capping proteins and growth promotion by formin proteins on filament length distribution. We find that filament length heterogeneity can be increased by growth inhibition, whereas growth promoters do not significantly affect length heterogeneity. Interestingly, a competition between filament growth inhibitors and growth promoters can give rise to bimodal filament length distribution as well as a highly heterogeneous length distribution with large statistical dispersion. We quantitatively predict how heterogeneity in actin filament length can be modulated by tuning filamentous actin nucleation and growth rates in order to create distinct filament subpopulations with different lengths.  相似文献   

11.
We have previously established [Cortese and Frieden, J. Cell Biol. 107:1477-1487, 1988] that actin gels formed under shear are microheterogeneous. In this study, the effect of cross-linking (by chicken gizzard filamin), severing (by plasma gelsolin), and shear on actin microheterogeneity are investigated using fluorescence photobleaching recovery and video microscopy. We find that filamin and shear form microheterogeneous F-actin:gelsolin gels by different mechanisms. Bundling of actin:gelsolin filaments by filamin can be explained by an increase in the apparent length of the filaments due to interfilament binding, resulting in a decrease of the polymer number concentration at which filaments organize into anisotropic phases. Some intrafilament binding of filamin to actin filaments may also be present, and those filaments coated with filamin immobilize more slowly than actin under the same polymerization conditions. The length of F-actin/gelsolin filaments seems to be a major factor in controlling the extent of bundling relative to network formation. In contrast, the effect of shear on the microheterogeneity of actin:gelsolin filaments is consistent with our previous proposal that shear aligns actin filaments, allowing filament-filament interactions and phase formation to occur. Short filaments are unable to organize into branched actin networks, but they can create large aggregates under low shear. Longer actin filaments will exist as networks with variable levels of branching and are less sensitive to shear. The effect of the intensity of a shear field on the spatial distribution of actin may involve a progressively more random orientation of actin molecules and bundles. A regular pattern develops across the sample at low shear rates (0.04-1.39 s-1), and becomes very irregular at higher shear rates (greater than 10 s-1). We suggest here that actin-binding proteins and shear can control the transition between isotropic networks and anisotropic phases by their effect on apparent length and local filament concentration, and also that this transition can have substantial effects on the resistance of cells to mechanical stress.  相似文献   

12.
Triclinic crystals have been found in capillaries that initially contained deoxygenated sickled erythrocytes, and in solutions of sickle hemoglobin that were stirred during deoxygenation. In both cases these crystals occur as a phase transition from fibers. They have been observed only as twins; the a-axis of one member is related to that of its twin by 180 degrees rotation about the b* direction. The volume of the triclinic crystal unit cell is half that of the monoclinic crystals that have also transformed from fibers. Analysis of X-ray diffraction data indicates that the two molecules in the triclinic unit cell that repeat at an interval of 64 A form double filaments similar to those found in the monoclinic crystals and in the fiber. The existence of the triclinic crystals which contain only one double filament per unit cell removes a postulated requirement that antipolar double filament pairs be the sole unit of the fiber architecture.  相似文献   

13.
Actin filament organization in the fish keratocyte lamellipodium   总被引:17,自引:7,他引:10       下载免费PDF全文
《The Journal of cell biology》1995,129(5):1275-1286
From recent studies of locomoting fish keratocytes it was proposed that the dynamic turnover of actin filaments takes place by a nucleation- release mechanism, which predicts the existence of short (less than 0.5 microns) filaments throughout the lamellipodium (Theriot, J. A., and T. J. Mitchison. 1991. Nature (Lond.). 352:126-131). We have tested this model by investigating the structure of whole mount keratocyte cytoskeletons in the electron microscope and phalloidin-labeled cells, after various fixations, in the light microscope. Micrographs of negatively stained keratocyte cytoskeletons produced by Triton extraction showed that the actin filaments of the lamellipodium are organized to a first approximation in a two-dimensional orthogonal network with the filaments subtending an angle of around 45 degrees to the cell front. Actin filament fringes grown onto the front edge of keratocyte cytoskeletons by the addition of exogenous actin showed a uniform polarity when decorated with myosin subfragment-1, consistent with the fast growing ends of the actin filaments abutting the anterior edge. A steady drop in filament density was observed from the mid- region of the lamellipodium to the perinuclear zone and in images of the more posterior regions of lower filament density many of the actin filaments could be seen to be at least several microns in length. Quantitative analysis of the intensity distribution of fluorescent phalloidin staining across the lamellipodium revealed that the gradient of filament density as well as the absolute content of F-actin was dependent on the fixation method. In cells first fixed and then extracted with Triton, a steep gradient of phalloidin staining was observed from the front to the rear of the lamellipodium. With the protocol required to obtain the electron microscope images, namely Triton extraction followed by fixation, phalloidin staining was, significantly and preferentially reduced in the anterior part of the lamellipodium. This resulted in a lower gradient of filament density, consistent with that seen in the electron microscope, and indicated a loss of around 45% of the filamentous actin during Triton extraction. We conclude, first that the filament organization and length distribution does not support a nucleation release model, but is more consistent with a treadmilling-type mechanism of locomotion featuring actin filaments of graded length. Second, we suggest that two layers of filaments make up the lamellipodium; a lower, stabilized layer associated with the ventral membrane and an upper layer associated with the dorsal membrane that is composed of filaments of a shorter range of lengths than the lower layer and which is mainly lost in Triton.  相似文献   

14.
BACKGROUND INFORMATION: Actin cytoskeleton is the basis of chloroplast-orientation movements. These movements are activated by blue light in the leaves of terrestrial angiosperms. Red light has been shown to affect the spatial reorganization of F-actin in water plants, where chloroplast movements are closely connected with cytoplasmic streaming. The aim of the present study was to determine whether blue light, which triggers characteristic responses of chloroplasts, i.e. avoidance and accumulation, also influences F-actin organization in the mesophyll cells of Arabidopsis thaliana. Actin filaments in fixed mesophyll tissue were labelled with Alexa Fluor 488-conjugated phalloidin. The configuration of actin filaments, expressed as a form factor (4 pi x area/perimeter(2)), was determined for all actin formations which were measured in fluorescence confocal images. RESULTS: In the present study, we compare form-factor distributions and the median form factors for strong and weak, blue- and red-irradiated tissues. Spatial organization of the F-actin network did not undergo any changes which could be attributed specifically to blue light. Actin patterns were similar in blue-irradiated wild-type plants and phot2 (phototropin 2) mutants which lack the avoidance response of chloroplasts. However, significant differences in the shape and distribution of F-actin formations were observed between mesophyll cells of phot2 mutants irradiated with strong and weak red light. These differences were absent in wild-type leaves. CONCLUSIONS: Actin does not appear to be the main target for the blue-light chloroplast-orientation signal. The modes of actin involvement in chloroplast translocations are different in water and terrestrial angiosperms. The results suggest that co-operation occurs between blue- and red-light photoreceptors in the control of the actin cytoskeleton architecture in Arabidopsis.  相似文献   

15.
Actin filament bundles isolated from Limulus sperm were used for quantitative electron microscope studies of F-actin assembly. The assembly rate constants were calculated. In addition, the critical concentrations (Cos) for both filament ends were directly determined. In 75 mM KCI and 1–5 mM Mg++, the Cos were 0.1 μM and 0.5 μM for the barbed and pointed ends, respectively. Substitution of Ca++ (20–200 μM) for Mg++ resulted in Cos of 0.4 μM for both filament ends. Consistent with these findings, filament growth occurred only from the barbed ends of Limulus bundles “seeded” into F-actin solutions in KCI and Mg++. Finally, filaments originally grown from the pointed filament ends of Limulus bundles were gradually lost as the actin solution reached steady state. These results demonstrate that actin filaments can “treadmill” under physiological conditions, albeit at very slow rates.  相似文献   

16.
Biomolecules exist and function in cellular microenvironments that control their spatial organization, local concentration, and biochemical reactivity. Due to the complexity of native cytoplasm, the development of artificial bioreactors and cellular mimics to compartmentalize, concentrate, and control the local physico-chemical properties is of great interest. Here, we employ self-assembling polypeptide coacervates to explore the partitioning of the ubiquitous cytoskeletal protein actin into liquid polymer-rich droplets. We find that actin spontaneously partitions into coacervate droplets and is enriched by up to ~30-fold. Actin polymerizes into micrometer-long filaments and, in contrast to the globular protein BSA, these filaments localize predominately to the droplet periphery. We observe up to a 50-fold enhancement in the actin filament assembly rate inside coacervate droplets, consistent with the enrichment of actin within the coacervate phase. Together these results suggest that coacervates can serve as a versatile platform in which to localize and enrich biomolecules to study their reactivity in physiological environments.  相似文献   

17.
Actin filaments and microtubules lengthen and shorten by addition and loss of subunits at their ends, but it is not known whether this is also true for intermediate filaments. In fact, several studies suggest that in vivo, intermediate filaments may lengthen by end-to-end annealing and that addition and loss of subunits is not confined to the filament ends. To test these hypotheses, we investigated the assembly dynamics of neurofilament and vimentin intermediate filament proteins in cultured cells using cell fusion, photobleaching, and photoactivation strategies in combination with conventional and photoactivatable fluorescent fusion proteins. We show that neurofilaments and vimentin filaments lengthen by end-to-end annealing of assembled filaments. We also show that neurofilaments and vimentin filaments incorporate subunits along their length by intercalation into the filament wall with no preferential addition of subunits to the filament ends, a process which we term intercalary subunit exchange.  相似文献   

18.
The LIM domains of WLIM1 define a new class of actin bundling modules   总被引:2,自引:0,他引:2  
Actin filament bundling, i.e. the formation of actin cables, is an important process that relies on proteins able to directly bind and cross-link subunits of adjacent actin filaments. Animal cysteine-rich proteins and their plant counterparts are two LIM domain-containing proteins that were recently suggested to define a new family of actin cytoskeleton regulators involved in actin filament bundling. We here identified the LIM domains as responsible for F-actin binding and bundling activities of the tobacco WLIM1. The deletion of one of the two LIM domains reduced significantly, but did not entirely abolish, the ability of WLIM1 to bind actin filaments. Individual LIM domains were found to interact directly with actin filaments, although with a reduced affinity compared with the native protein. Variants lacking the C-terminal or the inter-LIM domain were only weakly affected in their F-actin stabilizing and bundling activities and trigger the formation of thick cables containing tightly packed actin filaments as does the native protein. In contrast, the deletion of one of the two LIM domains negatively impacted both activities and resulted in the formation of thinner and wavier cables. In conclusion, we demonstrate that the LIM domains of WLIM1 are new autonomous actin binding and bundling modules that cooperate to confer WLIM1 high actin binding and bundling activities.  相似文献   

19.
Properties of filamentous acetamidofluorescein-labeled actin and acetamidotetramethylrhodamine-labeled actin (AF and ATR-actin, respectively) were examined to resolve discrepancies in the reported translational diffusion coefficients of F-actin measured in vitro by FPR and other techniques. Using falling-ball viscometry and two independent versions of fluorescence photobleaching recovery (FPR), the present data indicate that several factors are responsible for these discrepancies. Gel filtration chromatography profoundly affects the viscosity of actin solutions and filament diffusion coefficients. ATR-actin and, to a lesser degree, AF-actin show a reduction in viscosity in proportion to the fraction labeled, presumably due to filament shortening. Actin filaments containing AF-actin or ATR-actin are susceptible to photoinduced damage, including a covalent cross-linking of actin protomers within filaments and an apparent cleavage of filaments detected by a decrease of the measured viscosity and an increase in the measured filament diffusion coefficients. Quantum yields of the two photoinduced effects are quite different. Multiple cross-links are produced relative to each photobleaching event, whereas less than 1% filament cleavage occurs. Substantial differences in the filament diffusion coefficients measured by FPR are also the result of differences in illumination geometry and sampling time. However, under controlled conditions, FPR can be used as a quantitative tool for measuring the hydrodynamic properties of actin filaments. Incremented filament shortening caused by photoinduced cleavage or incremental addition of filament capping proteins produces a continuous and approximately linear increase of filament diffusion coefficients, indicating that filaments are not associated in solution. Our results indicate that actin filaments exhibit low mobilities and it is inferred that actin filaments formed in vitro by column-purified actin, under standard conditions, are much longer than has conventionally been presumed.  相似文献   

20.
The rate of filamentous actin (F-actin) depolymerization is proportional to the number of filaments depolarizing and changes in the rate are proportional to changes in filament number. To determine the number and length of actin filaments in polymorphonuclear leukocytes and the change in filament number and length that occurs during the increase in F-actin upon chemoattractant stimulation, the time course of cellular F-actin depolymerization in lysates of control and peptide-stimulated cells was examined. F-actin was quantified by the TRITC-labeled phalloidin staining of pelletable actin. Lysis in 1.2 M KCl and 10 microM DNase I minimized the effects of F-actin binding proteins and G-actin, respectively, on the kinetics of depolymerization. To determine filament number and length from a depolymerization time course, depolymerization kinetics must be limited by the actin monomer dissociation rate. Comparison of time courses of depolymerization in the presence (pointed ends free) or absence (barbed and pointed ends free) of cytochalasin suggested depolymerization occurred from both ends of the filament and that monomer dissociation was rate limiting. Control cells had 1.7 +/- 0.4 x 10(5) filaments with an average length of 0.29 +/- 0.09 microns. Chemo-attractant stimulation for 90 s at room temperature with 0.02 microM N-formylnorleucylleucylphenylalanine caused a twofold increase in F-actin and about a two-fold increase in the total number of actin filaments to 4.0 +/- 0.5 x 10(5) filaments with an average length of 0.27 +/- 0.07 microns. In both cases, most (approximately 80%) of the filaments were quite short (less than or equal to 0.18 micron). The length distributions of actin filaments in stimulated and control cells were similar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号