首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The functional properties of the multicolumnar interneurons of the crayfish lamina ganglionaris were examined by intracellular recording and the cell structures were revealed with the aid of Lucifer yellow or horseradish peroxidase iontophoresis. The multicolumnar monopolar cell M5 responds to a light pulse with a depolarizing compound EPSP and a burst of action potentials. Both the EPSP amplitude and the spike rate decay toward a lower level plateau in less than 200 ms after light onset. M5 is subject to surround inhibition, which is associated with a compound IPSP and net hyperpolarization of the membrane potential. Direct depolarization of M5 may provide a weak excitatory drive to medullary sustaining fibers (SF). Tangenital-cell type 1 (Tan1) has a broad expanse of neurites in the lamina (covering 10 to 15 cartridges) and a much narrower projection in the medulla (1 to 3 cartridges). The response to a light pulse has a long latency consistent with a polysynaptic receptor to Tan1 pathway. The response consists of a nearly rectangular hyperpolarization. Light 'off' elicits a depolarization and a burst of impulses. The polarity of the 'on' response can be reversed by hyperpolarizing the membrane by 23 mV. The receptive field is broad and the intensity-response function exceeds 4 log units. Direct hyperpolarization of Tan1 provides a strong excitatory signal to medullary SFs both in the dark and in the presence of illumination. We propose that Tan1 provides the principal steady-state excitatory drive to the SFs. Tangential-cell type 2 (Tan2) is distinguished from Tan1 by the extent and shape of the lamina process, which is a vertically oriented neurite spanning most of the lamina in a single plane. Functionally, Tan2 is similar in most respects to Tan1, but the response latency is much shorter, comparable to that of monopolar cells. T-cells may exhibit spontaneous impulse activity in the dark which is inhibited by a short latency hyperpolarizing light response. The receptive field, which is about 2 X larger than that of the columnar monopolar cells, is correlated with a small but multicolumnar dendritic arbor in the lamina. Since T-cells are aminergic, it is possible that the amines are normally released in the dark. A single amacrine cell was fully characterized. It exhibited a short latency hyperpolarizing response to light onset and a strong depolarizing 'off' response.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Summary The lamina ganglionaris of the superposition eye of Cloeon dipterum is composed of separate optic cartridges arranged in a hexagonal pattern. Each optic cartridge consists of one central, radially branched monopolar cell (Li) surrounded by a crown of seven retinula cell terminals and two more unilaterally branched monopolar cells (La1/La2) situated close together outside the cartridge. Projections to neighbouring cartridges have not been observed.In most cases, synaptic contacts could be seen between a presynaptic retinula cell and more than two other postsynaptic profiles, which belong to monopolar cells or sometimes to glial cells.Seven retinula cell fibers of one ommatidium pass in a bundle through the basement membrane, run into their respective cartridges without changing orientation and terminate at approximately equal levels in the lamina. Long visual fibers with endings in the medulla are not visible in the superposition eye lamina, but are present in the lateral apposition eye. The relationship between the behaviour of the animal, optic mechanisms of the superposition eye and the structure of the lamina is discussed.  相似文献   

3.
4.
Summary Neuronal elements, i.e. first and second order neurons, of the first optic ganglion of three waterbugs, N. glauca, C. punctata and G. lacustris, are analyzed on the basis of light and electron microscopy.Eight retinula cell axons, leaving each ommatidium, disperse to different cartridges as they enter the laminar outer plexiform layer. Such a pattern of divergence is one of the conditions for neuronal superposition; it is observed for all three species of waterbugs. The manner in which the receptors of a single bundle of ommatidia split of within the lamina, whereby information from receptors up to three or five horizontal rows away can converge upon the same cartridge, differs among the species. Six of the eight axons of retinula cells R1-6, the short visual fibers end at different levels within the bilayered lamina, whereas the central pair of retinula cells R7/8, the long visual fibers, run directly through the lamina to a corresponding unit of the medulla. Four types of monopolar cells L1–L4 are classified; their branching patterns seem to be correlated to the splitting and termination of retinula cell axons. The topographical relationship and synaptic organization between retinula cell terminals and monopolar cells in the two laminar layers are identified by examination of serial ultrathin sections of single Golgi-stained neurons.An attempt is made to correlate some anatomical findings, especially the neuronal superposition, to results from physiological investigations on the hemipteran retina.  相似文献   

5.
Summary The distribution of putative cholinergic neurons in the lamina of the blowfly Calliphora erythrocephala was studied by immunocytochemical and histochemical methods. Three different antibodies directed against the AChsynthesizing enzyme, choline acetyltransferase (ChAT), revealed a cholinergic population of fibres running parallel to the laminar cartridges, which have branch-like structures at the distal lamina border. Cell bodies in the chiasma next to the lamina border were also labelled by the anti-ChAT antibodies. Monopolar cell bodies in the nuclear layer were faintly labelled. The distribution of the acetylcholine hydrolyzing enzyme, acetylcholine esterase (AChE), was revealed by histochemical staining and was similar to the ChAT immunocytochemistry. The arrangement of ChAT positive fibres in transverse and longitudinal sections and the distribution of AChE stained fibres indicate that the amacrine cells of the lamina are cholinergic cells.We dedicate this work to Prof. F. Zettler who passed away in fall 1988: K.-H. Datum, I. Rambold  相似文献   

6.
Summary At low light intensity and within the narrow frequency range of 55 to 66 s–1, the eye ofDrosophila will follow a flashing light source by enhancing it's flicker response to every other flash. By contrast, at lower and higher frequencies the eye will follow every cycle of a respective flash frequency upto a fusion point around 200 s–1.While the receptor cells involved are retinula cells R1–6, the flicker response enhancement is established to originate postsynaptically in the Large Monopolar Cells of the lamina with which the peripheral retinula cells synapse, and which respond with the cornealpositive on-transient component of the ERG. Not only is a prescribed frequency required for the enhancement, but also continuity of cue — since brief periods of light flashes within the required frequency range are resolved at every cycle.The flicker response behaviour provides further credence to the existence of fine tuning mechanisms together with amplification within the lamina neuropile.We are grateful to the late Dr. Richard Wright for his comments, and to Professor Aubrey Manning for the hospitality his Department gave to N.L.  相似文献   

7.
Summary The gross structure and neuronal elements of the first optic ganglion of two crabs, Scylla serrata and Leptograpsus variegatus, are described on the basis of Golgi (selective silver) and reduced silver preparations. Of the eight retinula cells of each ommatidium, seven end within the lamina, while the eighth cell sends a long fibre to the external medulla. Five types of monopolar neurons are described, three types of large tangential fibres, and one fibre which may be centrifugal. The marked stratification of the lamina is produced by several features. The main synaptic region, the plexiform layer, is divided by a band of tangential fibres; the short retinula fibres end at two levels in the plexiform layer; and two types of monopolar cells have arborisations confined to the distal or proximal parts of the plexiform layer. The information presently available concerning the retina-lamina projection in Crustacea is examined. Some of the implications of retina and lamina structure are discussed in conjunction with what is known about their electrophysiology.  相似文献   

8.
9.
10.
11.
12.
13.
14.
  1. Polarization sensitivity (PS) was examined in photoreceptors and lamina monopolar cells (LMCs) in two species of crayfish, Procambarus clarkii and Pacifasticus leniusculus. The measurements were made with intracellular recordings and broad field illumination.
  2. PS is about 40% greater in Pacifasticus than in Procambarus (Table 1). In both species the LMC stationary PS profiles (estimated with flashes) are similar to those of receptors (Figs. 1 and 2). Both receptor and LMC sensitivity profiles are well described by cos2 θ functions (Fig. 3). PS was observed in all receptors and 78% of LMCs.
  3. When stimulated with a rotating polarizer, receptors and LMCs exhibit membrane potential modulation with phase predicted by the stationary PS profile (Fig. 5). In photoreceptors, the polarization-elicited percent modulation falls off steeply as intensity increases. The LMC modulation is stronger than that in receptors and relatively insensitive to the mean intensity (Figs. 6 to 8). For low intensities the LMC modulation is 100%. The LMC dynamic behavior is consistent with either an opponency mechanism or strong but polarization-insensitive lateral inhibition.
  4. Receptors and LMCs exhibit steady-state differential sensitivity to stationary e-vector orientation (Fig. 9).
  5. About 10% of the LMC neurons exhibit PS maxima separated by 90°. These results imply a nonlinear summation of signals from orthogonal receptor channels (Fig. 10).
  相似文献   

15.
Summary The cell-body layer of the lamina ganglionaris of the housefly, Musca domestica, contains the perikarya of five types of monopolar interneuron (L1–L5) along with their enveloping neuroglia (Strausfeld 1971). We confirm previous reports (Trujillo-Cenóz 1965; Boschek 1971) that monopolar cell bodies in the lamina form three structural classes: Class I, Class II, and midget monopolar cells. Class-I cells (L1 and L2) have large (8–15 m) often crescentshaped cell bodies, much perinuclear cytoplasm and deep glial invaginations. Class-II cells (L3 and L4) have smaller perikarya (4–8 m) with little perinuclear cytoplasm and no glial invaginations. The midget monopolar cell (L5) resides at the base of the cell-body layer and has a cubshaped cell body. Though embedded within a reticulum of satellite glia, the L1–L4 monopolar perikarya and their immediately proximal neurites frequently appose each other directly. Typical arthropod (-type) gap junctions are routinely observed at these interfaces. These junctions can span up to 0.8 m with an intercellular space of 2–4 nm. The surrounding nonspecialized interspace is 12–20 nm. Freezefracture replicas of monopolar appositions confirm the presence of -type gap junctions, i.e., circular plaques (0.15–0.7 m diam.) of large (10–15 nm) E-face particles. Gap junctions are present between Class I somata and their proximal neurites, between Class I and Class II somata and proximal neurites, and between Class II somata. Intercartridge coupling may exist between such monopolar somata. The cell body and proximal neurite of L5 were not examined. We also find that Class I and Class II somata are extensively linked to their satellite glia via gap junctions. The gap width and nonjunctional interspace between neuron and glia are the same as those found between neurons. The particular arrangement and morphology of lamina monopolar neurons suggest that coupling or low resistance pathways between functionally distinct neurons and between neuron and glia are probably related to the metabolic requirements of the nuclear layer and may play a role in wide field signal averaging and light adaptation.  相似文献   

16.
Cell and Tissue Research - The neural arrangements in the optic lamina of the crayfish Pacifastacus leniusculus Dana have been studied by light microscopy by means of silver impregnation...  相似文献   

17.
Summary The gross structure as well as the neuronal and non-neuronal components of the lamina ganglionaris of the locust Schistocerca gregaria are described on the basis of light- and electron-microscopical preparations of Golgj (selective silver) and ordinary histological preparations. The array of optic cartridges within the lamina neuropile — their order and arrangement — and the composition of the cartridges are described. There are six types of monopolar neurons: three whose branches reach to other cartridges and three whose branches are confined to their own cartridges. Retinula axons terminate either in the lamina or the medulla neuropiles. There are three types of centrifugal neurons, two types of horizontal neuron, as well as glia and trachea in the lamina neuropile. The development of the lamina neuropile is described in terms of developing monopolar and centrifugal axons, growing retinula fibres, and composition of the developing optic cartridges.MSN was supported in part by a Fulbrights-Hays Scholarsship. We are grateful to the Science Research Council for its grant to PMJS.  相似文献   

18.
19.
Summary The compound eye of the housefly, from lens to first optic neuropile (lamina ganglionaris) was examined with a scanning electron microscope. Key findings are as follows: The pseudocone cavity is enclosed by six corneal pigment cells. The nuclei of the six cells are firmly anchored to the underside of the lens and portions remain after lens delamination from the pseudocone cavity. An eccentrically-positioned, short photoreceptor cell was observed near the region where the inferior central cell initiates its rhabdom. This eminence may represent that cell's soma. The basement membrane is revealed as a two-tiered, fibrous layer with ovoid fenestrations. Each opening is sealed with a diaphragm perforated by eight retinular axons and a trachea. Conjoined distal surfaces of the satellite glial cells form a membrane-like barrier immediately underlying the basement membrane. Monopolar somata from the lamina are covered with glial cells which possibly make more intimate contact with the somata through miniscule projections. Optic cartridges with monopolar interneurons were noted. Spherical to slightly biconcave processes of these interneurons contact retinular axons. Very fine (1000 Å) filaments interweave among and contact lateral processes. Further implications are discussed as they relate to observed structures.We gratefully acknowledge research support from the Graduate School, University of Wisconsin, Project No. 140508. Mr. Jack Rozental kindly supplied an English translation of the Cajal and Sanchez (1915) treatise on the fly nervous system. Dr. N. J. Strausfeld, Max Planck Institut für biologische Kybernetik, Tübingen, graciously provided comments about the figures.  相似文献   

20.
Patton  Bruce L. 《Brain Cell Biology》2003,32(5-8):883-903
Fast chemical synapses are comprised of presynaptic and postsynaptic specializations precisely aligned across a protein-filled synaptic cleft. At the vertebrate neuromuscular junction (NMJ), the synaptic cleft contains a structured form of extracellular matrix known as a basal lamina (BL). Synaptic BL is molecularly differentiated from the BL that covers the extrasynaptic region of the myofiber. This review summarizes current understanding of the morphology, composition, and function of the synaptic BL at the vertebrate NMJ. Considerable evidence supports the conclusion that the synaptic BL organizes and maintains pre- and postsynaptic specializations during development and regeneration, and promotes robust neurotransmission in the adult.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号