首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 788 毫秒
1.
The functional properties of the multicolumnar interneurons of the crayfish lamina ganglionaris were examined by intracellular recording and the cell structures were revealed with the aid of Lucifer yellow or horseradish peroxidase iontophoresis. The multicolumnar monopolar cell M5 responds to a light pulse with a depolarizing compound EPSP and a burst of action potentials. Both the EPSP amplitude and the spike rate decay toward a lower level plateau in less than 200 ms after light onset. M5 is subject to surround inhibition, which is associated with a compound IPSP and net hyperpolarization of the membrane potential. Direct depolarization of M5 may provide a weak excitatory drive to medullary sustaining fibers (SF). Tangenital-cell type 1 (Tan1) has a broad expanse of neurites in the lamina (covering 10 to 15 cartridges) and a much narrower projection in the medulla (1 to 3 cartridges). The response to a light pulse has a long latency consistent with a polysynaptic receptor to Tan1 pathway. The response consists of a nearly rectangular hyperpolarization. Light 'off' elicits a depolarization and a burst of impulses. The polarity of the 'on' response can be reversed by hyperpolarizing the membrane by 23 mV. The receptive field is broad and the intensity-response function exceeds 4 log units. Direct hyperpolarization of Tan1 provides a strong excitatory signal to medullary SFs both in the dark and in the presence of illumination. We propose that Tan1 provides the principal steady-state excitatory drive to the SFs. Tangential-cell type 2 (Tan2) is distinguished from Tan1 by the extent and shape of the lamina process, which is a vertically oriented neurite spanning most of the lamina in a single plane. Functionally, Tan2 is similar in most respects to Tan1, but the response latency is much shorter, comparable to that of monopolar cells. T-cells may exhibit spontaneous impulse activity in the dark which is inhibited by a short latency hyperpolarizing light response. The receptive field, which is about 2 X larger than that of the columnar monopolar cells, is correlated with a small but multicolumnar dendritic arbor in the lamina. Since T-cells are aminergic, it is possible that the amines are normally released in the dark. A single amacrine cell was fully characterized. It exhibited a short latency hyperpolarizing response to light onset and a strong depolarizing 'off' response.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Membrane Conductances and Spectral Sensitivities of Pecten Photoreceptors   总被引:5,自引:5,他引:0  
The electrical and spectral properties of depolarizing (proximal) and hyperpolarizing (distal) photoreceptors in the eye of the scallop, Pecten irradians, were examined. Both depolarizing and hyperpolarizing responses are associated with an increase in membrane conductance; in addition, the depolarizing response is characterized by a secondary decrease in conductance at light intensities which inactivate the response. Both responses can be reversed in polarity by applied current across the cell membrane. The depolarizing response has a reversal potential of approximately +10 mv, whereas the estimated reversal potential for the hyperpolarizing response is near -70 mv. The two responses have the same spectral sensitivity function, which agrees with a Dartnall nomogram for a rhodospin with a λmax at 500 nm. It is suggested that the photochemical reactions produce different end products which give responses of opposite polarity in proximal and distal cells, or alternatively, that the reactions of the respective cell membranes to the same end product are different.  相似文献   

3.
In electroplaques of several gymnotid fishes hyperpolarizing or depolarizing currents can evoke all-or-none responses that are due to increase in membrane resistance as much as 10- to 12-fold. During a response the emf of the membrane shifts little, if at all, when the cell either is at its normal resting potential, or is depolarized by increasing external K, and in the case of depolarizing responses when either Cl or an impermeant anion is present. Thus, the increase in resistance is due mainly, or perhaps entirely, to decrease in K permeability, termed depolarizing or hyperpolarizing K inactivation, respectively. In voltage clamp measurements the current-voltage relation shows a negative resistance region. This characteristic accounts for the all-or-none initiation and termination of the responses demonstrable in current clamp experiments. Depolarizing inactivation is initiated and reversed too rapidly to measure with present techniques in cells in high K. Both time courses are slowed in cells studied in normal Ringer's. Once established, the high resistance state is maintained as long as an outward current is applied. Hyperpolarizing inactivation occurs in normal Ringer's or with moderate excess K. Its onset is more rapid with stronger stimuli. During prolonged currents it is not maintained; i.e., there is a secondary increase in conductance. Hyperpolarizing inactivation responses exhibit a long refractory period, presumably because of persistence of this secondary increase in conductance.  相似文献   

4.
Summary The surface ofStylonychia was mechanically stimulated with a piezo-crystal driven microneedle of 0.5-2 m distal diameter and maximal amplitudes of 13 m. Stimulation of the anterior surface of the cell produced a membrane depolarization, while stimulation of the posterior surface elicited a hyperpolarizing response. The analysis of electric responses to mechanical stimuli, driven by pulses varied in duration, amplitude, rate and acceleration, revealed that the hyperpolarizing receptor potential (hRP) rose in parallel with the stimulus velocity. Stimulus amplitudes beyond 12 m and at rates larger than 4 mm/s did not increase the amplitude of the membrane response. Sustained stimuli slowed down the repolarization to the resting level. Adaptation of the receptor response was seen with small and sustained velocities of the stimulating probe. The depolarizing receptor response (dRP) triggered an action potential consisting of two regenerative components, one graded, the other all-or-none. Positive conditioning current pulses reversed the polarity of the dRP which was primarily Ca-dependent (22.4 mV/log [Ca]0).The dRP was isolated from the action potential by negative membrane conditioning. The reversal potential of the hyperpolarizing receptor response was negative of the resting potential and completely K-dependent (58.5 mV/log [K]o).Submaximal hyperpolarizing and subthreshold depolarizing receptor potentials showed summation. No refractoriness of the hRP was detected. Summation of depolarizing responses beyond the threshold activated a regenerative membrane depolarization.Abbreviations hRP Hyperpolarizing receptor potential - dRP Depolarizing receptor potential Dedicated to Professor J. Schwartzkopff on the occasion of his sixtieth birthdaySupported by the Deutsche Forschungsgemeinschaft (SFB 114, TP A5)  相似文献   

5.
We have studied the effects of curare on responses resulting from iontophoretic application of several putative neurotransmitters onto Aplysia neurons. These neurons have specific receptors for acetylcholine (ACh), dopamine, octopamine, phenylethanolamine, histamine, gamma-aminobutyric acid (GABA), aspartic acid, and glutamic acid. Each of these substances may on different specific neurons elicit at least three types of response, caused by a fast depolarizing Na+, a fast hyperpolarizing Cl-, or a slow hyperpolarizing K+ conductance increase. All responses resulting from either Na+ or Cl- conductance increases, irrespective of which putative transmitter activated the response, were sensitive to curare. Most were totally blocked by less than or equal to 10-4 M curare. GABA responses were less sensitive and were often only depressed by 10-3 M curare. K+ conductance responses, irrespective of the transmitter, were not curare sensitive. These results are consistent with a model of receptor organization in which one neurotransmitter receptor may be associated with any of at least three ionophores, mediating conductance increase responses to Na+, Cl-, and K+, respectively. In Aplysia nervous tissue, curare appears not to be a specific antagonist for the nicotinic ACh receptor, but rather to be a specific blocking agent for a class of receptor-activated Na+ and Cl- responses.  相似文献   

6.
This article discusses a model of the electrical behavior of an external urethral sphincter motoneuron, based on morphological parameters like soma size, dendritic diameters and spatial dendritic configuration, and several electrical parameters. Because experimental data about the exact ion conductance mix of external urethral sphincter neurons is scarce, the gaps in knowledge about external urethral sphincter motoneurons were filled in with known data of alpha-motoneurons. The constructed compartmental model of motoneurons of Onuf's nucleus contains six voltage-dependent ionic conductances: a fast sodium and potassium conductance and an anomalous rectifier in the soma; a fast delayed rectifier type potassium conductance and a fast sodium conductance in the initial axon segment; an L-type calcium channel in the dendritic compartments. This paper considers the simulation of external urethral sphincter motoneuron responses to current injections that evoke bistable behavior. Simulations show self-sustained discharge following a depolarizing pulse through the microelectrode; the firing was subsequently terminated by a short hyperpolarizing pulse. This behavior is highly functional for neurons that have to exhibit prolonged activation during sphincter closure. In addition to these 'on' and 'off ' responses, we also observed a particular firing behavior in response to long-lasting triangular current pulses. When the depolarizing current was slowly increased and then decreased (triangular pulse) the firing frequency was higher during the descending phase than during the initial ascending phase.  相似文献   

7.
Intracellular recordings were obtained from single visual cells of the scallop, Pecten irradians. Two types of units are found. One type gives a graded, depolarizing response to light and the other a graded, hyperpolarizing response. The depolarizing cells are 2–3 log units more sensitive to light and have a longer latency than the hyperpolarizing type. At high light intensities the depolarizing cells are inactivated while the hyperpolarizing cells maintain their responses. When action potentials are seen they occur during illumination in depolarizing cells ("on" response) and after illumination in hyperpolarizing cells ("off" response). The evidence suggests that the depolarizing responses are from the microvilli-brearing proximal cells, and the hyperpolarizing responses from the ciliary-type distal cells of the retina, and that both responses are directly produced by light.  相似文献   

8.
Single mechanoreceptor cells in filiform hair sensilla on the cercus of Acheta domesticus were stimulated adequately by steplike deflections in their plane of least restraint and inadequately by ultrasound. Ultrasound was fed either into the cercus or into the thread-hair as substrate-borne sound of 110-120 kHz. The receptor responds to deflections of the thread-hair (adequate stimuli) with phasic receptor potentials which can be picked up transepithelially . These responses can be either depolarizing (excitatory responses) or hyperpolarizing (inhibitory responses). Ultrasound applied simultaneously or shortly preceding the adequate stimulus reduces both kinds of responses in a graded way. The receptor can respond to ultrasound alone. At small intensities the responses are predominantly inhibitory; with increasing intensity they may become excitatory. In both cases the responses to ultrasound are tonic and do not reach the peak responses to saturating adequate stimuli. The "off-effect", which follows adequate stimuli and leads to inhibitory responses after excitatory stimuli and vice versa, typically does not occur or is excitatory at the end of sonication. The observed effects of sonication are totally reversible. The correlation between transepithelial voltage, spike frequencies and spike amplitudes in the unsonicated and sonicated sensilla allows the responses to be attributed to sonication to the same conductance, which is also modulated by adequate stimuli. A model is discussed, according to which ultrasound exerts its effects by facilitating dissipative relaxation in the dendritic membrane, which is assumed to be involved in stimulus-energy transfer.  相似文献   

9.
Itracellular injections of Mg into cat spinal motoneurones have a depolarizing action, associated with a fall in input conductance, and depression of the postspike hyperpolarizing after-potential (a.h.p.) as well as its underlying conductance increase. There is also an increase in excitability, sometimes leading to outright discharge, and a change in the current-firing relation: the normal primary range is largely abolished and the firing appears to have the characteristics of the normal secondary range. Intracellular effects of Mg are thus mainly opposite to those of Ca, possibly owing to competition at sites where Ca activates K channels. Intracellular injections of Mn also tend to depress the a.h.p. but have relatively little effect on resting potential and conductance, or action potentials. Co also depresses the a.h.p. but has a more pronounced depolarizing action, and produces particularly strong depression of action potentials. By contrast intracellular Sr tends to raise the membrane conductance and has a mild hyperpolarizing effect. During the injection of Sr, a.h.p's are depressed but this is followed by a rebound of increased a.h.p. amplitude and conductance. Unlike the other divalent cations tested, Sr strongly depressed excitatory postsynaptic potentials. In most respects Sr appears to behave like Ca.  相似文献   

10.
Calcium entry induced by acetylcholine action on snail neurons   总被引:1,自引:0,他引:1  
A study was made of excitatory and inhibitory responses elicited by acetylcholine (ACh) in neurons of the snail Eobania vermiculata. At resting potential, ACh evoked a depolarizing inward current in some neurons (D-cells) and a hyperpolarizing current in others (H-cells). The currents elicited by ACh were nonlinearly dependent on membrane potential. After either D- or H-cells were equilibrated in chloride-free isotonic calcium, ACh evoked a depolarizing inward current which reversed sign at about -55 mV. These results suggest that ACh causes an influx of Ca2+ in both types of neurons.  相似文献   

11.
Amacrine cells were targeted for whole cell recording using two-photon fluorescence microscopy in a transgenic mouse line in which the promoter for dopamine receptor 2 drove expression of green fluorescent protein in a narrow field tristratified amacrine cell (TNAC) that had not been studied previously. Light evoked a multiphasic response that was the sum of hyperpolarizing and depolarization synaptic inputs consistent with distinct dendritic ramifications in the off and on sublamina of the inner plexiform layer. The amplitude and waveform of the response, which consisted of an initial brief hyperpolarization at light onset followed by recovery to a plateau potential close to dark resting potential and a hyperpolarizing response at the light offset varied little over an intensity range from 0.4 to ~10^6 Rh*/rod/s. This suggests that the cell functions as a differentiator that generates an output signal (a transient reduction in inhibitory input to downstream retina neurons) that is proportional to the derivative of light input independent of its intensity. The underlying circuitry appears to consist of rod and cone driven on and off bipolar cells that provide direct excitatory input to the cell as well as to GABAergic amacrine cells that are synaptically coupled to TNAC. Canonical reagents that blocked excitatory (glutamatergic) and inhibitory (GABA and glycine) synaptic transmission had effects on responses to scotopic stimuli consistent with the rod driven component of the proposed circuit. However, responses evoked by photopic stimuli were paradoxical and could not be interpreted on the basis of conventional thinking about the neuropharmacology of synaptic interactions in the retina.  相似文献   

12.
γ-Aminobutyric acid (GABA), a known inhibitory neurotransmitter in mammals, can elicit two different types of excitatory response in the nervous system of the marine mollusc, Aplysia. These responses are depolarizing when GABA is applied ionophoretically, and result from either an increase in membrane conductance to Na+ or a decrease in conductance to K+. In addition, GABA on other neurons causes an inhibitory response similar to that commonly found in other preparations. Although not all neurons have GABA receptors, identified single cells consistently have the same type of response. These observations suggest the possibility that GABA may function in at least some preparations as an excitatory neurotransmitter in addition to its documented inhibitory function.  相似文献   

13.
Physiological studies of olfactory receptor cells have focusedon excitatory responses, in part because the evidence for inhibitoryresponses from extracellular recordings, although long-standing,has been equivocal. Intracellular recording from the olfactorycells of two species of lobsters revealed that small but concentrationdependentand repeatable hyperpolarizing receptor potentials could beevoked by a mixture of L-arginine, L-cysteine and L-proline,as well as by histamine. Large, depolarizing receptor potentialswere evoked in the same cells by a complex odor mixture. Simultaneousapplication of depolarizing and hyperpolarizing stimuli reducedthe magnitude of the evoked depolarization. These results implythat multiple, opposing transduction mechanisms are presentin single lobster olfactory receptor cells and reveal a noncompetitivemechanism for peripheral mixture suppression.  相似文献   

14.
A pharmacological separation of depolarizing and hyperpolarizing mechanisms involved in the generation of acetylcholine (ACh) depolarizations was attempted in the identified neurons B1 and B3 of the buccal ganglia of Helix pomatia. The selectivity of the drugs employed was assayed in non-identified buccal neurons in which ACh increased a hyperpolarizing Cl- conductance. Voltage clamp techniques were used. Under control conditions the depolarizing ACh currents increased non-linearly with more negative membrane potentials. The hyperpolarizing ACh currents showed a linear potential dependence. The buffer substance Tris (5 mmol/l) depressed the depolarizing ACh currents. The effect was accentuated with more negative membrane potentials. Tris failed to affect hyperpolarizing ACh responses. HEPES (5 mmol/l) did not change depolarizing or hyperpolarizing ACh responses. d-Tubocurarine (0.02-0.2 mmol/l), hexamethonium (0.5-5.0 mmol/l) and atropine (0.1 mmol/l) blocked the depolarizing and hyperpolarizing ACh responses. Arecoline (0.1 mmol/l) had neither an agonistic nor an antagonistic effect on the identified and on the non-identified neurons. It displayed an anticholinesterase activity. Anthracene-9-carbonic acid (0.5 mmol/l) depressed selectively the hyperpolarizing ACh responses. In the neurons B1 and B3 no pharmacologically separable hyperpolarizing ACh responses were detected to be superimposed on the ACh depolarizations.  相似文献   

15.
The physiology and pharmacology of a depolarizing dopamine response was studied in the vertebrate neuronal somatic cell hybrid TCX11. The average resting membrane potential was ?50 mV (S.D. = ±7) with a membrane resistance of 40.5 mOhms (S.D. = ±8) as determined from intracellular recordings. Depolarizing current pulses did not elicit an action potential. Cells displayed a linear current-voltage relationship when artificially depolarized up to +30 mV. Iontophoretically applied dopamine elicited a depolarizing response with a conductance increase and a reversal potential of ?15 mV (S.D. = ±4.7). Experiments altering medium ion concentrations demonstrated the conductance increase was to sodium and most likely potassium. The dopamine agonist ET495 (Piribedil) and the analogue epinine mimicked dopamine, while closely related biogenic amines, with the exception of noradrenaline, elicited no response. Apomorphine also elicited a depolarizing response but was much less efficacious than Piribedil. Noradrenaline was less potent than dopamine and appeared to act at the dopamine receptor. Methylation (3-methoxytyramine) or absence of the 3-hydroxy group (tyramine) of dopamine resulted in total loss of activity. The dopamine antagonists chlorpromazine, trifluoperazine, promazine, and bulbocapnine reversibly blocked the response to dopamine at medium concentrations less than 5 μM. The adrenergic antagonist phentolamine blocked the response while phenoxybenzamine only reduced the response at higher concentrations. The acetylcholine antagonists α-bungarotoxin, hexamethonium, and scopolamine did not block the dopamine response. Both d-tubocurarine and atropine acted as antagonists. Collectively, these results demonstrate the presence of a receptor on a cultured cell line that is specific for dopamine, mediates a depolarizing and conductance increase response to dopamine, and displays the pharmacology most closely associated with dopamine receptors.  相似文献   

16.
Single mechanoreceptor cells in filiform hair sensilla on the cercus of Acheta domesticus were stimulated adequately by steplike deflections in their plane of least restraint and inadequately by ultrasound. Ultrasound was fed either into the cercus or into the thread-hair as substrate-borne sound of 110–120 kHz. The receptor responds to deflections of the thread-hair (adequate stimuli) with phasic receptor potentials which can be picked up transepithelially. These responses can be either depolarizing (excitatory responses) or hyperpolarizing (inhibitory responses). Ultrasound applied simultaneously or shortly preceding the adequate stimulus reduces both kinds of responses in a graded way. The receptor can respond to ultrasound alone. At small intensities the responses are predominantly inhibitory; with increasing intensity they may become excitatory. In both cases the responses to ultrasound are tonic and do not reach the peak responses to saturating adequate stimuli. The off-effect, which follows adequate stimuli and leads to inhibitory responses after excitatory stimuli and vice versa, typically does not occur or is exitatory at the end of sonication. The observed effects of sonication are totally reversible. The correlation between transepithelial voltage, spike frequencies and spike amplitudes in the unsonicated and sonicated sensilla allows the responses to be attributed to sonication to the same conductance, which is also modulated by adequate stimuli. A model is discussed, according to which ultrasound exerts its effects by facilitating dissipative relaxation in the dendritic membrane, which is assumed to be involved in stimulus-energy transfer.  相似文献   

17.
Intracellular recordings were made from immature, growing oocytes of the crayfish Pacifastacus leniusciulus. Oocytes had a relatively negative resting potential of -74.7+/-2.2 mV (n=26; range -53 to -90) and a mean input resistance of 0.86+/-0.19 MOmega (n=22; range 0.17-3.3). Octopamine induced a long-lasting response involving biphasic changes in input resistance, together with bi- or multiphasic changes in membrane potential. The resistance-decreasing phase involved (in different oocytes) membrane hyperpolarization, depolarization or both. The resistance-increasing phase was usually a depolarization. The hyperpolarizing form of the resistance-decreasing response, and the depolarizing resistance-increasing response reversed in polarity at membrane potentials of (respectively) -90 and -92 mV, suggesting increases and decreases in K(+) conductance underly the biphasic changes in input resistance. The threshold concentration for the response was remarkably low (>10(-12) M) and showed little or no dose-dependence over the concentration range 10(-12)-10(-6) M. Similar responses were evoked by dopamine and serotonin (at 10(-9) M), although a higher proportion of oocytes responded to octopamine and/or dopamine than to serotonin.  相似文献   

18.
The most consistent effects produced by intracellular injections of guanosine 3',5'-cyclic monophosphate (cGMP) (but not 5'-guanosine 5'-monophosphate in spinal motoneurons of cats are a rise in membrane conductance, acceleration in time course of spike potentials, and accentuation of the post-spike hyperpolarization. Associated changes in resting potential are smaller, less constant, and more often in the depolarizing than hyperpolarizing direction, cGMP tends to increase electrical excitability but reduces excitatory post-synaptic potential amplitudes. Most of the effects of intracellular cGMP are quite different from, or indeed opposite to, those of either extra- or intracellular applications of acetylcholine and therefore not consistent with the proposal that cGMP is the internal mediator of muscarinic actions.  相似文献   

19.
We have studied the effects of curare on responses resulting from iontophoretic application of several putative neurotransmitters onto Aplysia neurons. These neurons have specific receptors for acetylcholine (ACh), dopamine, octopamine, phenylethanolamine, histamine, γ-aminobutyric acid (GABA), aspartic acid, and glutamic acid. Each of these substances may on different specific neurons elicit at least three types of response, caused by a fast depolarizing Na+, a fast hyperpolarizing Cl?, or a slow hyperpolarizing K+ conductance increase. All responses resulting from either Na+ or Cl? conductance increases, irrespective of which putative transmitter activated the response, were sensitive to curare. Most were totally blocked by ≤ 10?4 M curare. GABA responses were less sensitive and were often only depressed by 10?3 M curare. K+ conductance responses, irrespective of the transmitter, were not curare sensitive. These results are consistent with a model of receptor organization in which one neurotransmitter receptor may be associated with any of at least three ionophores, mediating conductance increase responses to Na+, Cl?, and K+, respectively. In Aplysia nervous tissue, curare appears not to be a specific antagonist for the nicotinic ACh receptor, but rather to be a specific blocking agent for a class of receptor-activated Na+ and Cl? responses.  相似文献   

20.
The biophysical mechanisms that give rise to direction selectivity in the retina remain uncertain. Current evidence suggests that the directional signal first arises within the dendrites of starburst amacrine cells (SBACs). Two models have been proposed to explain this phenomenon, one based on mutual inhibitory interactions between SBACs, and the other positing an intrinsic dendritic mechanism requiring a voltage-gradient depolarizing towards the dendritic tips. We tested these models by recording current and voltage responses to visual stimuli in SBACs. In agreement with previous work, we found that the excitatory currents in the SBACs were directional, and remained directional when GABA receptors were blocked. Contrary to the mutual-inhibitory model, stimuli that produce strong directional signals in ganglion cells failed to reveal a significant inhibitory input to SBACs. Suppression of the tonic excitatory conductance, proposed to generate the dendritic voltage-gradient required for the dendrite autonomous model, failed to eliminate the directional signal in SBACs. However, selective block of tetrodotoxin-resistant sodium channels did reduce the strength of the directional excitatory signal in the SBACs. These results indicate that current models of direction-selectivity in the SBACs are inadequate, and suggest that voltage-gated excitatory channels, specifically tetrodotoxin-resistant sodium channels, are important elements in directional signaling. This is the first physiological evidence that tetrodotoxin-resistant sodium channels play a role in retinal information processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号